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Supplement A. DETAILS ON THE DERIVATION OF THE SHAPE RELAXATI ON TIMES

Our calculation of the relaxation times is based on the wéldoth Stone and McConnell [1] and Lubensky and Goldstein [2]
indeed, our results follow immediately from the hydrodym@aamalysis presented in these works with only slight modifans.
The mathematical details are summarized here, elaboraping the treatment in Appendix C of [2]. Within the Saffman-
Delbriick picture of a fluid membrane sheet [3], it is possible tadfmtethe in-plane velocity of all points on the membrane
surface for an arbitrary distribution of in-plane forcesirsg on the membrane [2, 3]. Given a force deniy) (per unit area),
the membrane velocity is calculated from the membrane Gréamction tensofl;;(r) for velocity response to an applied point
force,

/ dr' Ty (r — v') Ej(r'). (A1)

Here, and in all that follows, the indicesand j refer to in-plane cartesian directions ér y), with summation implied in
expressions with repeated indices. Although there is nlsirolosed-form expression fdr;;, it may be expressed as the
integral [2]
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where Lsq = nm/(20¢), nm is the membrane surface viscosity;, is the bulk fluid viscosity, and,, are Bessel functions of
the first kind (the primes indicate differentiation). We drapize that this result differs slightly from the form used2]. The
bilayer geometry considered in this work requiges to appear in the denominator 6f, whereas the monolayer geometry at
the air-water interface considered in [2] plaggs(without the factor oR) in this constant. The bilayer is subject to dissipation
from the bulk fluid both above and below the bilayer, whichaats for the factor o [4, 5].

Our result for domain fluctuation dynamics is calculatedhi@ limit of linear response, considering only small flucios
of domain shape away from the minimum energy configuratioa pérfect circle of radiug?. These small fluctuations in
domain shape give rise to restoring forces, which are exgliaritten in Eq. 3 of the main paper. The important poinbab
this expression, is that the force vanishes for the undefdraircle - only linear (and, in principle, higher order) trdutions
are present. In order for the velocity of Eq. Al to be linealgpendent on the shape deformations, the Green’s functigh m
be evaluated for the undeformed domain geometry of the gecficle. Any deviations from the zeroth order geometryfjn
would necessarily lead to second (and higher) order carioibs in the velocity when multiplied against the forces &ve thus
led to a less general form of expression Al, which considers/elocity of the domain boundary at poitiis, #) as driven by
restoring forces at point{s?, #’) in polar coordinates.
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The unit vectors:(8) = (7,(0), 7, (0)) = (cosd,sin ) andi’(§") = (7,(8"),7,(0')) = (cosé’,sin @) point along the outward
radial direction for the indicated polar angles. The rddidirected velocity is then given by.(0) = ©(0) - v(R, 0) so that
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The velocities and forces are defined explicitly in the maipey. If the radial velocity is measured at anglen the circle, as
driven by a radially directed force at angle the cartesian vector separating these two points-is’ = R(cos 6 —cos6’, sin§ —
sin ') with a separation oR = |r — r'| = 2Rsin(5% 9%). Itis clear by symmetry that the Green’s function for rakymlirected
forces and velocitie$;; (Ri () — Ri'(¢')) can only depend on the anglgandd’ via their difference — 6’; a rotation of both



points around the origin will not affect value of the radyallirected Green'’s function on the circle. Carrying out ta&alation
explicitly, starting from Eq. A2 leads to
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This expression may be substituted into Eq. A4 to yield
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which has the form of a simple convolution in the polar angtaiad the domain perimeter, so that
Vo (t) = 7T fn(t) (A7)
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and the final equality originates from the fact tt#at (9) is even around the poirft = =, which is clear from symmetry
considerations as well as the explicit mathematical exgiwas. The integral ovet is taken using the last line of Eq. A5 and
applying integration by parts twice to move the derivatioffsthe Bessel function and on tas(nf). The boundary terms

vanish.
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The final integral ovef may be found in standard tables [6]. Eq. A9 and Eq. A7 lead idiately to Eq. 5 of the main paper.

