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1. Model

1.1. Chemical interaction description and mass action modeling

The following Tables and simplifications provide a complete overview on all model

equations.

To describe the dynamics of the network, we define all the chemical interactions

occurring between molecules of the network. Table 1 summarizes the reaction types

Table 1. List of reactions occurring between molecules involved in the dynamics of
the simplified regulatory network.

Reactions Reagents Products rate units

Transcription Pr-Pel Pr-Pel + mRNA-Pel k3 min−1

Transcription Pr-KdgR Pr-KdgR + mRNA-KdgRk4 min−1

Translation mRNA-Pel Pel + mRNA-Pel η1 min−1

Translation mRNA-KdgR KdgR + mRNA-KdgR η2 min−1

Dimerisation 2 KdgR KdgR2 a2 µM.min−1

Dissociation KdgR2 2 KdgR d2 min−1

Repression Pr-Pel + KdgR2 Pr-Pel.KdgR2 a6 µM.min−1

Repression dissoc Pr-Pel.KdgR2 Pr-Pel + KdgR2 d6 min−1

Transport UGA(product of degradation)KDG γ min−1

Complex formationKdgR2 + 2 KDG KdgR2.KDG2 a3 µM−2.min−1

Complex dissoc KdgR2.KDG2 KdgR2 + 2 KDG d3 min−1

Phosphorylation KDG KDGp k5 min−1

Degradation mRNA-Pel ∅ γ1 min−1

Degradation mRNA-KdgR ∅ γ2 min−1

Degradation Pel ∅ α1 min−1

Degradation KdgR ∅ α2 min−1

Degradation KdgR2 ∅ α
′
2 min−1

Degradation KdgR2.KDG2 ∅ α
′′
2 min−1

Degradation Pr-Pel.KdgR2 ∅ α
′′′
2 min−1

Degradation Pr-KdgR.KdgR2 ∅ α
′′′′
2 min−1
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occurring between molecules, except for the intermediary molecules involved between

the PGA and the UGA in the metabolic module of the network (confined in the box

with continuous line in Fig. 2). Table 2 summarizes the dynamical equations for each

molecules involved in the regulatory network. These dynamical equations are built by

applying the mass-action principle to each reaction of Table 1.

1.2. Modeling the enzymatic degradation of PGA

The metabolic module describes the degradation of PGA, the formation of KDG and its

inductive effect catalyzed by Pel enzymes [1, 2]. This directed enzymatic degradation

of Pectin into KDG, is assumed to follow Michaelis Menten kinetics. In order to model

this enzymatic degradation, lets consider a polymer Pl (of molecular weight lP) which

can be degraded by and enzyme E. One will suppose that the enzyme can bind and cut

any sites of the polymer. For a polymer Pl (constituted of l monomers), l−1 complexes

can be formed between the polymer and the enzyme. These considerations lead to the

following chemical equations:

Pl + E
aml­
dml

Cml
kml−→ Pl−m + Pm + E (1)

with l = 2, ..., L and m = l + 1, ..., L; where Cml is the E.Pl complex with the enzyme

fixed on the (m,m + 1) dimer. L is the maximal polymer length.

The conservation law on the total enzyme gives:

ET = E +
L∑

l=2

l−1∑
m=1

Cml (2)

Table 2. List of variables and dynamic equation of each molecule used to model the
dynamics of the regulatory network. Dynamical equations are built by applying the
mass-action principle to each reaction.

