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I.  Supplementary Methods 
 

Gene Expression Array Data Sets 

The meta-analysis was based on Affymetrix gene expression array data derived from frozen samples of 

newly diagnosed GBM tumors from four independent data sets from individual institutions. Two of these 

datasets, from the University of California-San Francisco (UCSF) and the University of Texas-MD 

Anderson Cancer Center (MDA) were generated in the laboratory one of the authors (K.A.)   Publicly 

available Affymetrix GeneChip data (.cel files) were obtained for data sets from the University of 

California-Los Angeles (UCLA) (1) and Massachusetts General Hospital (MGH).(2)  The current analysis 

only included data from newly diagnosed GBMs with clinical follow-up data sufficient to evaluate for 2-

year-survival (either deceased or alive for at least 2 years of follow-up).   Samples from patients known to 

have a prior neurosurgical procedure were excluded.  

 

Mapping data between two array platforms 

Because the data sets studied here involved two different platforms of microarrays (U95Av2 and U133A), 

extra caution was taken to map the data between the platforms. Although both platforms were developed 

by Affymetrix using photoliography, the selection of probe sequences followed different algorithms so 

that there is little overlap between the probe sets used. For our mapping, we first constructed a database of 

full length mRNA transcripts by merging two publicly available databases: RefSeq(3) and H-InvDB.(4)  

We performed BLAST searches for each of the probes used in the arrays against the database. Each 

matched target list was obtained from a BLAST search of a probe sequence against our library of full-

length transcripts with the option of filtering the repetitive and low composite sequences turned off. We 

defined new probe sets by grouping probes that share the same matched target lists.  Only exact matches 



covering the full-length of a probe were collected in the matched target lists. Detailed information of our 

probe sets is stored on our web site at http://odin.mdacc.tmc.edu/~zhangli/FLTBP. Our mapping enhances 

the reproducibility between the two microarray platforms because it ensures that the matching probesets 

on the two platforms target the same genes. 

 

Data Normalization and Sample Quality Control 

 

Probe sets were mapped from the U133A and U95Av2 based on matches to full length mRNA sequences 

to generate a single output with genes present on both platforms, as described above.  The probe signals 

belonging to the common probe sets were normalized using quantile normalization for each sample from 

every institution so that the distributions of signals on an array were the same within a platform. Log-

expression values were then extracted using the PDNN model (5). The log expression values of probe sets 

were normalized using quantile normalization so that the distributions of log-expression on each array 

were the same. Because the PDNN algorithm has a tendency to compress the fold changes(6)
 
the log-

expression values were rescaled by multiplying a factor of 2 based on prior comparisons of PDNN-

extracted expression values and matched PCR measurements (unpublished data).  Finally, the median 

value within each institution for each probe set was calculated and the measurements were expressed as 

median ratios within that institution. The last step was found to be critical for eliminating institutional bias 

in the gene expression data.   

 

Recognizing that inclusion of surrounding non-neoplastic brain tissue would have a confounding effect on 

the results and interpretation of the expression profiling data, we sought to eliminate samples with an 

apparent non-neoplastic brain “contamination”.  We first identified a set of five genes (gamma-

aminobutyric acid receptor 5 (GABRA5), neurogranin, somatostatin, synaptotagmin I, and the light 

polypeptide of neurofilament protein) which we found to be highly overexpressed in non-neoplastic brain 

relative to malignant glioma samples using a previously published data set (7). A total of 146 cases from 

the four institutions fit the criteria of newly diagnosed GBM with sufficient follow-up to determine 



survival at 2 years. For each of the original 146 samples we calculated a "normal brain expression index" 

by averaging the expression levels of these five genes.  Thirty-six cases exhibited a twofold or greater 

normal brain expression index of relative to the median, indicating probable “contamination” of the tumor 

sample by excessive normal brain tissue, and these samples were excluded from subsequent analysis.  The 

number of cases from each of the 4 institutions represented in this set of 36 samples was as follows:  

UCLA: 18 cases; UCSF: 7 cases; MDA: 8 cases; MGH: 3 cases.  Removal of the normal brain 

contaminated cases left 110 tumors for analysis and a summary of the clinical information of these cases 

are shown in Supplementary Table 1.  

