Bacteria	Description	Reference/Source
V. cholerae O395*	Classical Ogawa, Sm ^R	(Taylor et al., 1987)
V. cholerae O395, pMT5	pMT5:: <i>toxT</i>	This study
V. cholerae C6706	El Tor Inaba, Sm ^R	(Hase et al., 1994)
V. cholerae C6706, pMT5	pMT5:: <i>toxT</i>	(DiRita et al., 1996)
V. cholerae RT4340	El Tor C6706 <i>tcpA</i> in classical O395	This study
V. cholerae RT4524	<i>tcpA</i> :: <i>lacZ</i> , pMIN, Gm ^R	This study
<i>V. cholerae</i> LC1	TcpA A138E	This study
<i>V. cholerae</i> LC6	TcpA K187T	This study
V. cholerae LC7	TcpA A156D/E158A	This study
V. cholerae LC9	TcpA A138E/A156D/E158A	This study
<i>V. cholerae</i> LC10	TcpA A138E/A156D/E158A/K172A	This study
<i>V. cholerae</i> LC11	TcpA A138E/A156D/E158A/K187T	This study
V. cholerae LC12	TcpA A156D/E158A/K172A/D175N	This study
V. cholerae LC13	TcpA A138E/A156D/E158A/K172A/D175N	This study
V. cholerae LC15	TcpA A156D/E158A/K172A/D175N/K187T	This study
V. cholerae LC16	TcpA A138E/A156D/E158A/K172A/D175N/K187T	This study
V. cholerae ML9	TcpA D113A	This study
<i>V. cholerae</i> ML10	TcpA C120A	This study
<i>V. cholerae</i> ML12	TcpA D175N	This study
<i>V. cholerae</i> ML14	TcpA K172A/D175N	This study
<i>V. cholerae</i> ML15	TcpA A156D	This study
<i>V. cholerae</i> ML16	TcpA A138E/A156D/E158A/K172A/K187T	This study
<i>V. cholerae</i> ML17	TcpA E158A	This study
<i>V. cholerae</i> ML18	TcpA K172A	This study
<i>V. cholerae</i> ML25	LC16 with D156A	This study
<i>V. cholerae</i> ML28	TepA D113G	This study
V. cholerae CL101	O395, pCTX-Knø	(Kirn et al., 2000)
E. coli S17	λpir	(Skorupski and Taylor, 1996)
E. coli RT4024	<i>E. coli</i> S17 with pTK1	This study
E. coli KSK580	X90 with pMT5	This study
E. coli KSK575	MM294 with pRK2013, a helper plasmid for pMT5	(Figurski and Helinski, 1979)
pMT5	toxT, Ap ^R	(DiRita et al., 1996)
pTK1	pKAS32:: <i>tcpA^{Cl}-rpsL</i> Ap ^R	(Kirn et al., 2000)
pMIN1	pACYC184 Gm ^R cassette	(Nye et al., 2000)

Table S1. Bacterial strains and plasmids

*All *tcpA* mutation strains are derived from *V. cholerae* O395 and carry pMT5, which has the *toxT* gene under control of the *lac* promoter.

Table S2. Primers

Primer	Sequence
D113A	F ¹ : 5' GCATTTGCAATTTCAGTGGCTGGTCTGACACAGGC
	R ² : 5' GCCTGTGTCAGACCAGCCACTGAAATTGCAAATGC
C120A	F: 5' GGTCTGACACAGGCTCAAGCCAAGACACTTATTACCAG
	R: 5' CTGGTAATAAGTGTCTTGGCTTGAGCCTGTGTCAGACC
D175N	F: 5' TCGCTCCCGCTAGTAAGAATTTAAATCTAACGAACATCACTCAC
	R: 5' CGTGAGTGATGTTCGTTAGATTTAAATTCTTACTAGCGGGAGCGA
K172A/D175N	F: 5' TCGCTCCCGCTAGTGCGAATTTAAATCTAACGAACATCAC
	R: 5' GTGATGTTCGTTAGATTTAAATTCGCACTAGCGGGAGCGA
A156D	F: 5' GAGAATTCTGCAGCAGACGCTGAGACAGGCGT
	R: 5' ACGCCTGTCTCAGCGTCTGCTGCAGAATTCTC
E158A	F: 5' CTGCAGCAGCGGCTGCGACAGGCGTTGGTGT
	R: 5' ACACCAACGCCTGTCGCAGC CGCTGCTGCAG
K172A	F: 5' TCGCTCCCGCTAGTGCGAATTTAGATCTAACG
	R: 5' CGTTAGATCTAAATTCGCACTAGCGGGAGCGA
D156A/E158A	F: 5' TTGAGAATTCTGCAGCAGCGGCTGCGACAGGCGTTGG
	R: 5' CCAACGCCTGTCGCAGCCGCTGCTGCAGAATTCTCAA
D113G	F: 5' GCATTTGCAATTTCAGTGGGTGGTCTGACACAGGC
	R: 5' GCCTGTGTCAGACCACCCACTGAAATTGCAAATGC
A138E	F: 5' ATATTGCAATCAAAGAAGGTGGCGCAGTAGC
	R: 5' GCTACTGCGCCACCTTCTTTGATTGCAATAT
K187T	F: 5' GTTGAGAAATTATGTACAGGTACTGCTCCATTC
	R: 5' GAATGGAGCAGTACCTGTACATAATTTCTCAAC
A156D/E158A	F: 5' GAGAATTCTGCAGCAGACGCTGCGACAGGCGTTGGTGTG
	R: 5' CACACCAACG CCTGTCGCAG CGTCTGCTGC AGAATTCTC
Sequencing primer	F: 5' CGCATTTCCTTTAAACACGAGTAAAATG
	R: 5' GCCCATTATTTAATGGGCAACGTT