Molecules Concentration Equation of dynamics

Total Pel x x = x∗ +
∑L

l=2

∑l−1
m=1 Cml

Total KdgR y y = y∗ + 2yd + 2q1 + 2c2

Total Pr-Pel P1 P1 = P ∗1 + q1

Total Pr-KdgR P2

KDG w dw
dt = γ(1− ρ)z − (k5 + µ(t))w − a3w

∗2yd + d3c2

”Free” Pr-Pel P ∗1
dP∗1
dt = −a6P

∗
1 yd + d6q1 + (α

′′′
2 + µ(t))q1

”Free” Pel x∗ dx∗
dt = η1

(
ρ

1−ρ

)
m1 − α1x

∗ −∑L
l=2

∑l−1
m=1(amlslx

∗ − (dml + kml)Cml)

”Free” KdgR y∗ dy∗

dt = η2m2 − (α2 + µ(t))y∗ − 2(a2y
∗2 + d2yd)

mRNA-Pel m1
dm1
dt = k3P

∗
1 − γ1m1

mRNA-KdgR m2
dm2
dt = k4P2 − γ2m2

PGA.Pel c1
dc1
dt = a1sx

∗ − (d1 + k1)c1

KdgR2.KDG c2
dc2
dt = a3w

∗2yd − d3c2 − (α
′′
2 + µ(t))c2

Pr-Pel.KdgR2 q1
dq1
dt = a6P

∗
1 yd − d6q1 − (α

′′′
2 + µ(t))q1

KdgR2 yd
dyd

dt = a2y
∗2 − d2yd − a3w

∗2yd + d3c2 − a6P
∗
1 yd + d6q1 − (α

′
2 + µ(t))yd
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this is a sum of several contributions: Cml contains enzyme which is captured by

the enzymatic degradation and E is the free available enzyme. In our network, E

corresponds to the Pel enzyme. An analog interpretation holds for the total Pel and

KdgR conservation equations (See Table 2). The degradation dynamics of the molecular

concentration (sl) of polymer Pl (taking into account the fact that the final product of

degradation (UGA) is then imported in the intracellular milieu) is given by :

dsl

dt
= 2

L∑

j=l+1

kljClj −
l−1∑
m=1

(dmlCml − amlEsl) (3)

ds1

dt
= 2

L∑
j=2

k1jC1j − γρs1 (4)

dCml

dt
= amlEPl − dmlCml − kmlCml (5)

with l = 2, ...L

1.3. Modeling the biomass growth

In order to take into account the biomass growth during experiment, one introduces

a specific growth rate µ(t) = ρ̇
ρ
. ρ = vb

Ve
represents the bacteria volume fraction, vb is

the total bacteria volume and Ve the extracellular volume. This growth rate function

depends on the amount of substrate introduced and on the initial number of inoculated

bacteria, N0. The logistic function is used for the bacteria volume fraction growth

description:

dρ

dt
= σρ

(
1− ρ

ρs

)
(6)

where σ is the bacteria growth rate and ρs is the maximum bacteria volume fraction.

The initial bacteria volume fraction is given by ρ0 = N0v0

Ve
, where v0 ' 1(µm)3 is the

volume of one cell.

In order to determine the dependence of these parameters on the initial bacteria

N0 and the initial substrate [PGA]0, for several experiments with varying amounts of

substrate, the parameters of the logistic function are obtained by fitting the biomass

growth with the logistic function. Therefore, as shown on Figs. 1 using a linear regression

the dependence of these parameters on the initial amount of PGA introduced can be

derived:

ρs = (1.71[PGA]0 + 1.75)× 10−3 (7)

σ = 0.56[PGA]0 + 0.59 (8)

Therefore, knowing the initial amount of substrate and the initial number of bacteria,

the bacteria growth equation can be solved.
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Figure 1. Determination of the variation of bacteria growth parameters ρs and σ as
a function of the initial amount of substrate (PGA) introduced. The black points are
obtained from three sample experiments with different amount of initially introduced
PGA (0.01%, 0.2% and 0.4% w/v) by fitting the A600 with the logistic function. The
blue line corresponds to the linear regression function that allows to obtain the variation
parameters ρs and σ as a function of the initial amount of substrate.

