
Supplemental Data

Figure S1.A

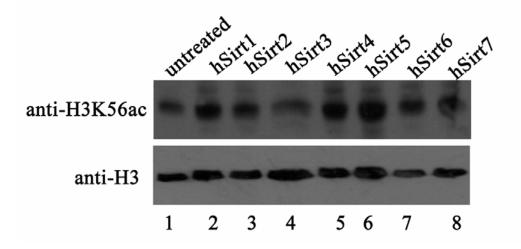

Figure S1.A: Flow cytometry analysis of DNA content of untreated and sodium butyrate treated Hela cells as described in materials and methods. The pin, green and blue peaks corresponds to cells in G1, S and G2/M phases of cell cycle respectively.

Figure S1.B

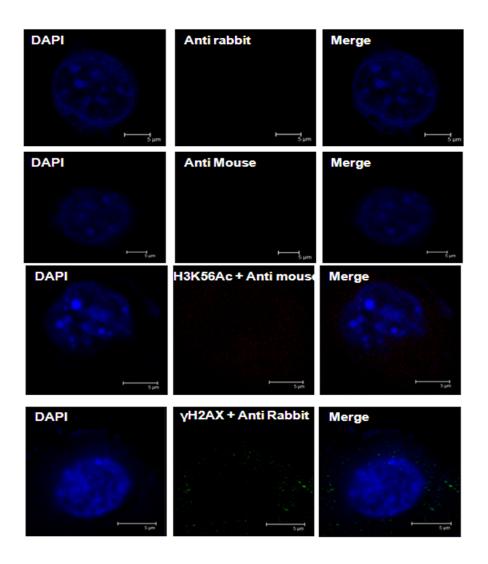

Figure S1.B: Cell cycle analysis. Hela cells were synchronized by double thymidine block and released to proceed through the cell cycle as described in 'Experimental Procedures'. Cells were collected after thymidine treatment (0 h) and at indicated time points after release and cell cycle progression was analyzed by monitoring DNA content employing flow cytometry as described in 'Experimental Procedures'.

Figure S1C

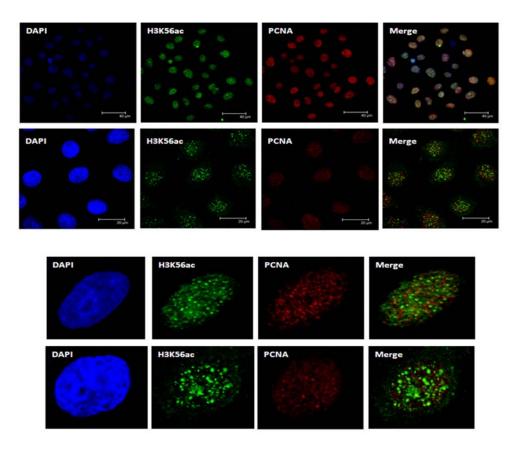

Figure S1.C: *In vivo* **deacetylation of H3K56 by sirtuins.** Sirtuins involved in the deacetylation of H3K56ac were tested by monitoring the reduction in level of H3K56 acetylation upon overexpression of seven human sirtuins, by transient transfection in HEK-293T cells as described in 'Experimental Procedures'. Immunoblot with anti-pan H3 was used as loading control.

Figure S1.D

Figure S2.D: Control experiments for coimmunofluoresence (Co-IF). Top two panels depict a control experiment without primary antibodies showing there is no background staining caused by the secondary antibodies alone. HEK-293T cells were stained with Alexa Fluor 488-conjugated donkey anti-rabbit and Alexa Fluor 647-conjugated goat anti-mouse secondary antibodies without prior incubation with primary antibodies. Third and fourth rows show cells stained with anti-H3K56ac antibody in combination with AlexaFluor 647-coupled goat anti-mouse IgG and anti- γ H2AX with AlexaFluor 488 coupled donkey anti-rabbit IgG, respectively, to show lack of cross reactivity.

Figure S1.E

Figure S1.E: Coimmunofluoresence showing localization of H3K56ac and PCNA in Hela cells. Asynchronous HeLa cells were coimmunostained with anti-H3K56ac antibody in combination with anti-PCNA antibody. Nuclei were stained with DAPI.

