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Additional Mathematical Derivations

Introduction

In this section of the Supplementary Information, additional mathematical details and
derivations are provided. In section S1, a short discussion on the Cartesian rotation matrix derivative
A = (OR/OQ)R™ matrix is given. The results for atomic gradients of Cartesian rotation matrices
(8R/8rggq)R'1 are derived in sections S2-S5. In sections S6, S7, and S8 the general expression for

OD' /0K is applied to the cases when Q is an infinitesimal rotation, an Euler angle, and a quaternion,

respectively. Lastly, the results T, =axF, % + BxF,"%; and Y r,xd7n/dr, =0, which are used in

a—>NI1

the main text, are derived in sections S9 and S10, respectively.

S1) Note on Cartesian Rotation Matrix Derivatives A” = (OR/0Q)R™’

Q
i For

For many cases of Q, the matrix A= (OR/GQ)R™ is antisymmetric, i.e. AQU- =-A
example, if Q is an Euler angle or a rotation about a coordinate axis, A” is antisymmetric. If R(Q) is

an orthogonal rotation matrix for all of values of €, then the following relation holds
R(QR(Q) =1, (S1.1)
where I is the constant identity matrix, and R™ = R” for real orthogonal Cartesian rotation matrices.
After taking the derivative with respect to Q2 of both sides of eqn. S1.1, the following result is obtained
Z—ERT+(2—SRTJT=O, (S1.2)
which shows that A = (GR/6Q)R™" is antisymmetric. For the cases when € is an Euler angle or a
rotation about a coordinate axis, A” is antisymmetric. Since an antisymmetric matrix A has the

general form

0 -a, a,
A= a 0 -aq/, (S1.3)
-a, a 0

the infinitesimal rotation matrices M; defined in eqn. 28 of the main text forms a basis for A, i.e.



A=>aM,. (S1.4)

A similar argument applies to A” = R (6R/6Q) = R'A“R.

If R(QY) is a rotation matrix for only a limited subspace of the values for €, then eqn. S1.1 holds
for the values in which R(Q) is a rotation matrix, i.e. R(Q)R’(Q) = I(Q). In this case, I(Q) is the
identity matrix only for the values in which R(Q) is a rotation matrix. Eqn. S1.2 is no longer valid,

since O0I/0C 1s not necessarily zero. An example is quaternions (qo, 41, g2, ¢3), Which satisfy an

equation of constraint, Zi:o %2, =1. In section S8, it is shown that (6R/8qﬂ)R'1 is not antisymmetric.

S2) Preliminary note on Cartesian vectors

The expressions for (6R/8rar,q)R'1 are derived using Cartesian vector analysis. In order to
provide a more economical derivation of (OR/dr,:,)R™, the Kronecker-delta 6; and Levi-Cita ¢
symbols’ are used to express Cartesian vectors in component form. The ;7 and g;; symbols allow
efficient evaluation and manipulations of vector equations and identities. These conventions are
outlined below.

Suppose a and b are two arbitrary three dimensional vectors given by

a=(a,,a,,a;) =ax, +a,x, +ax, (S2.1)

b=(b,,b,,b,) =bX, +b,x, +b,X,. (S2.2)

where x, is the global or fixed coordinate basis for three dimensional space defined by %, = (1,0,0),

x, =(0,1,0), and x, =(0,0,1). The conventions used in this work can be summarized by the following
rules:

1) Repeated indexes are summed over. For example, a,b, = 23 ab.

=1 10"

1if p=
2) The Kronecker-Delta symbol is defined by 6, =7 p=a
M0 if p#g
3) The antisymmetric Levi-Cita symbol ¢, is defined by &,,; = &;,, = &,5, =1,

Ey = &3y = &3 =—1, and ¢, =0 if any index is repeated, e.g. &, =0

4) The magnitude of a vector a is given by a = |a| =\a’ +a,’ +a;
A scalar or dot product between two vectors a = g,x, and b = b,x, can be represented by
a-b=ab, (S2.3)

and a vector or cross product between two vectors a and b can be represented by



axb=ab.e,x, . (S2.4)

g

In particular, the Kt component of axb is given by

(axb), =ab,z, . (82.5)
The following important result can be readily verified
€€ oy =Op0s ~ 00 - (S2.6)

Note the X, basis is orthonormal and right-handed, i.e.
XX, =0, (S2.7)
X, X X; = £,% (S2.8)
Eqn. S2.7 is a short hand way of expressing X, -x, =1, x, -x, =0, .., while eqn. S2.8 is short for

X, XX, =X;, X, XX; =X, and X; XX, =X,.