Supplement B. THE MEANING OF 7,, WHEN DOMAIN AND SURROUNDINGS DO NOT SHARE THE SAME VISCOSITY

For future reference, we restate Eq. 5 from the main paper
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This expression and its derivation above are restricteldgaase that both the domain and its surroundings have édéstirface
viscosity,n,,. Though we are not able to present a fully general theorytfercase where domain viscosity differs from the
surrounding viscosity)s, we can argue that that the measured quantjfyfobtained via fitting data to Eq. B1) is approximately
equal to the mean viscosity); + 75)/2, when the experimental data is observed to fit the form of Hqg. \Be can also place
bounds on the accuracy of this approximation.

In the limiting case where dynamics are governed solely bybithavior within the membrane, it is known that Eq. 8 of the
main paper may be generalized to the case of distipeind; [7]
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In this limit, the correspondence mentioned above is eXdetasuring mode relaxation times and fitting to paper Eq. &lgie
nm = (na + ns)/2 = 7. More generally, for any finite mode numberthe experimental relaxation times will always be longer

than~, MeMbrang; eq. B2 owing to the additional dissipation afforded by suerounding bulk solvent. Since we assume that
the available experimental data is well fit by eq. B1 this nsehat
m B 1 2(na +ns)R

o I,(2Rns/nm)n?(n? —1) ~ no (83)

wherer,,, must now be interpreted as a fitting parameter or effectigeosity that incorporates the influence of bgghands,.
The influence of solvent decreases with increasirand hence approaches equality most closely for the largedé mumber
measured in a given experimeny, ... This inequality may be rearranged and considering anly,. yields the tightest bound
on 7 possible from the experimental measurements

N < anm

Nmazx
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The dimensionless quantity > 1 provides a measure for how closely madg,,. approaches the idealized “membrane only”
limit. Values of«a close to one are nearly in the limiting regime whereas lavgduwies correspond to systems more strongly
influenced by the bulk solvent. The domains analyzed in tloikwpan the range ef = 1.1 — 2.1.

We also note that the measured relaxation time for moddl always be shorter than that for a hypothetical membnaiike
homogeneous viscosity;,, = max{ns,n4}, because such a membrane is subject to additional dissipater the region of
the membrane that has been replaced by higher viscositya @en value ofj, the largest value thag,,,, can possibly assume
is 277, which would correspond to the membrane having one regitimfedomain or surroundings) with vanishing viscosity. If
we assume Eq. B1 provides a good fit to the data (withithe measured fit constant) then the preceding argumentasbiat
Tn(Mm) < 7,(27), by which we mean
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Sincer, (n) increases monotonically with, this expression implies
Nm < 21] (B6)

Combing Eq. B4 and Eq. B6 leads to bounds on the value of the foieyer viscosity; in terms of the measured effective
viscosityn,,

Mm

5 <N < QN (B7)
This expression quantifies the meaning of our prior assettiaty,, ~ 7. As noted above, the experimental data considered in
this work involves domains with values on the order of two or smaller and’ge < 7 < 21, provides a conservative estimate
of the uncertainty in our measurementpfTo within a factor of twoy),,, = 7.

We stress that Eq. B7 does not preclude the possibilitysthat= 7, sincea > 1 for measurement of any finite. The
equality does hold in the limit of large and it is possible that this equality extends ovemallndeed, if perfect experimental
data extending over atl values were found to fit Eq. B1, it would necessarily be the¢hatn,, = 7 since the equality must
hold at highn, thus setting the value for the entire set of modes. The diegeanalysis accounts for the possibility that the
agreement between Eq. B1 and experiment may only be apfappriximate due to uncertainty in the data. Without data
extending down to the: = 1 limit, it is not possible to surmise that the functional foohB1 with a constanty,,, value holds
over alln values.