Figure S2. A

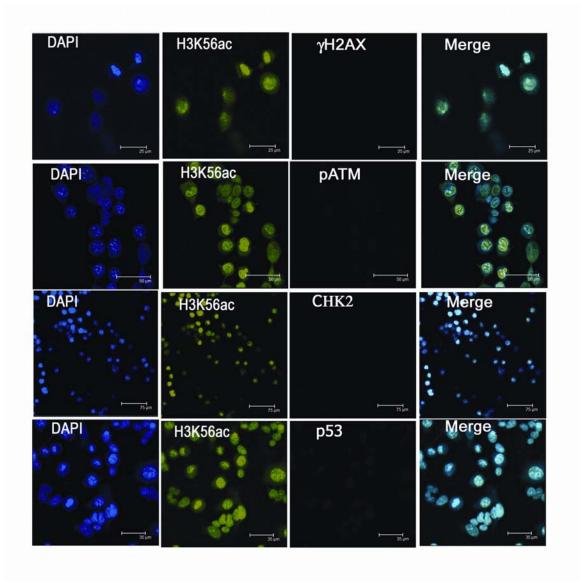


Figure S2.A: A field of untreated HEK293 cells showing diffused H3 K56ac staining: Untreated HEK293T cells immunostained with H3K56ac antibodies and antibodies against each of the indicated DNA DSB markers (γ -H2AX, pATM, Chk2 and p53).

Figure S2. B

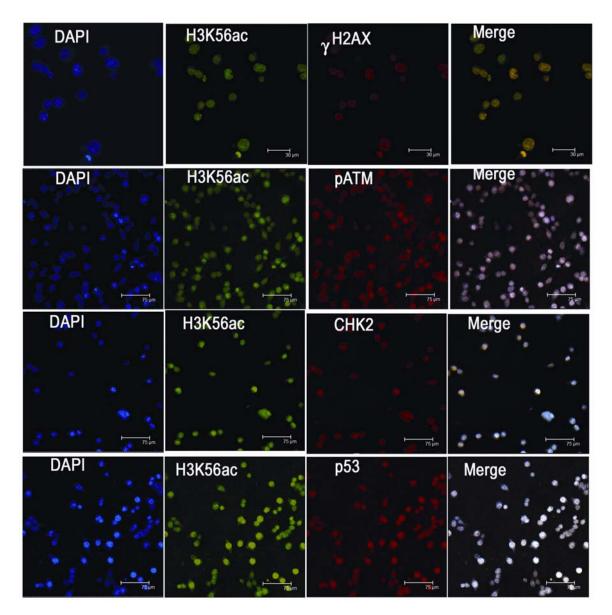


Figure S2.B: Colocalization of H3K56ac with γ -H2AX, pATM, Chk2 and p53. A field of MMS (0.02%) treated HEK293 cells immunostained with H3K56ac antibodies and antibodies against each of the indicated DNA DSB markers showing H3 K56ac.

Figure S2.C

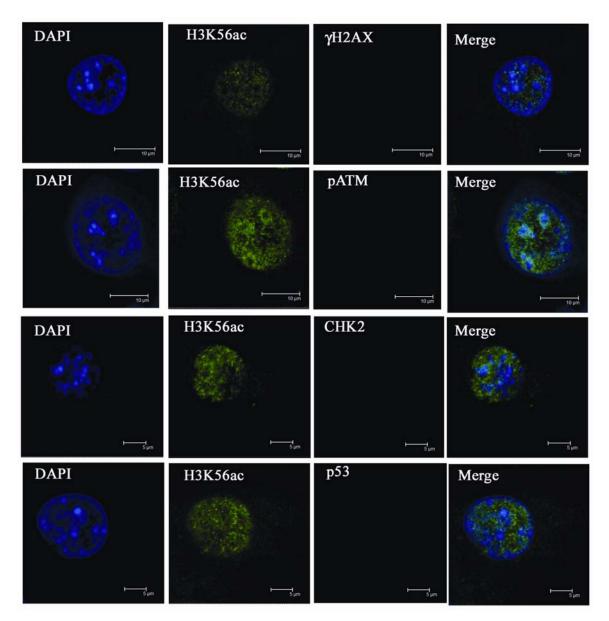


Figure S2.C: Coimmunofluorescence of H3K56ac and γ -H2AX, pATM, Chk2 and p53 in untreated HEK293T cell. A single untreated HEK293T cells immunostained with H3K56ac antibodies and antibodies against each of the indicated DNA DSB markers (γ -H2AX, pATM, Chk2 and p53).