 

Statistical Method and Concordance of Survival Association across Institutions 

The overall experimental design used to identify robust survival associated genes from the 4 independent 

data sets is shown in Supplementary Figure 1. While a variety of methods have been described to identify 

genes with statistical or biologic significance in individual microarray data sets, it is not well established 

which test statistic is optimal for the purpose of determining consensus genes across independent datasets 

from microarray data.  This issue is crucial for the identification of consensus prognostic or treatment 

response biomarkers as use of an inferior approach can result in lists of genes that are highly significant in 

one data set, but are not prognostic/predictive in independent data sets, and are thus not useful in the 

clinical arena.  We reasoned that the method that resulted in the most consistent ranking of genes across 

institutions, and which performed best in cross-validation analyses, was most likely to identify a 

consensus gene expression profile predictive of survival in GBM.  

 

Both fold-change and SAM 2-class analysis were applied to each of the 4 institutional data sets (MGH, 

MDA, UCLA and UCSF) independently, and genes were ranked from the largest (or most significant) to 

smallest (or least significant) difference between TS and LTS groups for each statistical method. The 

standard deviation of the ranks across the 4 institutions for each gene was calculated and plotted against 

the average rank of each gene for each statistical method (Supplementary Figure 2). This analysis 



demonstrated that, in general, the most highly ranked genes showed the lowest standard deviations. We 

also noted that the consistency of rankings (as measured by the magnitude of the average standard 

deviation) was continuous as a function of the average rank, but decreased substantially after the top 200 

genes (Supplementary Figure 2).  It is this relationship that suggested the choice of the top 200 genes 

within each institution as a threshold for our subsequent analyses. Overall, gene rankings by fold-change 

resulted in lower standard deviations as a function of rank than when SAM p-value was used   

(Supplementary Figure 2) or when t-test or Rank Product was used (not shown). These observations are 

consistent with previous inter-institutional meta-analyses of microarray data from the Microarray Quality 

Control (MAQC) Project which demonstrated that fold-change was superior to p-value based significance 

approaches (SAM, t-test) in identifying concordance across studies due to the relatively unstable nature of 

the variance estimate in the t-statistic (8).  Based on these considerations, fold-change was therefore used 

for subsequent analyses. 

 

 

Gene Expression Profiles from Microarray Data Can Predict Survival in Independent Samples of 

GBM 

Using a cross-validation approach, gene expression profiles from one set of GBM tumor samples 

identified using fold-change (based on 2-year survival) were evaluated to test whether gene expression 

data from microarrays could predict survival in GBM.  In each round of the analysis, we utilized 3 out of 

the 4 institutions to form a training set to identify the top genes associated with survival.  The genes from 

these 3 institutions were ranked by fold-change difference of TS versus LTS and the top 200 were 

selected.  The performance of this 200-gene profile was tested using K-means clustering (9) in the 

remaining test set. The 2 groups defined by the K-means clustering on the test set were then compared for 

patient outcome.  This procedure was repeated for all (n=4) possible combinations of the datasets.   The 

results (Supplementary Figure 3) demonstrated that the survival-associated gene expression profile from 

the training set showed at least a statistical trend towards survival association in all 4 situations.  These 



data provided proof-of-principle that an outcome-associated gene expression profile obtained from one set 

of GBM samples could predict survival in an independent dataset. We therefore attempted to identify a 

consensus multigene predictor of outcome in GBM from all 4 data sets. 

 

Calculation of a Metagene Score 

In order to determine the association of the overall gene expression classifier with patient outcome, we 

calculated a single “metagene” score for each case based on the set of 38 genes by averaging the 

normalized expression values for all the genes associated with poor prognosis (n=31) and then subtracting 

the average of the normalized expression values for all the genes associated with good prognosis (n=7) for 

each case. This resulted in a single numerical score for each tumor, and each tumor was then ranked 

according to this metagene score. 

