Supporting Materials

Structural Refinement of the hERG1 pore and voltage-sensing domain with ROSETTA-TM modeling and Molecular-Dynamics Simulations

Table S1. Used docking parameters for hERG blockers and activators:

(i) AUTODOCK docking program.

Parameters used for blind docking (whole receptor's atoms were used in the mapping of binding				
site) of ligands				
Parameters	Used value			
Number of grid points in each direction	126			
Grid spacing	0.75 Å			
Grid map dimension in each direction	94.5 Å			
Number of hybrid GA-LS runs	200			
Grid Center	0.0 0.0 0.0			
Parameters used for partitioned docking (focused region of receptor was used in the mapping of binding site) of ligands				
Number of grid points in each direction 126				
Grid spacing	0.4 Å			
Grid map dimension in each direction	50.4 Å			
Number of hybrid GA-LS runs	200			
Grid Center	9.00, 8.00,5.00			

(ii) GOLD docking program.

Parameters used for blind docking (whole receptor's atoms were used in the mapping of binding site) of ligands				
Parameters Used value				
Maximum length of grid point list	148			
Grid spacing	0.75 Å			
Calculated cavity radius	83.6 Å			

Calculated cavity origin	1.87 -1.71 1.27			
Population size	100			
Selection pressure	1.1			
Number of islands	5			
Migrate	10			
Mutate	95			
Crossover	95			
Niche size	2			
Number of operation	107000			
Parameters used for partitioned docking (focused region of receptor was used in the mapping of binding site) of ligands				
Maximum length of grid point list	90			
Grid spacing	0.3 Å			
Calculated cavity radius	43.8 Å			
Calculated cavity origin	2.37, 3.33, 5.93			
Population size	100			
Selection pressure	1.1			
Number of islands	5			
Migrate	10			
Mutate	95			
Crossover	95			
Niche size	2			
Number of operation	125000			

N ¹ _{res}	Atom @ N ¹ _{res}	N ² _{res}	Atom @ N ¹ _{res}	Inter vs. Intra**	Lifetime (ps)	Occupancy
	HN	I521	0	intra	70.8	0.920
		E425	OE1	intra	16.1	0.145
	HZ1	E433	OE2	intra	13.3	0.107
		Q576	OE1	inter	30.0	0.020
		E 425	OE1	intra	14.7	0.187
	1172	E435	OE2	intra	46.7	0.280
K525	HZ2	E575	0	inter	10.0	0.003
		Q576	OE1	inter	16.7	0.017
		E425	OE1	intra	11.6	0.147
	HZ3	E433	OE2	intra	28.0	0.215
		Q576	OE1	inter	10.8	0.022
	0	R528	HN	intra	5.4	0.045
	0	L529	HN	intra	29.2	0.807
		L524	0	intra	82.2	0.932
	ΠΝ	K525	0	intra	5.4	0.045
	IIE	D460	OD1	intra	80.5	0.563
	HE	D400	OD2	intra	51.3	0.393
			OD1	intra	53.4	0.890
	HH11	D456	OD2	intra	12.9	0.498
R528			0	intra	5.0	0.007
	11112	D460	OD1	intra	27.2	0.545
	пп12		OD2	intra	41.3	0.688
	HH21	D456	OD1	intra	10.2	0.143
			OD2	intra	14.1	0.385
	0	D521	HN	intra	5.7	0.127
	0	K331	HE	intra	29.0	0.782
	HN	L529	0	intra	5.6	0.120
	<u>ии</u> 11	D460	OD1	intra	25.7	0.600
	111111	D400	OD2	intra	39.9	0.745
P 531	ннэ1	D460	OD1	intra	27.5	0.220
K331		D400	OD2	intra	29.2	0.302
	HH22	S428	OG	intra	328.3	0.985
	0	R534	HN	intra	19.4	0.732
	0	V535	HN	intra	5.4	0.022
R534	HN	R531	0	intra	19.4	0.732
		D466	OD1	intra	36.9	0.528
	UU11		OD2	intra	27.8	0.380
		D501	OD1	intra	12.5	0.017
			OD2	intra	5.0	0.002
	нн12	D466	OD1	intra	10.0	0.003
	111112		OD2	intra	30.0	0.010

Table S2. Intra and Inter Subunits Salt-Bridge and Hydrogen-Bonding Statistics* as peratom for S4 voltage sensor.

HH21		D466	OD1	intra	29.4	0.422
	D400	OD2	intra	44.0	0.367	
		OD1	intra	55.0	0.073	
		D501	OD2	intra	10.0	0.007
			0	intra	17.5	0.012
			OD1	intra	268.3	0.268
	11122	D501	OD2	intra	322.5	0.645
	пп22		0	intra	15.6	0.047
		A504	0	intra	10.0	0.007
		W497	HE	intra	5.0	0.002
	0	R537	HN	intra	6.9	0.103
		K538	HN	intra	9.4	0.168
		V533	0	intra	20.7	0.310
	HN	R534	0	intra	6.9	0.103
		V535	0	intra	5.0	0.007
		D466	OD1	intra	190.0	0.253
	HH11		OD2	intra	228.3	0.457
	N470	OD1	intra	14.8	0.163	
	D501	OD1	intra	87.2	0.582	
K337	111112	D301	OD2	intra	27.3	0.555
		IH21 D466	OD1	intra	21.6	0.438
НН21 НН22 О	HH21		OD2	intra	16.8	0.420
		N470	OD1	intra	6.5	0.037
	HH22	K495	0	intra	5.0	0.002
	0	L539	HN	intra	6.7	0.007
	U	D540	HN	intra	12.8	0.362
		V535	0	intra	9.4	0.168
K538 HN O		L539	0	intra	11.8	0.358
	0	D540	NH	intra	5.4	0.023