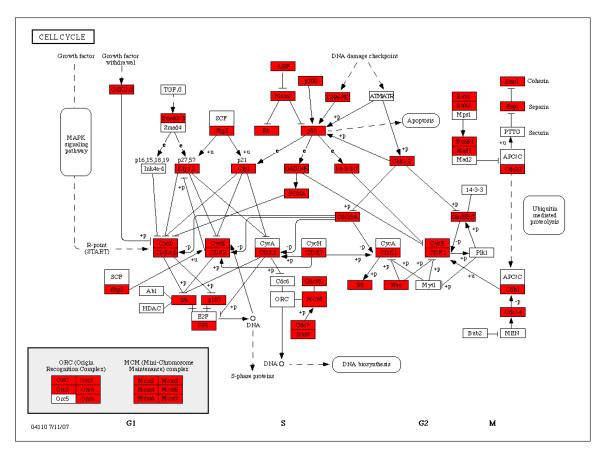


Figure S3. Pathway analysis showing promoters of several genes in cell cycle pathway have elevated levels of H3K56ac. ChIP on chip was carried out using anti-H3K56ac antibodies as described in experimental procedure. Pathway analysis of enriched gene promoters was carried out using gene spring software. Genes indicated in red have increased levels of H3K56ac at their promoters.

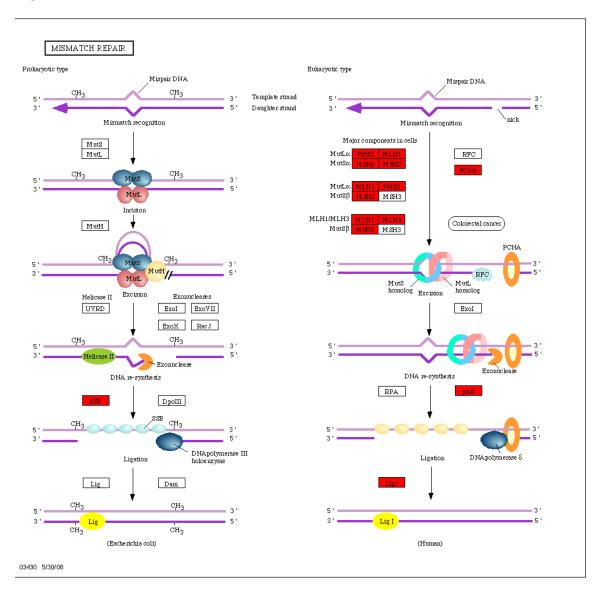


Figure S4. Pathway analysis showing promoters of several genes in mismatch repair pathway have elevated levels of H3K56ac. ChIP on chip was carried out using anti-H3K56ac antibodies as described in experimental procedure. Pathway analysis of enriched gene promoters was carried out using gene spring software. Genes indicated in red have increased levels of H3K56ac at their promoters.

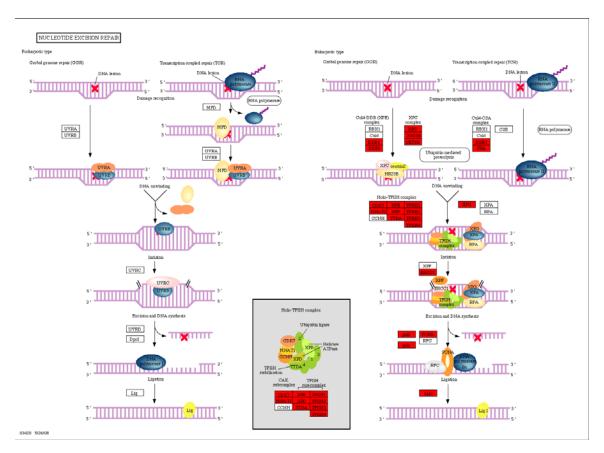


Figure S5. Pathway analysis showing promoters of several genes in nucleotide excision repair pathway have elevated levels of H3K56ac. ChIP on chip was carried out using anti-H3K56ac antibodies as described in experimental procedure. Pathway analysis of enriched gene promoters was carried out using gene spring software. Genes indicated in red have increased levels of H3K56ac at their promoters.

