
Peptide Identification from Mixture Tandem Mass Spectra
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Supplementary Materials

Data pre-processing and simulation of mixture spectra

We downloaded the NIST human dataset (ver. 6/06) from PeptideAtlas (http://www.peptideatlas.org/speclib/).

Peak masses were rescaled by multiplying every mass by 0.9995 to better center these around integer values

[1]. Every spectrum was then converted to a vector by binning peaks masses at integer values (i.e., bin width

of 1, bins at[m − 0.5, m + 0.5]). Peaks that fall into the same bin are combined by adding their intensities.

We also applied a square-root transform to all peak intensities to reduce the disproportionate influence of

high-intensity peaks on spectral similarity. After this transformation, each vector was normalized to norm 1

by dividing each element in the vector by the vector’s euclidian norm. A mixture spectrum is modeled as a

linear combination of two single-peptide spectra:M = A + αB, whereM is a mixture spectrum,A andB

are two single-peptide spectra andα is a predetermined mixture coefficient.

Windowed peak filtering

In order to reduce noise, we applied a windowed peak filter as follows: for each peak in the spectrum we

scan neighboring peaks within+W Daltons from the current peak and retain it if it has rank≤ N (by

peak intensity) in its neighborhood. This method is used to filter all spectra in theexperimental dataset

(W=50, N=15). This filter was also applied to simulated mixture spectra to benchmark scenarios where

low intensity peaks from single-peptide spectra would be missing. The performance in the identification of

mixture spectra for different parameters of N and W is shown in Table 1 and2.
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Accuracy for different mixture coefficients
Top peaks kept Window size(Daltons)α = 1.0 α = 0.5 α = 0.2 α = 0.1

5 25 98.5 98.4 95.3 79.9
10 25 98.6 98.5 96.1 90.5
15 25 98.7 98.5 96.9 91.3
5 50 98.7 98.2 86.9 52.4
10 50 98.7 98.3 94.9 81.7
15 50 98.7 98.4 95.2 88.5
5 100 97.2 95.3 63.7 20.7
10 100 98.5 97.8 88.5 41
15 100 98.5 98 93.6 75.2

Table 1: M-SPLIT accuracy in the identification of mixture spectra for different levels of missing MS/MS
peaks.

Accuracy for different mixture coefficients
Top peaks kept Window size(Daltons)α = 1.0 α = 0.5 α = 0.2 α = 0.1

5 25 98.4 98.3 93.9 70
10 25 98.5 98.5 94.8 80.4
15 25 98.8 98.4 94.5 79.4
5 50 98.9 98.1 84.5 43.1
10 50 98.5 98.3 93.4 69.8
15 50 98.5 98.5 94.2 77.1
5 100 97.3 95.5 61.5 18.5
10 100 98.6 98 85.7 45.6
15 100 98.7 98.4 91.6 63.3

Table 2: Iterative-approach accuracy in the identification of mixture spectra for different levels of missing
MS/MS peaks.

Filtering out low-complexity spectral matches

During our experiments, we observed that low-complexity spectra (those that are dominated by a few peaks),

can have articially high-cosine match to the library. In order to filter out thesecases, we used a measure

similar to F-score used in [2]. We consctructed two datasets, the true dataset that contain true matches and

a negative control dataset which contain errorneous matches including those due to low-complexity of the

spectra. The negative control dataset come from cases where the precursor m/z difference between the query

spectrum and the top-matched spectrum is larger than tolerance. Then we trained a SVM (gaussian kernel,

with bandwidth equal to five) using three feature: 1) cosine, 2) dot-bias (see [2]) and 3)projected-cosine

to separate the two datasets. For each top matches return by MSPLIT, we computed the SVM score, if it

is lower than 70 we discarded such match, since it suggets that the high cosine similarity may be due to
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fortuitiou match of a few dominant peaks.

Estimation of mixture coefficientsα̂

Optimal-cosine method:

Define:

f(α) =
M · (A + αB)

‖M‖ ‖A + αB‖ (1)

as the cosine similarity betweenM andA + αB, where M is a putative mixture spectrum andA andB are

two candidates from the spectral library. We can rewrite the equation as:

f(α) =
C + αG

‖M‖
√

E + 2αD + α2F
(2)

whereC = M · A, D = A · B, E = A · A, F = B · B andG = M · B. We asssumed that the correctα

maximize the similarityf(α), thus taking the derivative with respect toα and making it zero we get:

f ′(α) =

√
E + 2αD + α2F (G) − (C + αG)(D + αF )(E + 2αD + α2F )−1/2

‖M‖ (E + 2αD + α2F )
(3)

0 = (
√

E + 2α̂D + α̂2F )(G) − (C + α̂G)(D + α̂F )√
E + 2α̂D + α̂2F

(4)

0 = (E + 2α̂D + α̂2F )(G) − (C + α̂G)(D + α̂F ) (5)

0 = EG + 2α̂DG + α̂2FG − CD − α̂FC − α̂DG − α̂2FG (6)

α̂ =
EG − CD

FC − DG
(7)

To assure that̂α is the maximum we have to verify that the second derivative is negative. Forthis, let us

consider the function,

f(α) =
M · (A + αB)

‖M‖ ‖A + αB‖ = cos(φ) (8)

whereφ is the angle between the vectorsM andA + αB. The first derivative of this function would be

sin(φ) and the second derivative would be−cos(φ) which is always negative in the domain (0,π) making

α our maximum.
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Residual-spectrum method:

Recall in our model, a mixture spectrumM can be considered as a linear combination of two single-peptide

spectra:M = X + αY . HereX andY represents the two unknown single-peptide spectra that give rise

to the mixture spectrum we try to identify. Since all putative mixture spectra are normalized to norm one

before search we have:

M
′

=
M

‖M‖ =
X + αY

‖M‖ (9)

=
X

‖M‖ +
αY

‖M‖ (10)

Let us assume by searching the query spectrumM
′

against the library we identifiedA as the first component

of the mixture, thusA is roughly equivalent toX. We can then estimate first component in equation (9) by

computing the shared peaks betweenM
′

andA, which is equivalent to the projection ofM
′

on A (see

Method section).

