Primary Structure of the *Escherichia coli* Serotype K30 Capsular Polysaccharide

AJIT K. CHAKRABORTY,¹^{+*} HORST FRIEBOLIN,² AND STEPHAN STIRM¹

Max-Planck-Institut für Immunbiologie, Freiburg,¹ and Institut für Organische Chemie der Universität, Heidelberg,² Federal Republic of Germany

Methylation, ¹H nuclear magnetic resonance, and bacteriophage degradation results indicate that the *Escherichia coli* serotype K30 capsular polysaccharide consists of $\rightarrow 2$)- α -D-Manp-(1 \rightarrow 3)- β -D-Galp-(1 \rightarrow chains carrying β -D-GlcUAp-(1 \rightarrow 3)- α -D-Galp-(1 \rightarrow branches at position 3 of the mannoses.

In the course of our studies on the substrate specificity of bacteriophage-borne (spike-associated) glycanases depolymerizing *Enterobacteriaceae* capsular (e.g., 9, 13) and cell wall polysaccharides (12), we have compared the oligosaccharides obtained by the action of *Klebsiella* bacteriophage no. 20 on the *Klebsiella* serotype K20 and *Escherichia coli* K30 capsular polysaccharides (13), since different primary structures (3, 5) have been reported for these two substrates of one viral enzyme. Indistinguishable The K30 polysaccharide was extracted from *E. coli* E69 (O9:K30[A]:H12) (reference 5, method A) and subjected to the analytical procedures previously described or cited (10, 11). The material was found to consist of D-glucuronic acid, D-mannose, and D-galactose in a molar ratio approaching 1:1:2.

The results of methylation, gas-liquid chromatography, and mass spectrometry are summarized in Table 1. It can be deduced that the aldobiouronic acid is D-GlcUAp- $(1\rightarrow 3)$ -D-Gal

 TABLE 1. Identification and ratios of O-acetyl-O-methylalditols obtained from E. coli serotype K30

 capsular polysaccharide and its derivatives

Peracetyl derivative of ":	T^{b}		Primary fragments found (m/e)						Ratio of peak integrals			
	Literal	Found	45	117	161	189	233	261	I°	п	ш	IV
2,4,6-ManOH ^d	2.09	2.15 ^d	+	+	+		+		-	_	-	1.0
2,4,6-GalOH	2.28	2.28	+	+	+		+		1.0	1.7	1.6	1.8
2,3,4-GlcOH	2.49	2.42		+	+	(191) ^e	(235) ^e		_	-	0.8	-
4,6-ManOH	3.29	3.38	+		+	• •	. ,	+	-	1.0	1.0	-

^a 2,4,6-ManOH = 2,4,6-Tri-O-methyl-D-mannitol, etc.

^b T, Retention time, relative to peracetylated 2,3,4,6-GlcOH (T = 1.00) and 2,3-GlcOH (T = 5.39) in gasliquid chromatography on ECNSS-M (1).

^c I, Aldobiouronic acid, consisting of GlcUA and Gal, as obtained by partial acid hydrolysis of the polysaccharide (5), permethylated (the GlcUA derivative is not registered by the methods used); II, polysaccharide, permethylated; III, polysaccharide, permethylated and then carboxyl reduced/dideuterated; IV, repeating unit tetrasaccharide ending in reducing Gal, as obtained by bacteriophage degradation of the polysaccharide (see text), permethylated.

^d Cochromatographing with standard.

^e Dideuterated fragment found instead.

split products, however, were obtained from both materials. Therefore, the *E. coli* K30 glycan was reanalyzed by methylation, gas-liquid chromatography, mass spectrometry, and ¹H nuclear magnetic resonance, which had not been used in the earlier study (5). It was found that the *E. coli* polysaccharide probably has the same structure as the *Klebsiella* K20 antigen (possible differences in *O*-acetyl substitution not considered).

† Present address: Department of Chemistry, Calcutta University Post Graduate Centre, Agartala, Tripura-799004, India.

and that it constitutes branches at position 3 of the mannoses in a \rightarrow 2)-D-Manp-(1 \rightarrow 3)-D-Galp-(1 \rightarrow chain.

The proton magnetic resonance spectrum of the K30 glycan (1) showed, inter alia, four signals of about equal integrals at δ 4.57, 4.67, 5.20, and 5.35, indicating two β and two α linkages per repeating unit (due to the line width of the signals, coupling constants could not be determined).