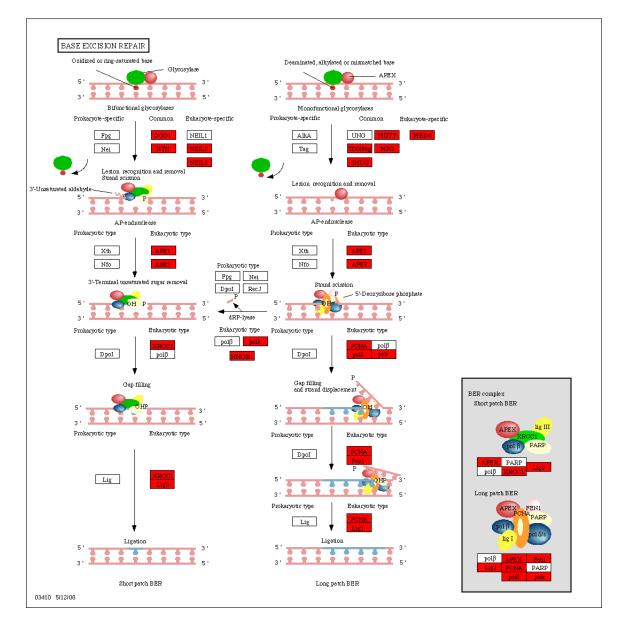
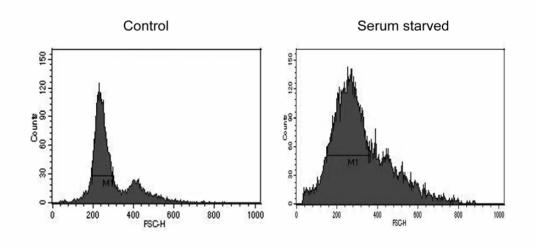



Figure S6. Pathway analysis showing promoters of several genes in base excision repair pathway have elevated levels of H3K56ac. ChIP on chip was carried out using anti-H3K56ac antibodies as described in experimental procedure. Pathway analysis of enriched gene promoters was carried out using gene spring software. Genes indicated in red have increased levels of H3K56ac at their promoters.

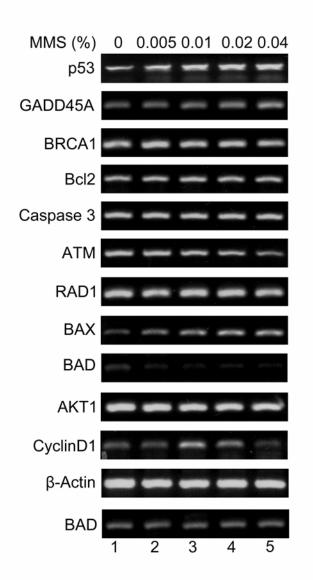


Figure S7. Pathway analysis showing promoters of several genes in apoptosis pathway have elevated levels of H3K56ac. ChIP on chip was carried out using anti-H3K56ac antibodies as described in experimental procedure. Pathway analysis of enriched gene promoters was carried out using gene spring software. Genes indicated in red have increased levels of H3K56ac at their promoters.

Figure S8: Flow cytometry analysis of DNA content of control and serum-starved HaCaT cells. Control and serum-syarved HacaT cells were subjected to flow cytometry analysis for total DNA content as described in 'Experimental Procedures'. M1 peak corresponds to cells in G1 phase of cell cycle and were 32 and 75% respectively.

Figure S9: MMS treatment alters expression of some of the genes involved in DNA damage response and cell cycle. Jurkat cells were treated with .005 % (lane 1), .01 % (lane 2), .02 % (lane 3) and .04 % (lane 4) MMS for 2 h. RNA was then isolated and RT-PCR was performed for representative genes involved in cell cycle and DNA damage. Untreated cells (lane 1) represent the control. RT-PCR for -actin served as control.

Table S1.