S3) Derivation of the local basis vector gradients

The local frame basis vectors X,' for the type of local frame defined in Figure 1 of the main text

are defined in terms of the bond vectors @ = ry; —r, and p = rny — 1, by

Ay O
== =X
a 2 =
B I (S3.1)
a- o
Y=Pp- o o X=X, %X,
It will be convenient to express the basis vectors in component form by
. a
xl P'E —+ j\: '—= y_p
a 2p
I (S3.2)
= ﬂ _& ) — s '
yP —Fp aZ ap x3,p _'xl,s x2,t ‘c"stp

The local basis vectors are orthonormal and right handed, i.e. X,"%,'=J; and X,'xX,'= ¢, X,".

The Cartesian rotation matrix R from local to global frames is constructed by the column

vectors of x,' by

0N ] lou | loN |
X Xy Xy

R=|4 4 I (S3.3)

or in component from, R, = fcl.’p' . The result for (8Ra/8ra,’q )R;1 (a'=a,N1,N2;¢g=1,2,3 forx,y,

z) are found by first deriving expressions for (6R/6aq)R'1 and (6R/6ﬁq)R'1. The corresponding results
for (OR/0r, q)R'1 can be found from (6R/80cq)R'1 and (8R/8ﬂq,)R'1 by a simple chain rule argument.



OR R = JR R~
8eryq Gaq

R R™ =8—RR‘1 (S3.4)
ory,, B,
or,, oa, op,

Since the Cartesian rotation matrix R is constructed from the relative atomic positions @ = ry; — r; and
B = rn2 — 1, Riis translationally invariant, i.e. (c?R/arN],q)R'l + (GR/aeryq)R'l + (8R/8ra,q)R'1 =0.

The general strategy for calculating (8R/80cq)R'l and (8R/8ﬂq)R'l is described as follows.
Derivatives of %, ,'= R, with respect to @, and f, are found by differentiating eqn. S3.2. The
derivatives ox; ,'/0c, and 0%, ,'/0f, are then converted back to the local basis vectors %, ,' by

a,=ax,

I (S3.5)

B,=7x,, Ly
The results for 0%, ,'/dar, = OR /O, and 0%, ,'/0f, = OR , /0f, are right multiplied by
R;' =R, =% ' and summed in section S4. The orthonormal property %,"% '=6, is used to derive

compact expressions for (OR,/0a,)R,; and (6R,/0p,)R,;, which are then converted back into bond
vectors o and B. Lastly, the antisymmetric matrices (6R/8ocq)R'1 and (6R/8,Bq)R'1 are expressed in the
infinitesimal rotation matrix M,, basis in section S5. This last result is used to demonstrate the

relationship between orientation force and torque.

oo Xy
A) Derivatives of x, '=R

The derivative of %, ," with respect to a, is given by differentiating %, ," in eqn. S3.2
o , , O a o 1 " A

_8 X, :ﬂ_—ps 4 :—(é‘pq -X,'%, ) (S3.6)
a, a a a

while the derivative %, ,' with respect to f, is zero,

0 .

—x,'=0 (S3.7)

op,

B) Derivatives of X, '=R ,
The derivatives of X, ' with respect to a, or 8, can be derived through a chain rule argument

using 7, as an intermediate. For example,



a" '
i,;zpv: Y2p OV, (S3.8)
oa, ” oy, Oa,
The result ford%, ,'/0y, has a form identical to eqn. S3.6
ox, ' 1 C e
i SR (83.9)
dy,/0a, is given by
0 0 aa, o0 (a,.«q,
a_r_6 (ﬂr_(,&—z)j: ﬂvé ( zj
q q o q a
o.a.tad, 2aa.0,
=-p, 5 ; (S3.10)
a a
B : a o} [y} ' }/ ‘. 12 '
= a2 (xl,q Xy _§qr)_;x2,q X
Similarly 9y, /0B, is given by
a,a
d Ve = d (ﬁr _(ﬂsasz)arjzé‘qr - qzr
p, op, a a (S3.11)

— _ s o
_§qr Xiq Xir

Recall the local frame basis is constructed to be orthonormal, i.e. %, ,'%, ,'= X, ,'%, ,'=1, and