 

False discovery rate of 38-gene concordant set 

To determine whether these observed overlaps of 38 genes across 4 institutions was greater than those 

expected by chance, the survival times were scrambled and randomly assigned to individual cases, and the 

same analysis was performed. This analysis was repeated 5 times for graphical representation, and a 

representative example is shown in Figure 3B of the manuscript. We calculated the expected false 

discovery rates for the identification of genes common to 4 out of 4 datasets using this approach and 

found that that there is a 0.3% chance to find 1 common gene among the four lists by chance, and a 99.7% 

chance that 0 genes would be common to the 4 lists by chance. Thus, the identification of a set of 38 

genes associated with survival common to all 4 institutional datasets was highly unlikely to have occurred 

by chance. 

 

Quantitative RT-PCR Measurement of Gene Expression from Paraffin Embedded Tissue  

In order to optimize amplification of the fragmented RNA found in FFPE processed tissue, primers were 

designed with predicted amplicon sizes of 75 base pairs or less (Applied Biosystems, Foster City, CA; 



and Roche Applied Sciences, Indianapolis, IN) (Supplementary Table 2). QRT-PCR measurements were 

performed using a separate set of 68 FFPE GBM samples from the UT MD Anderson Brain Tumor Tissue 

Bank. The use of the tissue and clinical data for these studies were covered under a protocol approved by 

the MD Anderson IRB. Samples were examined and dissected if necessary by a neuropathologist (KA) to 

ensure purity of tumor tissue.  RNA was isolated from these samples (Epicentre Biotechnologies, 

Madison, WI) following deparaffinization and proteinase K treatment. Total tumor RNA was reverse 

transcribed to single-stranded cDNA using ABI’s High Capacity cDNA Archive kit (cat# 4368814) using 

the maximum allowed concentration of total RNA per manufacturer’s instructions (100ng/μl).  To 

determine fold-changes in each gene, qRT-PCR was performed on a Chromo4
TM

 Real-Time PCR 

Detector from Bio-Rad (Hercules, CA) using the primers and probes shown in Supplementary Table 2.  In 

triplicate, we amplified 1μl cDNA for each sample for each assay in a reaction containing 1X TaqMan
®
 

Universal PCR Master Mix without AmpErase UNG and 1X gene expression assay with the following 

cycling conditions:  10 minutes at 95 C, then 40 cycles of 95 C for 15 seconds and 60 C for 1 minute.  

The Ct values for each gene were calculated by comparison with the average of the Ct values for 2 

control genes (GAPDH, GUSB) for each tumor case. To determine the survival association for each gene, 

the mean Ct for the typical survivor (TS) cases was compared with that of the long-term survivor (LTS) 

cases, and the Ct representing the difference of these means (TS minus LTS) was determined. Fold-

change associated with survival for each gene was determined by raising 2 to the power of the Ct and 

taking the reciprocal of this value.  Since with qRT-PCR data, a more negative value indicates higher 

expression, the signs of the Ct values were reversed to be consistent with the Affymetrix level (i.e. 

higher metagene score would predict worse outcome). 

 

Since FFPE-derived RNA can be highly degraded, some quality metrics were employed.  First, the RNA 

was analyzed by nanodrop to assess concentration.  The quality metric was to determine the ability to 

amplify using a control gene (GUSB).  This measurement was then used to guide the RT-PCR for the 38 



or 9-gene set.  Second, Since gene assays with very high Ct levels can mean either low expression of poor 

quality RNA, we examined the Ct values of the control genes, which were selected for high expression 

and relatively uniform expression across GBM samples.  If the average Ct value of the 2 control genes 

was over 31, the sample was considered to have RNA quality too low for a reliable measurement.  This 

occurred in less than 5% of the cases.  Finally, when the average Ct of the control genes was within our 

quality metric (31 or less) the finding of particular gene assay with a Ct value of 35 or greater was 

considered as evidence of low expression of that gene. This occurred in a small proportion (approximately 

2%) of gene assays among all the samples.  