Supplement C. DETAILS OF THE COMPARISON BETWEEN THEORY AND EX PERIMENT
Eq. B1 predicts thé? dependence of relaxation times for madeThe form of this expression suggests a natural collapse of
the data onto a single dimensionless curve for each mode

OTp

77mLsd

= gn(R/Lsd) (Cl)



P _Theow
° Experiment| o Experiment i ° Experiment]

2
—Theory ¥
° Experiment M
; u;‘ 4 ¢

crzl(nmLsd)
0r3/(nmLsd)
ot,/(n, L

) = -
05 1 5 05 1 5 05 1 5

RIL, RIL, RIL,
(a)n=2 (b)n=3 (c)n=4 (d)n=5

FIG. 1: Rescaling relaxation times collapses the data to the form predictbe lextended theory, Eq. C1. Error bars are propagated from the
uncertainty in the measured quantitiesando. The experimental data closely matches the theoretical predictions.

—1
whereg, (y) = my [fooo dx%} . Since the experimental data is collected from domains sitbntinuous range
of R, but only a few discrete values, Eq. C1 provides an appealing theoretical predi¢t@ssess the validity of the proposed
theoretical model over the full range of collected expentaédata.

We note that Eqg. C1 contains four distinct physical pararsetet contribute te,,: o, n,,,, ny and R. We assume three of these
quantities to be known from measurements other than theatda time. The viscosity of water,, is well known. The line
tension of the domain is known from the equilibrium fluctoas as described in the main paper and the domain radiusvwakno
from direct observation. The values Bfando do vary from domain to domain and so analysis of the decaystimpecessarily
carried out individually for each domain. After determigithe domain boundary(6,t) as in the paper and extracting the
deviations from circular shape,, (t), we fit the autocorrelation functior{s.,, (t)u_., (0)) to the form{|u,,|>)e~*/" to determine
the relaxation times for each observable mode (n=2,3,&&re, and in all subsequent fits, we use MATLAB’s impleméata
of the Levenberg-Marquardt algorithm for nonlinear lesgttares.) We then fit these four modes simultaneously to EqoB
determine the single best fjf,, for each domain. Since,, represents the best fit to the behavior of the entire domathnat
a single mode, the measured quantitiggerimental will generally differ from ther?redicted obtained by inserting, 7., 1y
and R into Eqg. B1; the magnitude and nature of the deviatioogigle an estimate of the fit quality afforded by Eq. B1 to the
experimental data. In Figs. 1 and 2 we present two differesuializations of the quality-of-fit obtained by the thearat model
proposed in the present work (Eq. B1). Fig. 1 plots the meakialaxation times, rescaled to the dimensionless formgestgd
by Eg. C1. The experimental data is in very good agreemenhttivit theoretical predictions. The deviations between rxgat
and theory that do exist for individual points appear to be-sgstematic, i.e. they are equally apparent over all matheters
and for all domain radii and the scatter falls on both sidetheftheoretical predictions. (It could be argued that tleiti for
moden = 5 does show some systematic deviations from the data, howeer= 5 data is right at the limit of experimental
resolution for many domains and this data may not be fullabé. The analysis discussed in this section was alscecborit
using only modes = 2, 3,4 and no significant changes were observed.)

Alternatively, we can simply plot the ratio between the meed relaxation times and the relaxation times predicteBdyB1

Texperimenta)Tpredictedi Tsxpenmentaclmz(nQ ) /°° Iz J2(x) (C2)
" " B N2 0 z?(z + A) '

If the experimental data carried no uncertainties and Eqs&ted as a perfect description of physical reality, thiamngjity
would equal unity for allz and for all domains. The data plotted in this form is given ig.R. Although we see scatter just
as in the representation of Fig. 1, the agreement betweenythad experiment is perhaps more striking here - the datapo
straddle the theoretical predictions and show no systertratids in the deviations that are observed.