%, ,'%,,'=0. After inserting eqns. $3.9 and S3.10 into eqn. S3.8, the desired result for o%, ,'/0a

q

becomes
0 1 B-a 4
I 1 2 'z 1 I Lo 1 2 {5 1
aaq x2,p _;(5pr x2p 2,7 az (xlq 1,7 _§qr) x2q X1,
_B'(l(,\ [ |+" [ S )_1_" [Eo S| (S3 12)
- ]/az xl,p xl,q x2,p x2,q rq axl,p x2,q .
_ B a o 1 %
- 70[2 3.,p 3.4 Lp 72,4
The last line follows from
A YA A ' A VoA ‘A " _ -1 _
X, %, %, %, % =R R =R R '=0,. (S3.13)

Similarly, ox, ' / 0p, is given by combining eqns. S3.9 and S3.11



o . .1
%xlp_;( XZpXZrX xqulr)
1 Lo I T S IS |
:;(5}1(1 TXip Xy X2p Xy ) (S3.14)
1
x3p x3q

. P
C) Derivatives of X, '=R ;

The expressions for 0%, ,'/0a, and 0%, ,'/Oa, are used to find 0%, ,'/Oa, by differentiating

eqn. S3.2
ox, " 0
3.,p __ oS ORI |
aa a (xl,s x2,t gstp)
q q
(S3.15)
ox,,' . | . 0%,
- P x2,t gstp +xl,s gstp
a‘] q

OX,4 ox,,' ., . OX,,
= X, &£, +X &
2,t “stp 1,s stp
oa, Oa, ‘
= l(& A A
- a sq xl,s Xy .q 2.t
(S3.16)
o
) 1 B 2 [ 1 2 [ 1
Ls | — 2 x3,t x3,q xlt x2 q g?tp
ya
1 ( . PR B-a. .
=—\e x,,'—-X; 'X ')+—x 'x, '
tV 2, 3, 1, 2 72, 3,
o pq P q 7a p q

where x,'xx,'=X,', X;%X,'=X,', X,'xx,;'= X,' has been used. Eqn. S3.16 can be simplified by first

recalling the result ¢,,¢,, 5,175 i — 0,0, fromeqn. S2.6 and noting
f s A A s aa
x3,p ‘xl,q xl,p ‘x3,q - xl] ( ip jq zq jp)
= x3,i xl/ gl/tgpqt - (x3 x'xl [gpq[ (S3.17)
— - !
- x2,t gpqt

Inserting eqns. $3.17 into S3.16, 0%, , '/Gaq becomes

' A

ox; " 1 B-a
—r =——x '+ x, 'x, . S3.18
aaq a Lp 73,4 70{2 2,p 734 ( )

Similarly, the result for 0%, ' / 0p, can be found by combining eqns. S3.7 and S3.14,



(S3.19)
N

S4) Derivation of (6R/0aq)R'] and ((3R/6ﬁ'q,)R'1

In this section, the AZj and A” ‘ matrices given by

« OR . 0Ox '
A =—FR, = R (S4.1)
da, oa, =
OR Oox,
Al=—rR] = ’P&; (S4.2)
op, op,
will be derived. A’ can be found by inserting eqns. S3.6, S3.12, and S3.18 into S4.1
ox, " ox, " ox, '
AZ?‘ = L ')%l,r '+ - )22,1‘ '_|_ -~ 563,1/'
oa, oa, oa,
_ I ' B LI [ ' I [ [ B '
= (é‘pq — X, xlq )xl, [_70(2 X3, X5, +;x1,p Xy, [Xa,
1 1 B ) a [ o 1
Z e v - %, "X, ]x3 . (S4.3)
= {5 xlr xlp (‘xlq x1r+x2qx2r+x3qx3r)}
}/a '5(\" ()%2 2 x3 r '_)%3,17 ')%2,1/ ')
Recall eqn. S3.17 after a cyclic change of indexes
')%Z,p')%S,r _')%3,17')22,1": )’el,t'gprt . (844)
After substituting eqns. S3.13 and S4.4 into eqn. S4.3, A becomes

a, _ ' Ba A Ay
A, = (5 xlz xl,p §qr)+_2x3,q Yo € pr
y424

(S4.5)
The antisymmetry property between the p and » indexes in the first term of eqn. S4.5 can be expressed
by noting that



5 xl r xl,p'é‘qr = xl ,S (5pq5rs 5p351q)
=X, €€ pm (S4.6)
- ('x ><xl )t prt

where X, , =0, is a global frame basis vector. Inserting this result into S4.5 gives
a I . a .
Apj :(;(xq xx,'), + ga 3 xu }9 " (S4.7)

It is evident from eqn. S4.7 that Azj is antisymmetric with respect to p and » from the antisymmetric

Levi-Cita symbol ¢, 1.e. AZ;’ = —Aij . A% can be expressed back in terms of the a and B vectors by

pr

recalling the definitions of X,'in eqn. S3.2 and expressing this result as

. 1(, ap
xz,pz;( b apj (S4.8)