S. No.	Gene/locus	Fold enrichment over IgG (ChIP in Jurkat)	Fold change upon serum starvation (in HaCaT)	Fold enrichment over IgG (ChIP in serum starved HaCaT)
1	GPR174	315.2	4.67	12.06
2	L1CAM	52.0	2.21	1.23
3	PFTK1	9.2	1.46	6.34
4	CDH2	4.9	0.91	1.56
5	LBP	24.3	2.42	8.14
6	SERPINB7	12.1	1.58	1.52
7	MYCBP	16.0	2.07	3.37
8	ST7-I	36.8	2.87	6.41
9	ST7-II	32.0	1.23	4.02
10	ASZ1	21.1	3.3	4.12
11	DPT	26.0	1.97	2.1
12	OR51G1	9.20	1.76	5.72
13	DVL1	36.8	2.13	3.56
14	CTGF	16.0	0.86	2.53
15	GCC1	48.5	2.34	10.4
16	CTAGE1	9.2	4.02	3.73
17	SSTR1	9.8	1.45	1.02
18	EPC2	90.5	0.99	3.46
19	TLR4	2.8	2.78	0.11
20	HIST1H4L	68.6	2.03	1.07
21	HDAC9	45.3	1.89	3.18
22	А	1.12		
23	В	0.97		
24	С	1.03		
25	D	0.97		
26	E	1.03		

Table S1: Pathway analysis for genomic regions enriched in H3K56ac. ChIP-on-Chip analysis was performed as described in 'Experimental Procedures'. Key pathways in which multiple genes were significantly hyperacetylated are listed.

Table S2

S. No.	Gene/locus	Fold enrichment over IgG (ChIP in Jurkat)	Fold change upon serum starvation (in HaCaT)	Fold enrichment over IgG (ChIP in serum starved HaCaT)
1	GPR174	315.2	4.67	12.06
2	L1CAM	52.0	2.21	1.23
3	PFTK1	9.2	1.46	6.34
4	CDH2	4.9	0.91	1.56
5	LBP	24.3	2.42	8.14
6	SERPINB7	12.1	1.58	1.52
7	MYCBP	16.0	2.07	3.37
8	ST7-I	36.8	2.87	6.41
9	ST7-II	32.0	1.23	4.02
10	ASZ1	21.1	3.3	4.12
11	DPT	26.0	1.97	2.1
12	OR51G1	9.20	1.76	5.72
13	DVL1	36.8	2.13	3.56
14	CTGF	16.0	0.86	2.53
15	GCC1	48.5	2.34	10.4
16	CTAGE1	9.2	4.02	3.73
17	SSTR1	9.8	1.45	1.02
18	EPC2	90.5	0.99	3.46
19	TLR4	2.8	2.78	0.11
20	HIST1H4L	68.6	2.03	1.07
21	HDAC9	45.3	1.89	3.18
22	А	1.12		
23	В	0.97		
24	С	1.03		
25	D	0.97		
26	E	1.03		

Table S2: Quantitation of fold enrichment of H3K56ac occupancy at upstream regulatory regions of multiple genes in Jurkat and G1-arrested HaCaT cells. Chromatin immunoprecipitation was performed as described in 'Experimental Procedures'. Purified immunoprecipitated chromatin was subjected to PCR amplification using specific primers for the promoters of genes enriched in H3K56 acetylation, along with input chromatin. Quantitative RT PCRs were performed, for DNA immunoprecipitated from Jurkat cells and G1-arrested HaCaT cells (Column 3 and 5

respectively). Fold enrichment over the IgG is depicted. cDNA was prepared from G1arrested cells (serum starved) and control cells and quantitative RT-PCRs were performed. Fold enrichment in expression for G1-arrested (serum starved HaCaT cells) over control cells, for indicated genes, is depicted in (Column 4). All quantitative RT-PCRs were performed using iCycler (BioRad) using iQ SYBR Green mix (BioRad).