2. Model reduction using QSSA

2.1. Case of a polymer of length L > 2

In this Section, one will describe how the complete model presented in Table 2 is

simplified using QSSA. Considering the fact that the dynamics of transcripts are very

fast compared with the one of proteins, one can apply the fast and slow variables

separation. Therefore, by distinguishing two concentration vectors B = (x, y, sl, w, z, )

and R = (x∗, y∗, P ∗
1 ,m1,m2, q1, c1, c2, yd, Cml) respectively for the slow and the fast

variables, the complete model in Table 2 can be rewritten in the abstract form:

dB

dt
= F (B, R) (9)

dR

dt
= G(B, R) (10)

Where F (R,B) and G(R,B) are the right-hand side of differential equations in Table 2.

In this new set of variables, the time-scales of the dynamics are well separated. F

contains only the terms describing slow variables dynamics, and G fast variables

dynamics. Thus the standard QSSA for the R variables can be applied allowing to

reduce the analysis of the dynamics to the slow variables B given by:

dx

dt
= η1

( ρ

1− ρ

)
m1 − α1x

∗ (11)

dy

dt
= η2m2 − (α2 + µ(t))y (12)

dsl

dt
= 2

L∑

j=l+1

kljClj −
l−1∑
m=1

kmlCml (13)



Towards a quantitative modeling of ... 5

ds1

dt
= 2

L∑
j=2

k1jC1j − γρs1 (14)

dw

dt
= γ(1− ρ)s1 − (k5 + µ(t))w (15)

with l = 2, ..., L and the following constraints obtained for G = 0:

k3P
∗
1 − γ1m1 = 0 (16)

k4P2 − γ2m2 = 0 (17)

a2y
∗2 − d2yd = 0 (18)

a3w
∗2yd − d3c2 = 0 (19)

a6P
∗
1 yd − d6q1 = 0 (20)

amlPlx
∗ − dmlCml − kmlCml = 0 (21)

Solving constraints, one gets the following expression of species with fast dynamics at

equilibrium as function of w, yd, P1 and P2 only (with P1 and P2 constants) :

P ∗
1 =

d6

d6 + a6yd

P1

m1 =
k3

γ1

P ∗
1

m2 =
k4

γ2

P2

yd =
a2

d2

y∗2

q1 =
a6P1

d6 + a6yd

yd

c2 =
a3

d3

w2yd

The free Pel (x∗) and KdgR (y∗) have not yet been determined. In order to

determine x∗, one will consider here that the kinetic rates aml, dml and kml describing

chemical reactions (1) does not depend on m and l, due to the fact that the considered

interaction is specific (i.e depends only on the interaction of located particles, an enzyme

and a site on the polymer). So in order to simplify, one takes a1 = aml, d1 = dml et

k1 = kml. Using this hypothesis, the Michaelis and Menten constant Kml for each

chemical reaction described in equation (1) are identical and equal to:

Km =
d1 + k1

a1
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Let us notice that Km is in mM . The constraint equation (21) and the conservation

law on total Pel give:

x = x∗
(

1 +
L∑

l=2

(l − 1)
sl

Km

)

and
l−1∑
m=1

Cml =
sl

Km +
∑L

j=2(j − 1)sj

x

For the determination of y∗, one assumes that the free KdgR concentration (y∗)
can be negligible compared to the total KdgR (y), therefore, one have the following

approximation:

y ' 2yd + 2q1 + 2c2

one can have a relation between y, w and, yd by replacing q1 and c2 by their expression:

y = 2yd

[
1 +

a3

d3

w2 +
a6P1

d6 + a6yd

]

Substituting these expressions into equations (11)-(15), and defining some effective

parameters, one has

dx

dt
= β1

(
ρ

1− ρ

)(
1

1 + yd/Kd6

)
− α1

Km

Km +
∑L

j=2(j − 1)sj

x (22)

dy

dt
= β2 − (α2 + µ(t))y (23)

dsl

dt
=

k1x

Km +
∑L

j=2(j − 1)sj

(
L∑

m=l+1

2sm − (l − 1)sl

)
(24)

ds1

dt
=

k1x

Km +
∑L

j=2(j − 1)sj

(
L∑

m=l+1

2sm

)
− γ

vb

Ve

s1 (25)

dw

dt
= γ(1− ρ)s1 − (k5 + µ(t))w (26)

with l = 2, ...L

where

y = 2yd

[
1 +

(
w

Kd3

)2

+
P1

Kd6 + yd

]

with K2
d3 = d3

a3
and Kd6 = d6

a6
. Kdi correspond to dissociation constants.

