Supplemental Table 1: List of primers used in this study

Gene name Forward Reverse CYP2B6_+131HindIII TCCAAGCTTCTGGTCTGACTGC CYP2B6-2654 TGACAATGCTTGCCCGAAACTT CYP2B6-800 CCTCCCAGGTTCAAGTGATT CYP2B6-481 AAGGATACACACATAAGCACC CYP2B6_-347 CATGCAAGCACAGACAAACA CYP2B6-10918 AAGAGAAATTGGCCAAAATGAA CYP2B6-7428 GAGTCATAAACCACTTAGCAA CYP2B6-1433 GGACTCCCATATGTCTCTATCCTC

Plasmid Construction – Cloning primers

Chromatin immunoprecipitation - Quantitative PCR primers

Gene name	Forward	Reverse	Amplicon size
PCR1-12026	AGGTTGCAGTGAGCCAAGAT	AAGAGCCCTGTATCCCTAGACA	213 bp
PCR2-10918	AAGAGAAATTGGCCAAAATGAA	CGTCCAGACCCCAGAATAGTAG	286 bp
PCR3-9336	GGAAACTTTAGGCTCCAAGC	CCATCACAGCACTCGTCACT	181 bp
PCR4-8634	TGAGGACCCAGAGTACCCGTAT	AAACCACTTGCCGCCACT	314 bp
PCR5-4956	GCAGCAAGCCTTTTGTTCTC	CCAGCTTGAGCTGAGCTTTT	347bp
PCR6-2507	TCCCTCCCCTTTTGAAAATC	AGTGGCATTATCAGGGGAAA	348bp
PCR7-1788	ATGAGCACCCAATCTTAGTGTCA	GGACTCCCATATGTCTCTATCCTC	356bp
PCR8-347	CATGCAAGCACAGACAAACA	CCCAGTGACCTGATGCCTAT	176bp
RPLPO	ACCCAGCTCTGGAGAAGTCA	GAGGTCCTCCTTGGTGAACA	175bp

mRNA expression – Quantitative RT PCR primers

Gene name	Accession nº	Forward	Forw. 5'nt	Reverse	Amplicon size
PBGD	NM_000190	CGGAAGAAAACAGCCCAAAGA	189	TGAAGCCAGGAGGAAGCACAGT	294bp
GAPDH	NM_002046	ATGCTGGCGCTGAGTACGTC	368	GGGCAGAGATGATGACCCTT	104bp
CYP2B6	NM_000767	GACGCCTTCAATCCTGACCACT	1446	ATTTTGCCCACACCACACTCCT	225bp
C/EBPa	NM_004364	GTGGAGACGCAGCAGAAG	922	TTCCAAGGCACAAGGTTATC	450bp
CAR	NM_005122	TGCTGCCTCTGGTCACACACTT	664	TCAATCTCATCTCTCTGGGTAAC	385bp
HNF4a	NM_000457	GCCTACCTCAAAGCCATCAT	948	GACCCTCCCAGCAGCATCTC	275bp
CYP2C9	NM_000771	CCTCTGGGGGCATTATCCATC	1549	ATATTTGCACAGTGAAACATAGGA	141bp
CYP3A4	NM_017460	CCTTACATATACACACCCTTTGGAAGT	1389	AGCTCAATGCATGTACAGAATCCCCGGTTA	352bp
UGT1A1	NM_000463	AGACGTACCCTGTGCCATTC	245	CCGTCAGCATGACATCAAAG	222bp
UGT2B4	NM_021139	CACAGAATTCAGCCACTGGA	137	CTGCCCATCTCTTAACCAGC	206bp
OSTbeta	NM_178859	ATCCAGGCAAGCAGAAAAGA	205	CTGGTACATCCGGAAGGAAA	199bp
GST1A1	NM_145740	CCTGAGGAAAAAGATGCCAA	452	GACTGGAGTCAAGCTCCTCG	181bp

