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Table S1. Amount of cyclic non-idealities in step-growth hydrogel. 

For a step-growth network, we define the fraction of pairs of the azide functional groups that are part of 

primary cycles as c.
[3-5]

  From this, the probability of having azide monomers with 1, 2, or 0 primary 

cycles is given as c’, c’’, and c’’’, respectively: 

 
 c’ c’’ c’’’ 

 

  ccc  12  (2) 

 2cc   (3) 

  2
1 cc   (4) 

In a perfectly ideal network containing no primary cycles, c = c’ = c’’ = 0 and c’’’ = 1.  For these 

networks, the ideal crosslinking density during network formation (x,0) is equal to twice the 

concentration of PEG tetraazide multiplied by r, the ratio of azide to alkyne functionalities such that 0 ≤ 

r ≤ 1, since each arm of the PEG azide is attached to half an infinite chain.  The formation of primary 

cycles decreases the network crosslinking density and the experimentally measured compressive moduli 

from values predicted using c’’’ = 1.  By comparing the ratio of the initial bulk moduli (K0) and the 

predicted bulk moduli (Ktheo), we can estimate the degree of cyclization present in the network.  K0 can 

be calculated from the swelling ratio during network formation (qNF), the initial swelling ratio (q0), and 

the measured swollen bulk moduli (Kmeasured).  
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The theoretical bulk modulus (Ktheo) is readily calculated from the x,0 and the Poisson ratio (vp, assumed 

= 0.42),
 [3,4]

 where R is the universal gas constant and T is the absolute temperature. 

 0,theo 3 xRTE   (9) 
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In addition, we must calculate the obtained bulk moduli (Kmeasured) from the measured shear elastic 

moduli (Gmeasured).  
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With these equations, as well as known values for x,0, Gmeasured, and swelling ratios (q0 and qNF), we can 

calculate c, c’, c’’, and c’’’ for our different formulations.  For mean values of Gmeasured and the swelling 

ratios, the values for c and c’’’ are calculated as: 

Azide: 

Alkyne 

10k 15k 20k 

c c’’’ c c’’’ c c’’’ 

1.5:1 0.075 0.86 0.106 0.80 0.122 0.77 

1.25:1 0.066 0.87 0.024 0.95 0.093 0.82 

1:1 0.035 0.93 0.015 0.97 0.057 0.89 

1:1.25 0.023 0.95 0.005 0.99 0.134 0.75 

1:1.5 0.038 0.92 0.071 0.86 0.133 0.75 

 

We find that the networks are highly ideal (>95%) for the 1:1 stoichiometry case.  As expected, ideality 

decreases as the system is formed further off-stoichiometry.   

 

[3] A. E. Rydholm, S. K. Reddy, K. S. Anseth, C. N. Bowman, Polymer 2007, 48, 4589. 

[4] B. D. Johnson, D. J. Beebe, W. Crone, Materials Science & Engineering C-Biomimetic and 

Supramolecular Systems 2004, 24, 575. 
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Figure S1. Equilibrium shear moduli and swelling ratios post patterning (2.2 mM I2959 and a 6 J cm
-2

 

dosage of 365 nm light).  
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Figure S2. Total amount of photoinitiator consumed over photofunctionalization process. 

The volume-averaged initiator concentration versus irradiation time
[1]

 is given as: 
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where: 

 [I] = photoinitiator concentration as a function of time 

[I]0 = initial photoinitiator concentration (chosen here as 2.2 mM) 

I0 = irradiance at the base of the sample = 3.05 x 10
-8

 moles photons s
-1

 cm
-2

 for 365 nm light at 

10 mW cm
-2

 

 = the wavelength dependent absorption coefficient = 2.302 x extinction coefficient (6.7 L mol
-1

 

cm
-1

 for I2959)   

L = sample thickness = 1 mm 

 = quantum yield of the photoinitiator consumption = 0.05 for I2959 at 365 nm
[2] 

Plotting Eq. 1 as a function of time gives the representative curve: 
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Even for our longest reaction time (600 s), <2% of the total photoinitiator is consumed.   

[1] S. Asmussen, G. Arenas, W. D. Cook, C. Vallo, European Polymer Journal 2009, 45, 515. 

[2] N. S. Allen, M. C. Marin, M. Edge, D. W. Davies, J. Garrett, F. Jones, S. Navaratnam, B. J. 

Parsons, Journal of Photochemistry and Photobiology a-Chemistry 1999, 126, 135. 
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Scheme S1. Hydrogels are exposed to collimated UV light (365 nm at 10 mW cm
-2

) while a moving 

photomask covers the sample.
[55]

  This rate of coverage is easily controlled and enables different 

gradients of light to be imposed on the hydrogel.  This ultimately results in well-defined gradients of 

patterning concentrations across relatively large distances. 
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Figure S3. 
1
H-NMR spectrum of PEG tetraazide (here, Mn ~ 10,000 g/mol). 
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Figure S4. 
1
H-NMR spectrum of DIFO3. 
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Figure S5. 
13

C-NMR spectrum of DIFO3. 
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Figure S6. 
19

F-NMR spectrum of DIFO3. 
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Figure S7. MALDI-TOF spectrum of regular peptide (+4 charge) 

Ac-K(DIFO3)RRGGK(alloc)GGPQGILGQRRK(DIFO3)-NH2 
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Figure S8. MALDI-TOF spectrum of scrambled peptide (+4 charge): 

Ac-K(DIFO3)QGK(alloc)RIPGRRLGGRGQGK(DIFO3)-NH2 
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Figure S9. MALDI-TOF spectrum of neutral peptide (no net charge): 

Ac-K(DIFO3)REGGK(alloc)GGPQGILGQERK(DIFO3)-NH2 
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Figure S10. MALDI-TOF spectrum of negatively charged peptide (-4 charge): 

Ac-K(DIFO3)EEGGK(alloc)GGPQGILGQEEK(DIFO3)-NH2 
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Figure S11. Calibration curve of fluorescence versus concentration of patterning agent swollen into 

network.    
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