 

Assessment of MGMT methylation 

The FFPE GBM samples were selected and reviewed as described above.  The samples were 

deparaffinized and DNA was extracted using the Epicentre MasterPureTM Complete DNA Purification 

Kit (Epicentre Biotechnologies, Madison, WI).  The extracted DNA then underwent bisulfite treatment to 

convert unmethylated cytosine to uracil via the Zymo Research EZ DNA Methylation-Gold KitTM.  To 

assess the methylation status of each GBM sample methylation specific qRT-PCR was performed using 

the eluted bisulfite treated DNA.  Methylation specific primers and probes for methylated MGMT, 

unmethylated MGMT, and collagen (control set) sequences used are listed in the chart below.  The PCR 

reactions were set at 20ul volumes using 100-150ng of bisulfite treated DNA, methylation specific 

primers and probes, and 1X TaqMan® Universal PCR Master Mix without AmpErase.  qRT-PCR was 

performed on a Chromo4TM Real-Time PCR Detector from Bio-Rad (Hercules, CA) using the following 

conditions: 10 minutes at 95 C, then 40 cycles of 95 C for 15 seconds, 55 C for 15 seconds, and 60 C for 

45 seconds.  The resultant curves were evaluated to determine methylation status of MGMT.  Primers and 

probes are shown below. 

 

 

 



Primer/Probe  Sequence (5’-3’) 

    

 Forward  GCGTTTCGACGTTCGTAGGT 
MGMT-Methylated Reverse  CACTCTTCCGAAAACGAAACG’ 
 Probe   DFAM-CGCAAACGATACGCACCGCGA-DTAM 

 Forward  TGTGTTTTGGATATGTTGGGATAGT 
MGMT-Unmethylated Reverse  AACTCCACACTCTTCCAAAAACAA 

 Probe  6FAM-TTTTTGTGGTGTGTATTGTT-MGBNFQ 

 Forward  TCTAACAATTATAAACTCCAACCACCAA 
Collagen (COL2A1) Reverse  GGGAAGATGGGATAGAAGGGAATAT 

 Probe  DFAM-CCTTCATTCTAACCCAATACCTATCCCACCTCTAAA-DTAM 

 

Immunohistochemistry 

Immunohistochemistry on archival FFPE samples was performed as previously described.(10)  A rabbit 

polyclonal antibody to CD133 (Abcam) was used at a dilution of 1:250, and a mouse monoclonal 

antibody to nestin (Santa Cruz Biotechnology) was used at a dilution to 1:20,000.  Antigen retrieval was 

performed by boiling slides in 10mM sodium citrate buffer, pH 6.0 followed by 30 minutes of cooling.  

Primary antibodies were incubated overnight in the cold.  The stain was detected using the Envision kit 

from Dako.  

 

Optimization of model for outcome prediction. 

To optimize predictive models, each variable was weighted according to its individual strength of 

association.  In concept, variables with a stronger association with outcome were weighted more heavily 

than variables with a lesser association.  To accomplish this, the estimate of the Cox proportional hazards 

coefficient ( ) was determined in a univariate analysis for each variable.  This coefficient was then used 

as the weighting factor to calculate a metagene score according to the formula 

i
iiV

1  

where  is the Cox regression coefficient and V is the variable in question. 

 



Variables and weighting factors are shown in the Table below.  Note that of the 9 genes, 7 have positive 

weighting factors, indicating that elevated expression was associated with poor outcome and the 

remaining 2 have negative weighting factors, indicating that overexpression was associated with 

improved outcome. 

Variable  

  Overall survival 
Progression-free 

survival 

AQP1 0.15 0.10 

CHI3L1 0.12 0.08 

EMP3 0.13 0.15 

GPNMB 0.20 0.14 

IGFBP2 0.22 0.18 

LGALS3 0.13 0.09 

OLIG2 -0.15 -0.19 

PDPN 0.19 0.19 

RTN1 -0.20 -0.20 

 

 

 



Supplementary Tables and Figures. 

 

 

 

Institution MDA MGH UCLA UCSF
Microarray Type U133A U95A U133A U95A

# of Samples 32 24 27 27

Typical Survivors (<2 yrs) 20 17 19 21

Long-Term Survivors (>2 yrs) 12 7 8 6

Supplementary Table 1.  Clinical and Microarray Platform Characteristics. 