.,
x3,p :a_]/(axﬁ)p

Substituting eqn. S4.8 into eqn. S4.7 results in

A =(i(x <), + 2% (axp),a ]e (54.9)
a yia'
Finally, y* can be expressed in terms of a and B by
2
Ry (B t;) (S4.10)
a
Inserting this result into eqn. S4.9 gives
@ 1 . o-p
A= —(x,x0a), + a, €, S4.11
” (az(q e B)q],, (S4.11)

The result for Aﬁj can be found by inserting eqns. S3.7, S3.14, and S3.19 into eqn. S4.2 to give

A T
Ap)lf = ;x&q '(x3,p"x2,r '_x2,p'x3,r ') (8412)

Now apply eqn. S4.4 to eqn. S4.12 to get
prt

1. ..
A ——;xw'x”'g (S4.13)

Aﬁ‘; can be expressed in terms of the vectors a and § by inserting eqns. S4.8 and S4.10 into eqn.

S4.13



g (0xB)ac,, (S4.14)

" @By

SS) Expression of Aiz and Afj in terms of infinitesimal rotation matrices

Recall the definitions for the infinitesimal rotation matrices from eqn. 28 of the main text

00 0 0 0 1 0 -1 0
M,=[0 0 -1|,M,=/0 0 0[,M,=|1 0 0. (S5.1)
01 0 -1 0 0 0 0 0

The matrix elements of M, (¢ = 1,2,3) can be conveniently expressed in terms of the Levi-Cita
antisymmetric symbol by

M,, =-¢,, (S5.2)

Therefore, the antisymmetric rotation derivative matrix AZj in eqn. S4.11 can be expressed in terms of

M[ by

a, L s a.B y
A, = (az (%, oz)t+0[2[0[2 Vo (u_ﬁ)z](a B)qa,jM,,p, (S5.3)

or in matrix form
A=Y X,"M, (S5.4)

where

X" s—(iz()eqxu)t+ o-p . (uxB)qa,j (S5.5)
a a | — .

Similarly A" canbe expressed in terms of M, by
A" =Y x'Mm, (85.6)

where

Xtﬁq = 2(“2XB)qar 2
a p”—(a-Pp)

Thus, the final Cartesian derivative matrixes with respect to atomic position (0R, / or,, )R, (a'

(S5.7)

=a,NI1,N2;g=1,2, 3 for x, y, z) are given by inserting eqns. S5.4 and S5.6 into eqn. S3.4



8R R-l _Aaq :Zt Xtvath
Geryq

R Rt Al = > X, M, (S3.8)
Ory, .
—(fR R = (A“' + A ): > XM,

l‘a,q

where X, =x", x" =x"

S6) Wigner Function Derivatives 6Dlmrm/6£2 and Infinitesimal Rotation Matrices
Recall the expressions for 8D1mrm/8Q from eqns. 22 and 24 of the main text

0 L« C R
a_QDrln',m [R(Q)] = Z z —1,m—i lle [R 1_]D/i1 m—i+k[R] : (22)

_Drlnm R(Q)] zzBlklm ICZ le[ R_I]Dm —i+k, m[R] (24)
i=—1k=—

where the constants B;, and C, are defined in eqns. A.8 and A.10 of the appendix, respectively.

+_

(Itm+)(+tm+2) 0 _ ({+m+1D)(-m+1)
O\ 20+D)2I+3) T "\ QI+D@I+3)

(A.8)

. 20+1 [(I£m)(I+m—1) o 20 +1
Clz\/ \/ , C) = JA+m)(—m) . A.10

As a first step in the calculation of 8D',,,,/8Q, either A® = (R/GQ)R ™ or A% = R (GR/0Q) is inserted
into eqns. A.14 — A.16 in order to arrive at the expressions for D'[A®] and D'[A®], respectively. For
many cases of Q (e.g. Q is an Euler angles, atomic position), A® and A are antisymmetric (see section

S1). If A% is antisymmetric, then A can be expanded in the basis of infinitesimal rotation matrices

M, (eqn. S1.4) A” = Z;l a,M . Since the D'[R] is a linear function of R from eqns. A.14 — A.16,

= i%Dl[Mp] (S6.1)

and the expression for 8D',,,,/0Q from eqn. 24 is given by

10



a 3 1 ;
Dtlnm[R(Q)]:ZapzzBlklm 1C Dl ]Dlln —i+k, m[R]
aQ p=l1 i=—lk=-1 S6 2
3 (8D,izm[R]J (02
=29
p=l1 %,

where (GDfn,m / 6@)} is the derivative of D',,,, with respect to rotation about the x, coordinate axis

2

defined by

l 1
[aDgg)[R]] =Y 3 B DM, 1D, R] (563)
«’AC,, i=—lk=-1

A similar result holds by inserting A = R (0R/6Q) into eqn. 22.