From a mathematical point of view, the model can be further simplified by

remarking that

y/2− P1

1 + w2

K2
d3

≤ yd ≤ y/2

1 + w2

K2
d3
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At the equilibrium, y = β2

α2
' 2.02muM and P1 = 1.44 × 10−3µM , so y/2 <<< P1.

Therefore one has:

y ' 2yd

[
1 +

(
w

Kd3

)2
]

(27)

The volume fraction
(

vb

Ve−vb

)
takes into account the dilution effects due to the ex-

port process through the bacteria membrane.

2.2. Simple case L = 2

In the case where L = 2, one has:

dx

dt
= β1

( ρ

1− ρ

) 1

1 + yd/Kd6

− α1
Km

Km + s2

x (28)

dy

dt
= β2 − (α2 + µ(t))y (29)

ds2

dt
= −k1

s2

Km + s2

x (30)

ds1

dt
= 2k1

s2

Km + s2

x− γρs1 (31)

dw

dt
= γ(1− ρ)s1 − (k5 + µ(t))w (32)

where

yd =
y

2

[
1 +

( w

Kd3

)2]−1

(33)

with PKDG

P ' 1 as PKDG = 178g/mol, k1 = εkcat in h−1.

3. Steady states analysis and initial conditions

The analysis of equations (22) to (27) allows to deduce the following steady states:

yeq =
β2

α2

(34)

xeq =

(
β1

α1

)(
vb

Ve − vb

)(
1

1 + yeq/2Kd6

)
(35)

weq = 0 (36)

sl.eq = 0 (37)

Equations (34) to (36) will be consider for simulations as initial conditions for the

corresponding species. At the beginning of the experiments, a certain mass amount of
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PGA is added in the media. In the following, one will explain how the corresponding

molecular concentration of PGA is determined.

The molecular weight of a monomer of galacturonate is P = 176g/mol. The length

of PGA polymers lies between 142 and 284 probably with a Gaussian distribution

centered on a median value of approximately 210. The mass concentration (Ml) of

polymer Pl is given by:

Ml = l sl P
The mass conservation is:

L∑

l=1

Ml = Mtot (38)

where Mtot is the total mass of PGA introduces at the beginning of the experiment.

Due to the length distribution of polymer, one will consider here a distribution profile

depending on the length of polymer to describe initial conditions. Therefore, one can

consider:

sl(0) = stot pl

where stot =
∑L

l=1 sl(0) is the total molar concentration of polymer and pl the probability

to find a polymer of length l at t = 0. The average polymer length is given by:

l̄ =
L∑

l=1

lpl (39)

For instance, for a Gaussian distribution centered around l̄ with variance σ2, one

would have:

sl(0) = stot
1

Z(σ)
e−(l−l̄)2/2σ2

with Z(σ) the normalization factor. Using the mass conservation law (38) the initial

concentration of polymer sl is given by:

sl(0) =
Mtot

l̄P (40)

3.1. Determining Km via the measure of the mass-characterized Michealis-Menten

constant.

