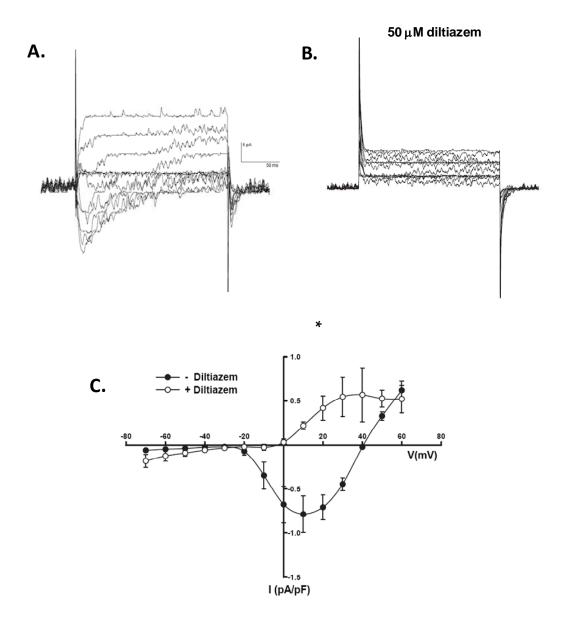

Altered PKC Regulation of Pulmonary Endothelial Store- and Receptor-Operated Ca²⁺ Entry Following Chronic Hypoxia


Michael L. Paffett, Melissa A. Riddle, Nancy L. Kanagy, Thomas C. Resta and Benjimen R. Walker

Journal of Pharmacology and Experimental Therapeutics

Supplemental Figure 1

Supplemental Figure 2

JPET #165563

Supplemental Figure Legends

Supplemental Figure 1. T-type voltage-gated Ca²⁺ channel (VGCC) inhibition with mibefradil in neonatal rat ventricular myocytes (NRVM). The whole cell-attached patch clamp method was used to examine the relative characteristics of native NRVM T-type VGCCs. A) Voltage-dependent Ca²⁺ currents (I_{Ca}^{2+}) were evoked in NRVM by a voltage pulse protocol and demonstrated relatively rapid activation-inactivation profiles (*see inset*). Scale bars set for inset blow-up panel. B) Mibefradil (10 μ M) completely abolished I_{Ca}^{2+} in NRVMs. C) Current-voltage relationship illustrating a low threshold voltage-dependent activation of mibefradil-sensitive I_{Ca}^{2+} . Summary expressed as mean \pm SEM (n = 4). * $P \le 0.05$ from -40 to +40 mV repeated-measures ANOVA.

Supplemental Figure 2. Inhibition of L-type VGCCs with diltiazem in freshly isolated pulmonary artery smooth muscle cells. Whole-cell (I_{Ca}^{2+}) evoked from depolarizing voltage steps depict a voltage-dependent inward current (A) which is inhibited with 50 µM diltiazem (B). Summary data (C) illustrate a peak inward current at +10 mV (*closed circles*) and inhibition with diltiazem (*open circles*), both indicative of L-type VGCCs. Summary expressed as mean ± SEM (n = 4). * $P \le 0.05$ from -10 to +40 mV repeated-measures ANOVA.

Article Title: Altered PKC Regulation of Pulmonary Endothelial Store- and Receptor-Operated Ca²⁺ Entry Following Chronic Hypoxia

Michael L. Paffett, Melissa A. Riddle, Nancy L. Kanagy, Thomas C. Resta and Benjimen R. Walker

Supplemental Methods

Ventricular Myocyte and Smooth Muscle Cell Isolation

Six day old rat pups (Sprague-Dawley) were euthanized by decapitation and the ventricular myocardium rapidly removed and placed in ice-cold Ca^{2+} and Mg^{2+} -free rodent Ringer solution containing (in mM): 155 NaCl. 5 KCl, 11 glucose, 20 taurine, 10 HEPES adjusted with NaOH to pH 7.4. Ventricles were minced and enzymatically digested at 37°C for 1 hr with the addition of collagenase type IA (1 mg/ml). Freshly dispersed myocytes were centrifuged (300 x g) and the remaining pellet was re-suspended in a 2:1 mixture of Dulbecco's modified Eagle-HAMS F-12 medium containing 10% FBS. Neonatal rat ventricular myocytes (NRVM) were subsequently passed through a 70 µm cell strainer (BD Biosciences) and allowed to seed for 24 hrs prior to measuring Ca^{2+} currents.

The left lungs from adult male Sprague-Dawley rats were rapidly excised following a lethal injection of sodium pentobarbital (200 mg kg⁻¹ i.p.) and placed in HEPES buffered saline solution (HBSS). Intrapulmonary arteries were rapidly dissected cut into 2 mm segments and placed in an ice-cold Ca²⁺-free solution of the following composition (in mM): 60 NaCl, 85 sodium glutamate, 5.6 KCl, MgCl₂, glucose, HEPES, NaOH to pH 7.4. After a 10 min equilibration (37°C), artery segments were placed in Ca²⁺-free isolation solution (37°C) containing 1 mg/ml albumin, 0.7 mg/ml papain and 1 mg/ml DTT. After 40 min exposure to papain, artery segments were placed for 10–15 min in a second isolation solution containing 0.1 mM CaCl₂ and a type II collagenase and hyaluronidase mixture (1 mg/ml each). The tissue was subsequently washed twice (10 min each) in Ca²⁺-free isolation solution and triturated with a polished wide-bore pipet. Pulmonary artery smooth muscle cells (PASMC) were stored on ice and used the same day.

Electrophysiological Recordings of Voltage-Dependent ICa

Voltage-dependent Ca²⁺ currents were examined in acute (24 hr) primary NRVM cultures or freshly isolated PASMCs using the conventional whole-cell patch clamp technique. Extracellular recording solution contained the following (in mM): 125 NaCl, 6 CsCl, 10 CaCl₂, 5 HEPES, 10 TEA-Cl, 5 sucrose, NaOH to pH 7.4. Electrodes with tip resistances of 4-6 MΩ were filled with an intracellular recording solution (in mM): 130 CsCl, 2 Mg-ATP, 1 MgCl₂, 5 HEPES, 5 EGTA, CsOH to pH 7.2. After obtaining successful whole-cell configuration, NRVM or PASMC E_m was clamped at a holding potential of –90 mV. Voltage pulses from -70 mV to +60 mV were generated using pClamp software (version 8.6) integrated with an Axopatch200B amplifier (Molecular Devices). Whole-cell capacitance and leak currents were compensated prior to initiating voltage pulse protocols. Because NRVMs are tetrototoxin insensitive (Nuss and Marban, 1994) and abundantly express T-type VGCC (Horiba et al., 2008) we utilized these cells to assess the specificity of the putative inhibitor, mibefradil (10 uM). In addition, freshly isolated PASMCs are known express L-type VGCCs and were utilized to assess the inhibitory action of the recognized L-channel blocker diltiazem. All data were analyzed off-line using Clampfit software (version 9.0)

References Cited

Nuss HB, Marban (1994) Electrophysiological properties of neonatal mouse cardiac myocytes in primary culture. *J. Physiol.* **479**:265-79.

Horiba M, Muto T, Ueda N, Opthof T, Miwa K, Hojo M, Lee JK, Kamiya K, Kodama I, Yasui K (2008) T-type Ca2+ channel blockers prevent cardiac cell hypertrophy through an inhibition of calcineurin-NFAT3 activation as well as L-type Ca2+ channel blockers. *Life Sci.* **11-12**:554-60.