Incubation (40 h at 37°C) of *E. coli* K30 or of *Klebsiella* K20 capsular polysaccharide (3.8 mg/

ml of phosphate-buffered physiological saline [pH 7.2] containing 0.05% sodium azide) with purified particles of *Klebsiella* bacteriophage no. 20 $(1.3 \times 10^{10}$ plaque-forming units per ml) (13) led to the nearly quantitative formation of a mixture of oligosaccharides (one and two repeating units) ending in reducing galactose in both cases, as determined by the method of Morrison (8). The *E. coli* K30 repeating unit tetrasaccharide (yield: 30%, wt/wt) was isolated by ion-exchange chromatography, desalted by gel filtration with a volatile buffer, and lyophilized (11); it could be sequentially degraded with β -glucuronidase from *Helix pomatia* (7) and with α -galactosidase from green coffee beans (4):

$$\beta-D-GlcUAp$$

$$^{1}\downarrow_{3}$$

$$\alpha-D-Galp$$

$$^{1}\downarrow_{3}$$

$$\rightarrow 2)-D-Manp-(1\rightarrow 3)-D-Galp-(1\rightarrow 4)$$

In total, these data prove that the *E. coli* K30 glycan consists of repeating units with the primary structure shown above (the arrow indicates the cleavage site of the phase-associated glycanase). In view of the generally very narrow substrate specificity of these phage enzymes (9, 11, 13), the degradation results additionally indicate the same distribution of the residual α and β linkages in the chain as in the *Klebsiella* K20 polysaccharide (3), viz., an α -mannose and a β -galactose.

The similarity or identity of the *E. coli* K30 and *Klebsiella* K20 polysaccharides is further corroborated by the finding that *E. coli* E69 and *Klebsiella* 889/50 (the serological test strain for the *Klebsiella* K20 antigen) (3, 6) strongly crossreact in slide agglutination tests with rabbit OK antisera against *E. coli* E69 and *Klebsiella* K596 (O1?:K20; the host of phage 20) (6, 13) as well as with Difco *Klebsiella* K20 serum. This project was supported by Deutsche Forschungsgemeinschaft (H.F.) and by Fonds der Chemischen Industrie (S.S.).

LITERATURE CITED

- Bebault, G. M., Y.-M. Choy, G. G. S. Dutton, N. Funnell, A. M. Stephen, and M. T. Yany. 1973. Proton magnetic resonance spectroscopy of *Klebsiella* capsular polysaccharides. J. Bacteriol. 113:1345-1347.
- Björndal, H., C. G. Hellerqvist, B. Lindberg, and S. Svensson. 1970. Gas-Flüssigkeits-Chromatographie und Massenspektrometrie bei der Methylierungsanalyse von Polysacchariden. Angew. Chem. 82:643-674.
- Choy, Y.-M., and G. G. S. Dutton. 1973. Structure of the capsular polysaccharide of *Klebsiella* K-type 20. Can. J. Chem. 51:3015-3020.
- Dey, P. M., and J. B. Pridham. 1972. Biochemistry of α-galactosidases. Adv. Enzymol. 36:91-131.
- Hungerer, D., K. Jann, B. Jann, F. Ørskov, and I. Ørskov. 1967. Immunochemistry of K antigens of *Escherichia coli*. 4. The K antigen of *E. coli* O9:K30: H12. Eur. J. Biochem. 2:115-126.
- Kauffmann, F. 1966. The bacteriology of Enterobacteriaceae. Munksgaard, Copenhagen.
- Levvy, G. A., and C. A. Marsh. 1960. β-Glucuronidase, p. 397-407. In P. D. Boyer, H. Lardy, and K. Myrbäck (ed.), The enzymes, vol. 4. Academic Press Inc., New York.
- Morrison, I. M. 1975. Determination of the degree of polymerisation of oligo- and polysaccharides by gasliquid chromatography. J. Chromatogr. 108:361-364.
- Niemann, H., H. Beilharz, and S. Stirm. 1978. Kinetics and substrate specificity of the glycanase activity associated with particles of *Klebsiella* bacteriophage No. 13. Carbohydr. Res. 60:353–366.
- Niemann, H., N. Frank, and S. Stirm. 1977. Klebsiella serotype-13 capsular polysaccharide: primary structure and depolymerization by a bacteriophage-borne glycanase. Carbohydr. Res. 59:165-177.
- Niemann, H., B. Kwiatkowski, U. Westphal, and S. Stirm. 1977. Klebsiella serotype 25 capsular polysaccharide: primary structure and depolymerization by a bacteriophage-borne glycanase. J. Bacteriol. 130:366– 374.
- Rieger-Hug, D., Y. M. Choy, G. Schmidt, and S. Stirm. 1977. Isolation of *Enterobacteriaceae* bacteriophage particles catalysing cell wall lipopolysaccharide degradation. J. Gen. Virol. 34:381-385.
- Thurow, H., H. Niemann, G. Rudolph, and S. Stirm. 1974. Host capsule depolymerase activity of bacteriophage particles active on *Klebsiella* K20 and K24 strains. Virology 58:306-309.