X

‖M‖ ≈ M
′

p(A) (11)

Then a residual spectrumR can be used to approximate the second term in equation (10)

R = M
′ − M

′

p(A) ≈
αY

‖M‖ (12)

‖R‖ ≈ α‖Y ‖
‖M‖ (13)

α =
‖R‖ ‖M‖

‖Y ‖ (14)

α = ‖R‖
√

1 + α2 (15)

The last step comes from the fact thatY is norm one and we approximate the magnitue ofM as
√

1 + α2

by assuming thatX · Y is zero. Solving equation(15) in term ofα we arrived at the final solution:

α =
‖R‖2

1 − ‖R‖2 (16)
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Upper Bound for Searching - extension toα 6= 1

Note that the key to the search-and-bound method is developing an upperbound for the cosine function, so

we can eliminate any candidates that will not score higher than current best estimate. In the method section

we show the bound for the simple case whenα=1. Here we extend the bound to case whenα is not one, our

objective function now becomes:

cos(M, A + αB) =
M · (A + αB)

‖M‖ ‖A + αB‖ (17)

=
M · (A + αB)

‖M‖
√

A · A + 2αB · A + α2B · B
(18)

≤ M · (A + αB)√
1 + α2

(19)

Notice we cannot use equation (19) as an upperbound like the case whenα=1, sinceα is not a fixed value.

However, we know that there is one alpha that maximize equation (19), hence we have:

f(α) =
M · (A + αB)√

1 + α2
(20)

f ′(α) =
(M · A + αM · B)(−1/2)(2α) + M · B(1 + α2)

(1 + α2)3/2
= 0 (21)

f ′(α) =
−M · Aα + M · B

(1 + α2)3/2
= 0 (22)

α∗ =
M · B
M · A (23)

Checking 2nd derivative: (24)

f ′′(α) =
M · A(2α2 − 1) − 3αM · B

(1 + α2)5/2
(25)

f ′′(α∗) =
−(M · B)2

M · A − M · A ≤ 0 (26)

Substituting (23) into (19) we have (27)

cos(M, A + αB) ≤ (M · A)2 + (M · B)2
√

(M · A)2 + (M · B)2
(28)

Notice the upper bound in above holds true for any value ofα, this enable us to use it as a bound in general.
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Extension to square-root transformed spectrum

The bound in last section should work for any vectors, therefore it should also work for square-root trans-

formed spectrum. Again, let
√

X stands for element-wise square root of vectorX:

√
X = (

√
x1,

√
x2, ... ,

√
xn)

and assume
√

M ,
√

A,
√

B are all unit vectors, equation (19) should become:

cos(
√

M,
√

A + α
√

B) =

√
M · (

√
A + α

√
B)

∥

∥

∥

√
M

∥

∥

∥

∥

∥

∥

√
A + α

√
B

∥

∥

∥

(29)

≤
√

M · (
√

A + α
√

B)√
1 + α2

(30)

However equation(29) is not the objective function that we are solving. We need to maximize the following

function:

cos(
√

M,
√

A + α′B) =

√
M ·

√

(A + α′B)
∥

∥

∥

√
M

∥

∥

∥

∥

∥

∥

√
A + α′B

∥

∥

∥

(31)

<=

√
M ·

√

(A + α′B)√
1 + α′

(32)

The last step comes from the assumption that
√

M ,
√

A,
√

B all have norm one. Lastly we appeal to the

inequality that:

√
M ·

√

(A + α′B) ≤
√

M · (
√

A + α
√

B) (33)

when setting α2 = α
′

(34)

we have the upper bound:

cos(
√

M ·
√

(A + α′B)) ≤
√

M · (
√

A + α
√

B)√
1 + α2

(35)

Thus the upper bound in previous section(eq. 28) can be still applied, just we have to applied it to the

square-root transformed spectrum. Note that this procedure can be applied on any list of spectra. Thus it

can be combined with any filter that reduce the size of library. In our studieswe found this strategy works
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very effectively when combined with the projected-cosine filter, which reduce the search space from108 to

a few hundreds pairs of spectra.
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Comparison of cosine and projected-cosine as filters
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Figure 1: Comparing cosine and projected-cosine as filters. The library was prefilter with both cosine and
projected-cosine, to keep the top 500 candidates. Then the branch-and-bound strategy was applied to search
for the optimal pairs. The number of pairs of spectra considered beforeM-SPLIT terminates and find the
optimal solution were counted. It is observed that projected-cosine is a more effective filter when combined
with branch-and-bound strategy. It result in less numbers of pair of spectra that needed to be consider as
compare to that of using cosine as a filter.
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Quantification of relative abundance of peptides
a)Residual spectrum method
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b)Optimal cosine method
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Figure 2: Log-2 ratios of estimated (α̂) and true (α) mixture coefficient when a)using the residual spectrum
method and b)maximizing the cosine similarity between the query spectrum and the two library candidates
Note for the case whenα = 1 both peptide has equal abundance. Due to error in estimation, it is possible for
α̂ to be greater than one in some cases. Sinceα is a relative value, in M-SPLIT we take inverse of estimated
α whenever it is greater than one to make it consistent with our definition that0 ≤ α ≤ 1
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