p-value	q-value	Pathway	Source	Members input overlap	Related genes	Effective input size	Overlap with input list
0.000	0.002	Glycogen synthesis	Reactome	GBE1; GYG1; GYS1		7	3
0.000	0.002	Glycogen branching enzyme transfer	Reactome	GBE1; GYG1		3	2
0.000	0.002	Biological oxidations	Reactome	ACSM2B; ADH4; CYP19A1; CYP24A1; CYP26A1; CYP2B6; CYP3A5; CYP3A7; CYP4F2; GSTA1; TPMT; UGT1A1; UGT2B4		126	13
0.000	0.003	Cytochrome P450 - arranged by substrate type	Reactome	CYP19A1; CYP24A1; CYP26A1; CYP2B6; CYP3A5; CYP3A7; CYP4F2		49	7
0.000	0.005	Phase 1 - Functionalization of compounds	Reactome	ADH4; CYP19A1; CYP24A1; CYP26A1; CYP2B6; CYP3A5; CYP3A7; CYP4F2		67	8
0.001	0.011	Xenobiotics	Reactome	CYP2B6; CYP3A5; CYP3A7		15	3
0.001	0.008	Vitamins & Steroid hormones	Reactome	CYP24A1; CYP26A1	CYP19A1	6	2
0.003	0.026	Synthesis of bile acids and bile salts	Reactome	AKR1D1; SLC27A2	OSTbeta, BAAT	10	2
0.006	0.040	PPAR signaling pathway	KEGG	ACSL1; ACSL5; AQP7; CD36; PCK1; SLC27A2	RXRB	69	6
0.001	0.008	Urea cycle	HumanCyc	ARG1; ASL		6	2
0.002	0.015	Urea synthesis	Reactome	ARG1; ASL	CA2; CA12; CA9	8	2
0.005	0.033	Superpathway of methionine degradation	HumanCyc	BHMT; CDO1; CTH		22	3
0.000	0.002	Dissolution of Fibrin Clot	Reactome	PLAUR; SERPINB2; SERPINE1		8	3
0.009	0.048	Fibrinolysis pathway	BioCarta	SERPINB2; SERPINE1		14	2
0.006	0.037	Response to elevated platelet cytosolic Ca++	Reactome	CD36; KNG1; PRKCA; SERPINE1; TGFB3; TMSB4X		67	6
0.004	0.032	Activation of PKC through G- protein coupled receptors	BioCarta	PLCB1; PRKCA		11	2
0.000	0.002	HIF-1-alpha transcription factor network	PID	ADM; CA9; CITED2; EGLN3; FOS; HNF4A; MCL1; PFKFB3; RORA; SERPINE1		66	10
0.004	0.029	Trk receptor signaling mediated by the MAPK pathway	PID	EGR1; FOS; MEF2C; RPS6KA1		33	4

Supplemental Table 2: Statistically overrepresented pathways from the list of induced genes in the upgraded HepG2 cells by ConsensusPathDB analysis:

p-value	q-value	Pathway	Source	Members input overlap	Related genes	Effective input size
0.000	0.002	Irinotecan Pathway	PharmGKB	CES1; CES2; CYP3A5; UGT1A1	13	4
0.000	0.003	Antiplatelet Drug Clopidogrel Pathway (PK)	PharmGKB	CES1; CYP2B6; CYP3A5	9	3
0.000	0.003	Phenytoin PK Pathway	PharmGKB	CYP3A5; CYP3A7; UGT1A1	10	3
0.001	0.008	Anti-estrogen Pathway (Tamoxifen PK)	PharmGKB	СҮР2В6; СҮР3А5	6	2
0.001	0.008	Ifosfamide Pathway (PK)	PharmGKB	CYP2B6; CYP3A5	6	2
0.001	0.011	Cyclophosphamide Pathway (PK)	PharmGKB	СҮР2В6; СҮР3А5	7	2
0.002	0.015	Erlotinib Pathway (PK)	PharmGKB	CYP3A5; UGT1A1	8	2
0.002	0.020	Irinotecan Pathway (Cancer)	PharmGKB	CES1; CES2; UGT1A1	18	3
0.003	0.024	Thiopurine Pathway	PharmGKB	GSTA1; MTHFS; MTRR; TPMT	31	4
0.003	0.026	Statin Pathway (Atorvastatin, LovastatinPK)	PharmGKB	CYP3A5; UGT1A1	10	2
0.006	0.038	Etoposide Pathway	PharmGKB	CYP3A5; UGT1A1	12	2
0.007	0.040	Fluoropyrimidine PK	PharmGKB	CDA; CES1; CES2	24	3
0.007	0.041	Statin Pathway (Fluvastatin PK)	PharmGKB	CYP3A5; UGT1A1	13	2

Supplemental Table 3: Overrepresented pathways in the upgraded HepG2 cells according to the *Pharmacogenomics Knowledge Base*:

PK: Pharmacokinetic pathways

Supplemental Figure 1 - Adenoviral-mediated transfection of C/EBPa, HNF4a and CAR reactivates multiple drug metabolism and disposition genes, and improves metabolic competence in human hepatoma HepG2 cells. HepG2 cells were infected with the combined adenoviral vectors for 24 h. Next, they were exposed to 500 nM CITCO or solvent for an additional 24-h period. A, CYP mRNA levels were determined by Q-RT-PCR and normalized with the housekeeping PBGD. CYP3A4 and CYP2C9 activities were assayed using a cocktail mixture containing midazolam and diclofenac as specific substrates. Enzymatic activity was expressed as pmol of metabolite formed/h/mg total protein. B,The mRNA concentration of phase II conjugating enzymes and transporters was determined by quantitative RT-PCR. Data represent the mean \pm S.D. from 3-4 independent experiments.

Supplemental Figure 2 - Transcriptome analysis of the upgraded HepG2 cells. Total RNA was purified from matched-pair HepG2 cells infected with Ad-C/EBPa/Ad-HNF4a/Ad-CAR, or with a control (insertless) adenovirus, and their expression profiles were determined by microarray analysis. A, Unsupervised Principal Component Analysis (PCA) shows the non forced grouping of the control versus the upgraded HepG2 cells. The figure depicts a three-dimensional PCA representation where blue and red represent the controls and the upgraded HepG2 cells, respectively. B, Heatmap of the top 50 differentially expressed genes, showing preferential gene induction over gene repression in the upgraded HepG2 cells. Red, green, and black represent up-, down-, and non-regulation, respectively

Ó

PC #1 34.6%