*The production run of 3000 ps have been used to average interactions between amino-acid residues every 5 ps. ** Interaction within same chain is marked as "intra" and between two different chains

"inter"

Table S3. Comparison of docking poses populations of ligands at EC, IC and outer mouth of selectivity filter (SF) of hERG; their close contacts with target and binding scores of top poses at focused region derived by AUTODOCK.

	IC (%)	Outer mouth of SF (%)	EC (%)
Dofetilide	93	5	2
	IC (%)	Outer mouth of SF (%)	EC (%)
KN-93	58	38	4
NFA	IC (%)	Outer mouth of SF (%)	EC (%)
NFA (neutral)	6	28	66
NFA (anion)	12	17	71

Dofetilide	Close contacts		
IC site	Leu622, Thr623, Ser624, Val625, Gly626, Ser649, Tyr652, Phe656		

KN-93	Close contacts
IC site	Leu622, Thr623, Ser624, Val625, Gly626, Ser649, Tyr652, Phe656
Outer mouth	Ser600, Gly601, Asn629, Gly628, Ser631, Phe627
of SF	

NFA (anion)	Close contacts			
EC site	Glu438, Glu437, Lys434, Thr436, Met574, Lys525, Leu433, Glu435,			
	Lys595, Lys610			
Outer mouth	Leu602, Asn598, Ser600, Tyr597, Ser599, Asn629, Val630, Ser631,			
of SF	Gly601, Tyr616, Pro632, Asn633, Thr634			

NFA (neutral)	Close contacts
EC site	Glu438, Glu437, Lys434, Thr436, Lys525, Met574, Leu433, Glu435,
	Lys595, Lys610
Outer mouth	Asn633, Asn629, Ser600, Tyr616, Leu602, Glu637, Thr634, Lys638,
of SF	Asn635, Asn629, Tyr597, Asn598, Ser599

Ligands	Binding Score (kcal/mol)
Dofetilide	-8.26
KN-93	-9.22
NFA (neutr.)	-7.36
NFA (anion)	-6.33

Table S4. Comparison of docking poses populations of ligands at EC, IC and outer mouth of selectivity filter (SF) of hERG; their close contacts with target and binding scores of top poses at focused region derived by GOLD.

	IC (%)	Outer mouth of SF (%)	EC (%)
Dofetilide	94	6	-
	IC (%)	Outer mouth of SF (%)	EC (%)
KN-93	86	14	-
NFA	IC (%)	Outer mouth of SF (%)	EC (%)
NFA (neutral)	-	38	62
NFA (anion)	-	23	77

Dofetilide	Close contacts	
IC site	Thr623, Ser624, Ser649, Tyr652, Ala653, Phe656	

KN-93	Close contacts	
IC site	Thr623, Ser624, Met645, Ser649, Tyr652, Ala653, Phe656, Gly657	

NFA (anion)	Close contacts
EC site	Thr436, Lys595, Tyr569, Ala570, Asn573, Lys610, Thr613, Tyr611,
	Met574
Outer mouth of SF	Asn629, Ser600, Tyr597, Asn598, Gly628, Ser631

NFA (neutral)	Close contacts		
EC site	Lys595, Asn573, Asn598, Met574, Ala570, Leu602, Thr613, Tyr611,		
	Lys610		
Outer mouth	Tyr597, Gly628, Asn629, Ser600, Phe627, Asn598, Ser599, Ser631		
of SF			

Ligands	GOLD/ChemScore Binding Score (kcal/mol)	GOLD Fitness Score
Dofetilide	-8.07	63.59
KN-93	-8.48	67.85
NFA (neutr.)	-6.41	47.17
NFA (anion)	-6.37	43.85

Figure S1. Alignment used for homology models. Several alignments for S4 helix have been considered to build models with Rosetta modeling and MD simulations. (i) hERG1 +0 alignment; (ii) hERG1 +3 alignment. (i)

(ii)

Figure S2. Representation of partitioned docking (the channel was mapped using a cross-section of one of four VS domains together with the pore domain region (highlighted regions at the Figure, top view)).

Figure S3. Binding interactions of ligands at hERG. Yellow and green dashed bonds show H-bonds and close-van der Waals contacts, respectively.

(i) Top docking poses derived by AUTODOCK

Dofetilide at IC (top view)

KN93 at IC (top view)

NFA at EC (top view)

 $\it NFA$ (superimposition of its neutral and anionic forms) at $\it EC$

(ii) Top docking poses derived by GOLD

Dofetilide at IC (top view)

KN93 at IC (top view)

NFA at EC (top view)

NFA (superimposition of its neutral (shown in sticks drawing) and anionic (shown in ball and sticks drawing) forms) at EC