Supplementary Table 2.  
Primers/probes used for 
real-time quantitative RT-
PCR for FFPE GBM 
samples.  Reagents were 
purchased either through 
the ABI “assay on 
demand” program (where 
the sequence is 
proprietary) or through 
Roche.  When purchased 
from Roche, the primer 
sequence is indicated 
along with the probe #.  
Genes tested include the 
38 genes identified in the 
microarray analysis plus 2 
control genes GAPDH 
and GUSB). 

Gene  
Symbol accession # ABI catalog # 

Roche Universal  
Probe # Forward primer sequence Reverse primer sequence 

AQP1 NM_198098.1 Hs00166067_m1 
CHI3L1 NM_001276.1 Hs01072228_m1 
COL1A2 NM_000089.3 Hs00164099_m1 
GABBR1 NM_001470.1 Hs00559488_m1 
GRIA2 NM_000826.1 Hs00181331_m1 
GUSB NM_000181.2 Hs99999908_m1 

IGFBP2 NM_000597.1 Hs00167151_m1 
IGFBP3 NM_000598.3 Hs00426287_m1 
LGALS1 NM_002305.2 Hs00169327_m1 
LGALS3 NM_002306.1 Hs00173587_m1 
NNMT NM_006169.1 Hs00196287_m1 
OLIG2 NM_005806.1 Hs00377820_m1 
RIS1 NM_015444.1 Hs00374916_s1 
RTN1 NM_021136.2 Hs00382515_m1 
TIMP1 NM_003254.1 Hs00171558_m1 
TNC NM_002160.1 Hs00233648_m1 

ACTN1 NM_001102.2 42 TGGCAGAGAAGTACCTGGACA GGCAGTTCCAACGATGTCTT 
CLIC1 NM_001288.4 16 GACACCAACAAGATTGAGGAATT GCCAGCTTGGGGTACCTG 
EMP3 NM_001425.1 78 GAGCGAGGGACAAGACTCC GACATGGCTGCAGTGGAAG 
FABP5 NM_001444.1 22 CAAGAAAATTGAAAGATGGGAAA CCGAGTACAGGTGACATTGTTC 

FN1 NM_002026.2 64 GCCACTGGAGTCTTTACCACA CCTCGGTGTTGTAAGGTGGA 
GAPDH NM_002046.1 9 GGGAAGCTTGTCATCAATGG TTGATTTTGGAGGGATCTCG 
GPNMB NM_001005340.1 61 TGCAAGATTGCCACTTGATG CCCTCATGTAAGCAGAAGGTCT 
LDHA NM_005566.1 47 GTCCTTGGGGAACATGGAG GACACCAGCAACATTCATTCC 
MAOB NM_000898.3 60 GAGAGAGCAGCCCGAGAG GACTGCCAGATTTCATCCTC 
OMG NM_002544.3 13 ACGACACCACGGCTTTGATGG CCAGGTGTGAGAAACAGAAGG 
PDPN NM_001006624.1 20 GGGTCCTGGCAGAAGGAG CGCCTTCCAAACCTGTAGTC 
PLP2 NM_002668.1 81 GACCTGCACACCAAGATACC CGCTATGAGGGTTCGGAAG 

S100A10 NM_002966.1 76 AGTTCCCTGGATTTTTGG TGGTCCAGGTCCTTCAT 
SERPINA3 NM_001085.3 14 TCACAGGGGCCAGGAACCTA TGCCCTCCTCAAATACATCAAG 
SERPINE1 NM_000602.1 19 AAGGCACCTCTGAGAACTTCA CCCAGGACTAGGCAGGTG 
SERPING1 NM_000062.1 20 GACCCTGCTGACCCTCCT GGAGCTGGTAGCATTTGGAT 

TAGLN NM_001001522.1 2 GGCCAAGGCTCTACTGTCTG CCATGTCTGGGGAAAGCTC 
TAGLN2 NM_003564.1 83 CCAGCCCGCTTGAAC CAGGCCATATGCAGGTC 
TCF12 NM_003205.3 64 CCCTGTACAGCAGAGATACTGGAT AAGCCCCAGATCTTGTCTCA 
TCTEIL NM_006520.1 76 CAGAAGAGCGCATATGGCTT CTTACGGTACAGGTTCCATC 
TGFB1 NM_000358.1 5 CTTCAAGCATCGTGTTGAGC GACACCTTTGAGACCCTTCG 