¹F, forward primer ²R, reverse primer

Fig. S1. Atomic structure of the N-terminally-truncated El Tor Type IVb pilin, Δ N-TcpA. ΔN -Tcp A^{ET} is a globular protein with an N-terminal α -helical spine (α 1C, residues 30-53) embedded in a twisted antiparallel β -sheet. This $\alpha\beta$ -roll fold is seen in all the Type IV pilin structures solved to date, and is referred to as the conserved structural core of the pilin subunit (Craig *et al.*, 2004). TcpA^{ET} has the canonical fold of the Type IVb pilin subclass, having a discontinuous, non-nearest-neighbor connectivity for the β -sheet, with the most C-terminal segment of the protein forming the central (β 5) strand. In TcpA^{ET}, the $\alpha\beta$ -loop (residues 54-93, shown in green), which lies between $\alpha 1$ and the β -sheet, forms one edge of the globular domain. The $\alpha\beta$ -loop begins with an irregular loop followed by a four-turn α -helix, $\alpha 2$, that lies at right angles to $\alpha 1C$. Following $\alpha 2$ there is a single helical turn then an irregular β -hairpin that feeds into the β -sheet at β 1. The polypeptide chain exits the β -sheet after the first two strands (β 1 and β 2) to form an α -helix, α 3, that runs under and parallel to the β -sheet then re-enters the β -sheet as its fourth strand (called β 3 since it follows β 2 in the polypeptide). The chain again leaves the sheet to form an irregular loop that winds around the front of the β-sheet then folds into a very short terminal strand (β 4) of the sheet. From there the chain follows another irregular loop that runs along the edge of the globular domain, forms a short α -helix, $\alpha 4$, and then inserts into the β sheet as the central strand (B5), which is also the TcpA C-terminus. The D-region, which is the TcpA segment that spans the conserved, disulfide-bonded cysteines (C120 and C186, colored magenta) comprises a large portion of the globular domain and includes most of $\alpha 3$, $\alpha 4$, the irregular loop structures and the two terminal strands (β 3 and β 4) of the β -sheet. Thus, the $\alpha\beta$ loop and D-region form the edges and much of one face of the globular domain. These regions display a high degree of sequence and structural variation among the Type IV pilins and are implicated in a number of T4P functions (Craig et al., 2004).

Supplementary Material

Fig. S2. TEM images of TCP from whole cell cultures of classical-to-El Tor mutant *V*. *cholerae*. Scale bar for all panels, 100 nm.

Lim et al., 2010

REFERENCES

- Craig, L., M. E. Pique and Tainer, J. A. (2004) Type IV pilus structure and bacterial pathogenicity. *Nat Rev Microbiol* 2: 363-378.
- DiRita, V. J., M. Neely, R. K. Taylor and Bruss, P. M. (1996) Differential expression of the ToxR regulon in classical and E1 Tor biotypes of *Vibrio cholerae* is due to biotype-specific control over *toxT* expression. *Proc Natl Acad Sci U S A* **93**: 7991-7995.
- Figurski, D. H. and Helinski, D. R. (1979) Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. *Proc Natl Acad Sci U S A* 76: 1648-1652.
- Hase, C. C., L. S. Thai, M. Boesman-Finkelstein, V. L. Mar, W. N. Burnette, H. R. Kaslow, L.
 A., et al. (1994) Construction and characterization of recombinant *Vibrio cholerae* strains producing inactive cholera toxin analogs. *Infect Immun* 62: 3051-3057.
- Kirn, T. J., M. J. Lafferty, C. M. Sandoe and Taylor, R. K. (2000) Delineation of pilin domains required for bacterial association into microcolonies and intestinal colonization by *Vibrio cholerae*. *Mol Microbiol* **35**: 896-910.
- Nye, M. B., J. D. Pfau, K. Skorupski and Taylor, R. K. (2000) *Vibrio cholerae* H-NS silences virulence gene expression at multiple steps in the ToxR regulatory cascade. *J Bacteriol* 182: 4295-4303.
- Skorupski, K. and Taylor, R. K. (1996) Positive selection vectors for allelic exchange. *Gene* **169**: 47-52.
- Taylor, R. K., V. L. Miller, Furlong, D. B. and Mekalanos, J. J. (1987) Use of *phoA* gene fusions to identify a pilus colonization factor coordinately regulated with cholera toxin. *Proc Natl Acad Sci U S A* 84: 2833-2837.