By contrast to the above, if we attempt to explain the expenital measurements by fitting to the Stone-McConnell forth wi
a similar procedure, using the bulk solvent viscosity asitidependent fit parameter, we see much worse results. lcdbis
we assume Eq. 7 of the main paper is the correct model for thardics

fluid _ 27TRQ77f n® — 1/4
" o n2(n?2-1)
We use the same procedure outlined above to determing,thérom experiment, and find the best fitting value of thek

viscosity )y for each domain (as previously, the domain radiuand line tensiomr are known from the thermal fluctuations) by
fitting to modes: = 2, 3, 4, 5 simultaneously. If Eq. C3 were a good model for the systemyrmchics, the ratio

(C3)

i l
O_Tﬁajpe”menta n? (TL2 B 1) _ emperimental/,rfluid (C4)
2 R2n; n?—1/4 " "




predicted

predicted
3

2

T/t
it

predicted
Tl
et
e
—e—i
-

osf

55 25 s 35 4 45
R [microns]

(a)n=2 (b)n=3 (c)n=4 (d)n=5

35 4 45 35 4 45 35 4 45
R [microns] R [microns] R [microns]

FIG. 2: No strong systematic error is seen in using Eq. B1 to “predicttnlesl data from the best fit viscosity. As in Fig. 1, error bars are
propagated from the uncertainty in the measured quantitieendo. The dashed red line simply measures the average taken over all the

experimental points in each plot. The proximity of this line to one foratidicates there is very little, if any, systematic error associated with
the predicted expression (Eg. B1).

should be close to one for all domain radii and all mode nusein fact, what we find is that the = 2 mode relaxation times
are systematically low, while the times fer= 3, n = 4, andn = 5 are systematically long (Fig. 3), with the disagreement
becoming more pronounced agets larger. This systematic deviation is predicted by Eq.® demonstrate this, we generate
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FIG. 3: Attempting to fit experimental data to the Stone-McConnell thesipgua different bulk viscosity for each domain, causes systematic

problems;n = 2 relaxation times are systematically low compared to the best fitnaad, 4, 5 are increasingly large compared to the best
fit.

relaxation times from Eq. B1 for domains in the ranfge= 2 — 5 microns, with a membrane surface viscosjty = 3 x 1076
s.P., bulk fluid viscosity of); = 1 cP and line tensiom = 0.2 pN. This manufactured “data” was fit to the Stone-McConnell
form using the above procedure (Fig 4). The results are ikirsy agreement with Fig. 3 - the best fit= 2 times are below
theoretical predictions, whereas modes- 3, 4,5 show the opposite behavior. Even the magnitudes of the geefaviations

are close to the experimental plot. The Stone-McConnetirth&ils in a manner completely consistent with the fact tha
experimental data agrees with the predictions of Eq. B1.
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FIG. 4: Attempting to fit relaxation times given by Eq. B1 to the Stone-Mc@#irfarm (usingn as the fit parameter) generates systematic
deviations similar to those observed experimentally (Fig. 3).

In summary, we have shown that our prediction (Eq. B1) presid globally satisfactory fit to the experimental data. The
theory does a good job reproducing experiment over a rangemfin sizes and all observable mode numbers with a single
fit parameter,,,) used to describe each domain. By contrast, the Stone-Mw€lidheory provides an unsatisfactory fit to the
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experimental results. Furthermore, the errors seen inthétSare predicted by our theoretical analysis and are ftdlysistent
with an experimental system that behaves in accord with Hg.Athough we have ruled out the Stone-McConnell theory as
an adequate description of the experiments solely on this bathe data, we feel an even stronger case against thislisode
the fact that it requires one to assume bulk solvent visessihat vary from domain to domain with values as higts a$

or three times higher than the known viscosity of water atetkgerimental temperatures (see the next section). It isitden
that individual domains sampled from different vesiclegave different membrane surface viscosities and linddassince
the lipid stoichiometry is variable from vesicle to vesieled each domain thus represents a distinct physical systemthe
perspective of the bilayer. The bulk solvent surroundirggtiihayer however is constant from domain to domain. It isasgible

to reconcile the experimental data with the Stone-McCdragh (Eqg. C3), either from the physical or statistical gastives.