The products of degradation of PGA by the pectate lyases are unsaturated oligo-

galacturonates (UGA). In order to quantify the enzymatic activity one measures the

absorbtion at 230 nm of the unsaturated cleaved links of PGA. Let us denote by U

the total molar quantity of unsaturated poly- and oligo-galacturontates. We can then

estimate U by computing:

U =
L∑

l=1

sl
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Then, using the kinetic equations for sl introduced above, one deduces that –in an

enzyme assay– the rate of product formation is given by:

dU

dt
= kcatET

∑
l(l − 1)sl

Km +
∑

l(l − 1)sl

(41)

where ET is the Pel enzyme present in the reactive medium. We wish to express the

kinetic equation of U in terms of the total mass of PGA polymer, denoted by Mtot. This

can be done by using eqs. (38) and (39). The final expression for dU
dt

can be written in

the form:
dU

dt
= kcatET

Mtot

KM + Mtot

(42)

where KM = KmP is the mass-characterized Michaelis Menten constant. Let us remark

that in deducing eq.(42), we have done the approximation (1−1/l̄) ∼ 1, which is justified

because the mean length polymer l̄ is of the order 200. Therefore, by measuring the rate

of formation of UGA in function of Mtot one retrieves the classical Michaelis Menten law

(an hyperbolic curve) from which one can deduce KM as the mass of PGA that yields

the half-maximum reaction velocity. Such a curve has been drawn on Fig.5 of the main

text and the value of KM = 1.2 g/l was determined. So Km = KM/P = 6.8 mM, as

reported on Table 1 of the article.

In a low substrate regime, eq.(41) can by simplified as:

dU

dt
∼ kcatET

Km

(s2 + 2s3 + · · ·+ (L− 1)sL) (43)

This latter expression is used in the simulations in order to follow the decrease of PGA

whose measurements have been reported on Figs.(6)-(7) of the main text. Indeed,

to monitor the PGA degradation an indirect strategy was used, as described in the

Experimental Procedures of the main text. Each point of the PGA curves (Figs.(6)-(7))

corresponds to taking a sample from the culture medium and measuring the product

rate dU/dt obtained with a fixed amount of Pels.

4. parameters fitting

In this section, we explain how unknown parameters are obtained using numerical

simulations tools. Unknown parameters of the model are: ε, β1, γ, Kd6 and k5. First of

all, using literatures, parameters are constraints in biological interval values. In Ref [2],

values of the dissociation constant Kd6 for KdgR-operator of pel genes were measured

and found typically between 10−4 and 10−2µM . ε is the ratio of the rate constant kcat of

the enzymatic Pel reactions in the culture medium and in the reactional medium. The

kcat of the 5 major Pel enzymes were measured in purified conditions, as reported in

Ref. [5], giving an average value of 6 × 104min−1. It appears that it should be slightly

smaller for the culture medium, so ε ≤ 1. The parameter β1 is a sensitive parameter of

the model. A small variation of β1 induces a large variation on the time delay and on

the maximal level of Pel synthesis. Parameters β1, γ and k5 are varied a priori over a

large range, between 10−3 and 103 h−1.
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An iterative simple algorithm minimizing the quadratic error function

χ2 =
N∑

i=1

[xpred(i, a)− xexp(i)]
2 +

N∑
i=1

[spred(i, a)− sexp(i)]
2

is computed. N is the number of data of the experiment, xexp and sexp are experimental

Pel activity and PGA respectively. xpred and spred are the predicted theoretical evolution

of Pel activity and PGA using the model with a given set of the unknown parameters

a. These theoretical values are obtained by solving the system equations (28) to (33)

for a given set of the vector parameter a.

First, by a random search of about 105 iterations between parameters interval

values, the two best sets of parameters given the minimal value of χ2 are retained. Let

us note that after several simulations, the two best sets of parameters are always very

close to each other, suggesting the presence of a local minimum. Therefore, a systematic

sweeping is made around the set of values by successive small variations of parameters

and reevaluation of χ2 until the minimum is reached. Finally, we pick as best parameters

the set of parameter vector a that minimize χ2. It is observed after several simulations

that the set of unknown parameters obtained in the restricted region may be unique.
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