Table S3:

S. No.	Gene	Chromosomal location	Primer	Primer sequence	Amplicon size (bp)	Position	Nucleotide position relative to methionine
1	GPR174	Chr X	Forward primer	AAAAGCTGGAGGAAAATCCC	228	Promoter	-5033
1	01 K1/4		Reverse primer	TCTGGCTGGCTATCAGTGTC	220	Tomoter	-3033
2	L1CAM	Chr X	Forward primer	AAGCTCAGGGAGGATGGAAT	200	Inside	+41829
2	LICAM	Chi X	Reverse primer	CAGACCTGCCTGAGTCACTG	200	(intron)	+41029
3	PFTK1	Chr 7	Forward primer	GTTTGCTTGCTGGGATGTTT		Inside	+130353
5	IIIKI		Reverse primer	CCGCAGTCTTTTTCACTCCT	540	(intron)	+150555
4	CDH2	Chr 18	Forward primer	GGGCTTTTTAAGTCTTGCTCC	210	Inside	+90049
4	CDII2	Chi 18	Reverse primer	ATGCAGTCGTAAGCTTGGCT	210	(intron)	+90049
5	LBP	Chr 20	Forward primer	CTGCATTGGTTCTTGGGATT	247	Promoter	-3824
5	LDI	Clif 20	Reverse primer	ATGGCAGGAGGTCAGATGTC	247		5021
6	SERPINB7	Chr 18	Forward primer	GCTAAATTAGAGGCAGGCCC	327	Promoter	-18313
0	SERIIND7	Clif 18	Reverse primer	GGCCAAACCACTTTGTCACT	521	Tomoter	-16515
7	MYCBP	Chr 1	Forward primer	TCTCTCTCTTTCAAAACCCTCA	247	Inside	+10342
7	MICDI		Reverse primer	TGGCTGGTGCCTCTTCTAGT	277	(intron)	110542
8	ST7-I	Chr 7	Forward primer	AGGAATGGGGAAACAAAGGT	294	Promoter	-5831
0	517-1		Reverse primer	AGGTTTGGAAGGGAATTTGC	274	Tomoter	-3031
9	ST7-II	Chr 7	Forward primer	GCCTGGTCAGTGGAGCTTT	234	Inside	+24726
7	51/-11		Reverse primer	CCTGCAAGTCAGGAAGCAAC	234	(intron)	T24720
10	ASZ1	Chr 7	Forward primer	ACCAGACTCCAATGCCAATC	240	Inside	+62733
10	ADLI		Reverse primer	GAGAGAGGGTGGGAGAGGTC	240	(intron)	102733
11	DPT	Chr 1	Forward primer	GTGGCCGCATAGAGAATGAT	259	Promoter	-3179

			Reverese primer	GATGGAAGGCATTGCAGAAT			
12	OR51G1	Chr 11	Forward primer	TGGCAAGGAAAGAGGAAGAA	287	Promoter	-1929
12	000101		Reverse primer	CAGCTTCACTATGCCTGCTG	207		-1929
13	DVL1	Chr 1	Forward primer	GAACGGCTCAGGACCCC	241	Inside	+244
15	DVLI		Reverse primer	CTACCACATGGACGAGGAGG	241	(exon)	+244
14	CTGF	Chr 6	Forward primer	TAAGCTGGCCACTGAGTCCT	213	Promoter	-3368
14	CION		Reverse primer	TCCTGCCAGGTTTTCTCTGT	213	FIOINOLEI	-5508
15	GCC1	Chr 7	Forward primer	CAAAAGTCAAAAGCACAGGGA	299	Inside	+5080
15	occi		Reverse primer	TTATGGGTTTAGTGGGCAGG	233	(exon)	+3080
16	CTAGE1	Chr 18	Forward primer	CTCACTGGAAGGAAGGCAAG	234	Inside (intron)	-3629
10	CIAOLI		Reverse primer	ATGCCACTCCAGTCTCTGCT	234		-3027
17	SSTR1	Chr 14	Forward primer	TAGGAAAATCAGTGGGCCAG	225	Promoter	-5490
17	55111	Cill 14	Reverse primer	ATGGCCTACAGCAAAGGTTG	225		-5470
18	EPC2	Chr 2	Forward primer	TGCATACGCCATTCACAAAT	231	Promoter	-5596
10	EI C2		Reverse primer	CAATCCCTGTGAAGGCAGTT	231	Tomoter	-3390
19	TLR4	Chr 9	Forward primer	CATCATACCAGGCCTCCATT	253	Promoter	-5456
19	TLR4	Chi y	Reverse primer	GTACTGCCCTGTGCATCTCA	233	Tomoter	-5450
20	HIST1H4L	Chr 6	Forward primer	GCCTGATGATAGCTCCAAGG	265	Promoter	-483
20	111511114L		Reverse primer	AGGAACATGAGGGAGCTCAA	203	FIOINOLEI	-485
21	HDAC9	Chr 7	Forward primer	TGGGAGAAGAGGTAACATCAA	271	Promoter	-5490
21	IIDAC9		Reverse primer	TGGAAACAAGCAAAGGAGGT	271	FIOIDOLEI	-3490
22	2 A	116243332- 116244154	Forward primer	GCCATCAGAATATTGAAAGAA TGACCTC	682	Promoter	N/A
	Λ		Reverse primer	CTGCTTGTTGCAGGTACTTGGCA AATAG	002	Tomotor	11/21
23	В	59396319- 59397663	Forward primer	GGTTTGCTTAGGTGAGGTGCGG CGGTGTGC	650	Promoter	N/A