Supplement D. ADDITIONAL DATA

We present twelve additional data traces, to indicate tladitgLof fits involved (Fig. 5). Each of the plots is similar Fag. 3
of the main paper, which is seen to be in no way extraordinargomparison to the behavior of other domains. In each of
these, the solid blue line indicates the Stone-McConnslilitewith n; = 1 centipoise (cP), and line tension as determined
from the equilibrium measurement. The experimental relaxatimes are almost universally significantly longer thtae
Stone-McConnell prediction. The red line indicates thet fieto our general form, Eq. B1, with the line tension giventhg
equilibrium measurements. The best fit value of the membsarface viscosity, as well as the equilibrium line tensiarg
given in each figure. Plotted in green is the best fit to the &tdoConnell form by adjusting the bulk solvent viscositiyet
required bulk viscosities range from 130% to 300% of the kmealue of 1 cP at 20C. Also, the deviations observed in Fig. 3
can be seen; the Stone-McConnell result does not have thectestope to fit the observed data, though this is more appare
aggregate (as in the preceding section) than in any indiitlace.



=)
=)

0
10 0= 0.094 +/- 0.03 pN 10 10

0= 0.13 +/- 0.02 pN
n_=3.94e-06 s.p.
m

N 3.06e-06 s.p.

0= 0.14 +/- 0.01 pN
Npy= 1.03e-06 s.p.

n
n

n

L]

Best adjusted ne= 2.73 cP (green)

Best adjusted n;= 2.39 cP (green)

Relaxation time T_ (seconds)
B
o

Relaxation time 1_ (seconds)
[
o

Relaxation time 1_ (seconds)
=
o

Best adjusted n; = 1.35 cP (green)

0
N
!
N
N

N
o

N
=
o
=
o

3 4 5 2 3 4 5 2 3 4 5
Mode number n Mode number n Mode number n

( 0 0
0=0.12 +/- 0.03 pN 0=0.16 +/- 0.03 pN
N 2.06e-06 s.p.

N
o
=
o
=
o

0=0.18 +/- 0.04 pN

n_=3.05e-06 s.p. = 5.65e-06 s.p.
m

{\

n
n
n

Best adjusted n, = 1.72 cP (green
! ki (green) Best adjusted n, = 2.03 cP (green)
Best adjusted ne= 3.04 cP (green)

Relaxation time T_ (seconds)
=
o

Relaxation time 1_ (seconds)
=
o

Relaxation time 1_ (seconds)
=
o

,_.
1S
b
=
o\
b
.
1S
b

3 4 3 3
Mode number n Mode number n Mode number n

=)
=)

0= 0.18 +/- 0.007 pN

{\ ™ 3.84e-06 s.p.

0= 0.25 +/- 0.08 pN
= 6.55e-06 s.p.

0=0.2 +/- 0.03 pN
Ny 2.39e-06 s.p.

i

n
e

n
n

Best adjusted n= 2.33 cP (green)

Best adjusted n = 2.85 cP (green) Best adjusted n, = 1.79 cP (green)

Relaxation time 1_ (seconds)
B
o

Relaxation time 1_ (seconds)
[
o

Relaxation time 1_ (seconds)
=
o

N
!
N
N

N
S}
=
o

INYS
=
o

4 5 2 3 4 5

0
N

4 5

3 3
Mode number n Mode number n Mode number n

10° 10° 10

0=0.088 +/- 0.01 pN
™ 1.7e-06 s.p.

=)

0=0.21 +/- 0.04 pN
N 2.01e-06 s.p.

i

7

0=0.1+/-0.03 pN
™ 1.54e-06 s.p.

1

n
n

n

|
s
|
N
|
N

Best adjusted n;= 1.51 cP (green)

Relaxation time T_ (seconds)
=
o

Relaxation time 1 _ (seconds)
B
o

Relaxation time 1_ (seconds)
[
o

Best adjusted ne= 1.98 cP (green)

—2|Best adjusted n, = 1.77 cP (green) _2 -2
107 = : 107 : :
2 3 4 5 10 2 3 4 5 2 3 4 5
Mode number n Mode number n Mode number n

FIG. 5: Data from additional domains.
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