TMSB10 NM_021103.2 2 CTGCCGACCAAAGAGACC GGGTAGGAAATCCTCCAGG 
TNR AB007979.1 6 GACGATGCACACTTTAATTAGC GAAGTTGGTTTTTCCTCTCC 

VEGFA NM_001025366.1 9 AGTGTGTGCCCACTGAGGA GGTGAGGTTTGATCCGCATA 



Supplementary Table 3.  Fifty-seven genes found to be associated with survival in ¾ data sets.  Genes 
present in the list of the top 200 survival genes are shown, listing the datasets in which in each was present.  

The direction of the survival association (i.e. higher vs. lower expression in poor survivors) is shown.   

Gene 

symbol Gene name

Expression in 

poorer survivors

MDA MGH UCLA UCSF

C1QL1 complement component 1, q subcomponent-like 1 X X X lower

ATP5J2 ATP synthase, mitochondrial F0 complex, subunit f X X X higher

PTRF polymerase I and transcript release factor X X X higher

NCAM1 Neural cell adhesion molecule 1 X X X lower

DKFZP564K0822hypothetical protein DKFZp564K0822 X X X higher

SLC6A1 solute carrier family 6 X X X lower

PDGFRA platelet-derived growth factor receptor, alpha polypeptide X X X lower

TM4SF2 transmembrane 4 superfamily member 2 X X X lower

PDE8B phosphodiesterase 8B X X X lower

ALDOC aldolase C, fructose-bisphosphate X X X lower

COL3A1 collagen, type III, alpha 1 X X X higher

ID1 inhibitor of DNA binding 1 X X X lower

COL6A2 collagen, type VI, alpha 2 X X X higher

COL6A3 collagen, type VI, alpha 3 X X X higher

FABP7 fatty acid binding protein 7, brain X X X higher

S100A11 S100 calcium binding protein A11 X X X higher

IFITM1 interferon induced transmembrane protein 1 X X X higher

COL5A2 collagen, type V, alpha 2 X X X higher

PMP22 peripheral myelin protein 22 X X X higher

SPP1 secreted phosphoprotein 1 X X X higher

ACTA2 actin, alpha 2, smooth muscle, aorta X X X higher

WWTR1 WW domain containing transcription regulator 1 X X X higher

PLTP phospholipid transfer protein X X X higher

PBEF1 pre-B-cell colony enhancing factor 1 X X X higher

LTF lactotransferrin X X X higher

CHI3L2 chitinase 3-like 2 X X X higher

C1S complement component 1, s subcomponent X X X higher

CA12 carbonic anhydrase XII X X X higher

C1R complement component 1, r subcomponent X X X higher

GPR17 G protein-coupled receptor 17 X X X lower

ANXA1 annexin A1 X X X higher

COL4A1 collagen, type IV, alpha 1 X X X higher

BHLHB2 basic helix-loop-helix domain containing, class B, 2 X X X higher

VEGF vascular endothelial growth factor X X X higher

MSN moesin X X X higher

HSPB1 heat shock 27kDa protein 1 X X X higher

COL4A2 collagen, type IV, alpha 2 X X X higher

ASCL1 achaete-scute complex-like 1 X X X lower

SOD2 superoxide dismutase 2, mitochondrial X X X higher

VIM vimentin X X X higher

GPR51 G protein-coupled receptor 51 X X X lower

DPYD dihydropyrimidine dehydrogenase X X X higher

MRCL3 myosin regulatory light chain MRCL3 X X X higher

PTX3 pentaxin-related gene, rapidly induced by IL-1 beta X X X higher

SEC61G Sec61 gamma subunit X X X higher

MOXD1 monooxygenase, DBH-like 1 X X X higher