			Reverse primer	GACCCTCCAGACCTCACGTTTG TTCCGGAG										
24	С	152133502-	Forward primer	GGGCTGGGAGGAGTGGGAACAA CATGGGCTC	668	Promoter	N/A							
24	C	152134181	Reverse primer	CACTGGCCAGGCACTTTTCTGCC TGG	008		11/24							
25	D	4812338- 4813100	Forward primer	GGAATTTAGAAGCTAACCCACAG AAGAAGG	512	Promoter	N/A							
25	D		4813100	4813100	4813100	4813100	4813100	4813100	4813100	4813100	4813100	4813100 Reverse primer GAGGCTTAAGACTTCTCAGGGGGT TGCCTAG	512	riomoter
26	Е	Е 117218625-	Forward primer	GGATGGTTTTGGTGGCAGCTGAG GGGAGGATG	453	Promoter	N/A							
20	Ľ	117219107	Reverse primer	CCCAAAGTCCTCCGTCAAGAGAT GTCTCGCC	455	rionoter	1 v / A							

Supplemental Table 3. Oligonucleotides used for ChIP-PCR. The oligonucleotides used for ChIP-PCR of the genes studied (represented by their official symbols in Figure 7A and C) are listed in the table. Also included are the chromosomal locations of the respective genes, the amplicon size, position of the amplicon (in promoter or in the exon/intron of the gene) and the position of the amplicon relative to ATG encoding initiator methionine. The oligonucleotides were designed after retrieving the 300 bp sequences, using UCSC Table Browser (Karolchik et al., 2004), flanking either side of the probes (40-60 mer) used in the microarray analysis. "+" or "-" indicate the relative location of amplicon (upstream and downstream, respectively) from the initiation site. Amplicons A-E (last five panels in Figure 7A) used as genomic controls were taken from the promoter regions identified by Kim et al. (2005).

Table S4:

S. No.	Gene	Chromosomal location	Primer type	Primer sequence	Ampli- con size (bp)	Position	Full- length cDNA (nt)	Nucleotide position relative to methionine
1	GPR174	Chr X	Forward primer	GTGCCAGGTCTCATAGGGAA	285	Inside	1002	91
1	UI KI /4		Reverse primer	GCGAAAGGGGTACATGAGAA	265	Inside	1002	91
2	L1CAM	Chr X	Forward primer	GTGAGTGCCATCATCCTCCT	328	Inside	3774	3379
2	LICAM		Reverse primer	CCTTCTCCTTCTTGCCACTG	328		3774	5517
3	PFTK1	Chr 7	Forward primer	CCAAGGAGTTGCTGCTTTTC	- 253	Inside	1356	924
5	FI'IKI		Reverse primer	TGCCGACAGTCTGTTCTTTG				
4	CDH2	Chr 18	Forward primer	CCATCACTCGGCTTAATGGT	242	Inside	2721	1958
4	CDII2		Reverse primer	GATGATGATGCAGAGCAGGA	242	Inside	2721	
5	LBP	Chr 20	Forward primer	AACTTCAGCCCTGGGAATCT	324	Incida	1446	1048
5	LDF	CIII 20	Reverse primer	CTGAACACGCTTCAGCAGAG	324	Inside	1440	1048
6	SERPINB7	Chr 18	Forward primer	ACGTTCTGCTGCCTGAGAAT	- 345	Inside	1143	713
0	SERVIND/	Ciii 18	Reverse primer	TGGACTGAGGGAGTTGCTTT		mside	1143	/15
7	MYCBP	Chr 1	Forward primer	GCCGCCGACTCGAAGCGTGAG	276	Inside	312	16