EGFR epidermal growth factor receptor X X X higher

C10orf56 chromosome 10 open reading frame 56 X X X lower

KLRC1 killer cell lectin-like receptor subfamily C, member 1 X X X lower

RIPX rap2 interacting protein x X X X lower

GJA1 gap junction protein, alpha 1, 43kDa X X X higher

SH3GL2 SH3-domain GRB2-like 2 X X X lower

MXI1 MAX interactor 1 X X X lower

TFRC transferrin receptor X X X higher

MT1E metallothionein 1E X X X higher

TCF8 transcription factor 8 X X X lower

MEOX2 mesenchyme homeo box 2 X X X higher

Present in list of top 200 survival genes



Gene 
name 

Fold 
change 

(STS/LTS) 

 
Average 
Ct value 

PDPN 4.5 29 

AQP1 3.0 28 

YKL40 2.8 26 

RTN1 0.4 30 

KIAA0510 0.4 35 

S100 2.1 36 

EMP3 2.1 28 

GPNMB 2.1 27 

IGFBP2 2.0 28 

OLIG2 0.5 29 

LGALS3 2.0 29 

SERPE3 1.9 28 

NNMT 1.9 30 

TNC 1.8 28 

VEGFA 1.8 31 

GABA 0.6 34 

TCTEIL 1.6 30 

MAOB 1.5 33 

PLP2 0.7 34 

TAGLN2 1.5 33 

OMG 0.7 28 

TGFB1 1.4 29 

LGALS1 1.4 29 

SERPG 1.4 30 

CLIC1 1.4 30 

TIMP1 1.3 31 

ACTN1 1.3 32 

FABP5 1.2 31 

LDHA 1.2 35 

RIS1 1.2 34 

TAGLN 1.2 34 

TCF12 0.9 32 

GRIA2 0.9 32 

SERPE 1.1 33 

TMSB10 0.9 29 

FN1 1.0 33 

IGFBP3 1.0 32 

COL1A2 1.0 36 

Supplementary Table  4.  
Results of qRT-PCR assay 
on initial validation set of 68 
GBM samples.  The fold-
change was calculated by 
averaging the expression 
level of typical (less than 2 
years) versus long term (2 
years or greater) survivors).  
The mean delta Ct value was 
also calculated.  Genes in red 
(n=9) were selected for 
further study based on a fold-
change level of 2 or above (in 
either direction) and a mean 
delta Ct value of 32 or less. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Table 5. Results of qRT-PCR analyses for top 9 genes on 68 GBM 
samples.  Univariate Cox analyses were performed for each gene, and the effect 
size (hazard ratio, or HR) and P-values are shown.  To generate comparable 
hazard ratios, median expression values for each gene were determined and the 
value was expressed as 0 or 1 based on whether it was lower or higher than the 
median, respectively. 

Gene HR P-value

AQP1 2.3 0.0013

CHI3L1 2.1 0.0085

EMP3 1.6 0.0743

GPNMB 1.8 0.0055

IGFBP2 1.9 0.0019

LGALS3 1.3 0.0663

OLIG2 0.6 0.0212

PDPN 2.3 0.0001

RTN1 0.6 0.0042

Gene HR P-value

AQP1 1.8 0.0431

CHI3L1 1.9 0.0477

EMP3 1.7 0.0435

GPNMB 1.7 0.0394

IGFBP2 1.6 0.0279

LGALS3 1.7 0.0521

OLIG2 0.6 0.0480

PDPN 1.9 0.0452

RTN1 0.5 0.0091

Supplementary Table 6. Results of qRT-PCR analyses for 9-gene profile on 
101GBM samples from temozolomide-treated patients.  Univariate Cox analyses 
were performed for each gene, and the effect size (hazard ratio, or HR) and P-
values are shown.  To generate comparable hazard ratios, median expression 
values for each gene were determined and the value was expressed as 0 or 1 
based on whether it was lower or higher than the median, respectively. 
 



 

 

 

Case ID 

metagene 
score 
rank CD133 nestin 

M234 168 2 2 

M229 167 1 1 

M201 166 1 1 

P84 164 2 2 

H72 163 2 2 

C207 162 2 ND 

C38 160 2 ND 

C284 159 2 2 

H23 157 2 2 

H166 155 2 ND 

H6 151 1 2 

C22 146 2 2 

C114 139 2 2 

H103 131 2 2 

H29 128 1 2 

C27 127 2 ND 

M278 123 ND 2 

M248 121 ND 2 

C167 116 1 ND 

H190 113 1 2 

P79 97 1 2 

C85 95 1 2 

M283 94 ND 1 

C103 93 2 ND 

C176 92 1 2 

M205 88 0 1 

P87 85 2 1 

M244 82 ND 1 

M221 80 2 2 

H220 79 2 2 

H21 78 1 1 

H208 76 0 0 

M209 74 0 1 

C195 71 2 2 

H202 69 2 2 

P80 68 0 0 

H176 57 0 1 

M235 56 1 1 

M216 55 1 1 

C91 52 2 1 

P83 51 1 1 

P89 46 ND 0 

P82 45 0 0 

C158 43 1 0 

P17 41 0 0 

M236 39 1 2 

C32 36 2 2 

C228 34 0 ND 

M232 32 2 1 

H215 31 0 2 

P78 28 1 2 

C110 27 0 ND 

H139 26 0 0 

P75 23 0 0 

H118 18 0 0 

H203 17 0 0 

M277 16 ND 0 

H196 14 0 0 

M220 4 0 0 

H143 3 1 0 

Supplementary Table 7.  
Expression of CD133 and testing 
with comparison to metagene 
scores.  Samples for which slides 
were available were tested by 
immunohistochemistry for CD133 
and nestin and scored 
semiquantitatively for expression 
using a 3-tiered system.  Scores 
are shown with comparison to the 
rank determined by the 9-gene 
metagene score, where higher 
rank indicates a prediction of 
unfavorable outcome.  ND=not 
done. 



 

 

Test whether survival genes identified in a subset of the data can predict survival in the 
remainder of the data  

MDA MGH UCLA UCSF 

Identify and rank genes associated with survival 

Determine best statistical method (SAM, fold-change) 
 

Identify consensus survival genes across all 4 institutions 

Validate survival genes in an independent sample sets using paraffin tissue 

Supplementary Figure 1  Scheme used to identify robust survival genes in independent microarray datasets derived from MD Anderson 

(MDA), Massachusetts General Hospital (MGH), University of California-Los Angeles (UCLA) and University of California-San Francisco 

(UCSF). 
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Supplementary Figure 2.  Consistency of Gene Rankings Across Institutions: Individual genes were ranked by fold change or SAM 

2-class (TS vs. LTS) within each institution. Average rank and standard deviation of gene ranks across the 4 microarray data sets 

were calculated.  The standard deviation as a function of average gene rank are plotted for the top 1000 genes (top row) or top 200 

genes (bottom row) for Fold Change and SAM.  The lower standard deviation observed across all rankings using fold change 

indicated that this method gave more consistent rankings of individual genes across institutions and fold change was thus chosen 

as the method used to identify the most robust survival genes common to the independent data sets. 

 



 

 

Supplementary Figure 3. Test of robustness of gene expression sets among institutions using a cross validation method.  Data were 

combined from 3 institutions into a single dataset, and the list of the top 200 survival genes identified among those 3 institutions (the 

training set).  This list of genes was then used for K-means clustering of the dataset from 4th institution (the test set).  The survival 

times are plotted for the 2 groups that resulted from the clustering analysis. This procedure was repeated for all (n=4) possible 

combinations of the datasets and the resulting Kaplan-Meier curves for the test set in each case shown in A-D 

 

A B 

D C 



Supplementary Figure 4.  Expression of CD133 and nestin and correlation with metagene score.  Immunohistochemistry was 

performed on GBM tumor samples (see Supplementary Table 5) and scored semiquantitatively.  A. and B.  CD133 staining, 

showing a negative case (A) and a positive case with staining at the cell membrane (B).  C. and D.  nestin staining, showing a 

negative case (C) and a positive case (D).  .  E. and F.  Box-whisker plots showing the association of CD133 (E) and nestin (F) 

with metagene score. 

E F 
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