			Reverse primer	CTGAGGTGGTTCATACTGAGC				
8	ST7-I	Chr 7	Forward primer	TGCACACTGGAAGAGAGTGG	261	Inside	1665	1278
0	517-1		Reverse primer	AACTGATGTGTCAGGAGGGC	201			1278
9	ST7-II	Chr 7	Forward primer	GAGGGGTTGACAACAACTCTTC	310	Inside	1758	217
9	51/-11		Reverse primer	GCTTCATGAGCTGCAGAAATCC	510	Inside	1/30	317
10	ASZ1	Chr 7	Forward primer	GAGAGTAGCGAGAGCGAGGA	233	Inside	1428	46
10	ASZI		Reverse primer	TCTGCATTGGCAACACTAGC	233	mside	1420	40
11	DPT	Chr 1	Forward primer	GGCTTCAGCTACCAGTGTCC	304	т 1	(0)(133
11	DFI		Reverse primer	TTAGCCAGCAGGAATATGGG	304	Inside	606	155
12	OR51G1	Chr 11	Forward primer	ACCTCACCATTCTCCACGTC	323	Inside	966	131
12	OKJIGI		Reverse primer	CACTGAGCTTAGCCCCATCT	525			
13	DVL1	Chr 1	Forward primer	GGAAGCAGCGCCTTCGGCAG	- 251	Inside	2013	671
15	DVLI		Reverse primer	CACGTCATTCACCTGCAGC				
14	CTGF	Chr 6	Forward primer	CCGTACTCCCAAAATCTCCA	237	Inside	1050	771
14	CION		Reverse primer	AAGATGTCATTGTCTCCGGG	237			
15	GCC1	Chr 7	Forward primer	GCACCTACGAGAAAGCCAAG	255	Inside	2328	1133
15	UCCI		Reverse primer	CCAGGTCACAGAGCTTCTCC	233	mside	2328	1155
16	CTAGE1	Chr 18	Forward primer	CCCTCAAATCACAAGTAGCTG	275	Inside	2238	455
10	CIAGEI		Reverse primer	CTTTAGCAAGCGTTCAGTCAG	215	mside	2230	433
17	SSTR1	Chr 14	Forward primer	GGGCTATCTGCCTGTGCTAC	294	Inside	1176	710
17	SSIKI	CIII 14	Reverse primer	GGAAAGAGCGCTTGAAGTTG	294	Inside	1170	/10
18	EPC2	Chr 2	Forward primer	GGGGGTATCACAGAAGAGCA	287	Inside	2424	1726
10			Reverse primer	GGCTGGACAACACCGTTTAT	201	msiue	2424	1720
19	TLR4	Chr 9	Forward primer	CCAGGATGAGGACTGGGTAA	294	Inside	1920	1446
17	ILN4		Reverse primer	CTGAGCAGGGTCTTCTCCAC	274	mside	1920	1440

20	20 HIST1H4L	Chrif	Forward primer	AGGGTCTGGGCAAAGGAG	230	Incida	212	26
20 HIST1H4L Chr 6	Chir 6	Reverse primer	CATGGCTGTGACTGTCTTGC	250	Inside	312	26	
21		IDAC9 Chr 7	Forward primer	CAGTTCTCCAGGCTCTGGTC	343	Inside	3201	804
21	21 HDAC9		Reverse primer	AGTAACATGAGGGTGGCTGG	545			804
22		n Chr 7	Forward primer	TGGAATCCTGTGGCATCCA	257	Inside	1128	806
22 β-actin		Reverse primer	TAACAGTCCGCCTAGAAGCA	237	Inside	1120	800	

Supplemental Table 4. Oligonucleotides used for quantitative RT-PCR. The oligonucleotides used for quantitative RT-PCR (for the genes represented by their official symbols in Figure 7B) are listed it the table, along with the chromosomal location of the respective genes, the amplicon size, position of the amplicon (which is always inside the coding region), size of full-length cDNA and the position of the amplicon relative to ATG encoding initiator methionine.