The infinitesimal rotation matrix derivatives of Wigner functions (ann.m /oD )x defined in eqn.

S6.3 will be derived as follows. First the results for Dl[Mp] are found by inserting M,, given in eqn. 28

into eqns. A14 — A16 to arrive at

oo (oo
T i 1o L _
D[Ml]_ﬁ(l) (1) (l),D[MZ] = 01 _01 (l),D[M] 18 8 _01 . (S6.4)
In component form, Dl[Mp] appears as
D,;[Ml]z%;(@,15,(,0+csi,05k,1+§,}05k,1+5,.,15k’0) (S6.5)
DUIML1= (600 =00, + 8,00, -0,0,0) (36.6)
DM, 1=i(5, .5, ,~6,,5,,) (86.7)

After inserting eqns. S6.5 — S6.7, B! (eqn. A.8), and Cj, (eqn. A.10) into eqn. S6.3, the results for

(8D’ / 6@)2[) are given by

m'm

oD 2

oD!. [R] 1 +
( 8@ jA] 2 (Klm Dm -1, m[R] + KlmDm "+1 m[R]) (868)
(—aD'l"'m[R]] =Ky Dl IRI= K, D), [R)) (36.9)

11



(M] ——im'D', [R] (S6.10)

a® mm
where K = \/ (I{£m+1)({ ¥m) . If Ris set equal to the identity matrix I, Dfn,ym (I1=9,,,,and eqns.
S6.8 — S6.10 become
aD., M) _—i(. .
? . = 7 (Klmé‘m',m—l + Klmé‘m',m-#l ) (S6 1 1)
aDrln'm [I] 1 - +
? . = E(Klmé‘m',m—l - Klmé‘m',mﬂ ) (S6 12)
I
D, =—imo,, (S6.13)
o0 ’

where K, . =K, wasused. Eqns. S6.11 —S6.13 agree with eqns. 5 — 7, respectively on page 116 of
Varshalovich et al.”

The expressions for (aD,;.m / 8@)% given in eqns. S6.8 — S6.10 can be used to find derivatives of

spherical tensors 7}, with respect to an infinitesimal rotation. Suppose 7, (7) transforms to 7, (7')

under a rotation R where r'= Rr, i.c.

T, ()= Z R, (7). (S6.14)

m'=—[

The derivative of 7, '=

im — lm

ar,,' aD,,,[R]
[amj = Z T, (F )( o j . (S6.15)

(7') with respect to an infinitesimal rotation about the x, axis is given by

m'=—1[

Forp=1,2,3, (6T,m '/6@)5( is found by inserting eqns. S6.8 — S6.10 into eqn. S6.15

or,
) Honin) so10
or,) 1 o
aclI;n % (K T;m 1 K 7—;m+l ) (8617)
T,

" T . S6.18
aq) R lm Im ( )

The expressions for torque in eqns. 31 — 33 of the main text can be found by letting 7}, = Qi be the
multipole moment and inserting eqns. S6.16 — S6.18 into eqn. 25.

12



S7) Wigner Matrix Derivatives for Euler Angles

In this section, 6D',,,/0Q is derived for the case when Q is an Euler angle using the expressions
given in eqns. 22 and 24 of the main text by first calculating R (6R/6Q) or (R/OQ)R™, respectively.
The Cartesian rotation matrix as a function of Euler angles®® R(a, f8, ) is formed from the product

three successive rotations. First, the X, coordinate system is rotated about the X, axis by an angle a to
arrive at the X,' coordinate system, i.e. X,'= Zj R, (ax;)x,". Next, the X" coordinate system is

rotated about the x,'axis by an angle £ to arrive at the X,'' coordinate system, i.e.

x''= zk R, (fx,")x,'. Lastly, the x,'" coordinate system is rotated about the X;'' axis by an angle y

'

to arrive at the X,'"" coordinate system, i.e. X,'"'= ZlRﬁ (y%,"")x,'. The total transformation is given by

£"= z(i R (a,pB,7)x,;, where R (a,B,y) = sz R, (at;)R, (B%," )R, (4;,"") . In matrix form, R(a,

b, v) is given by
cose —sina 0) cosf 0 sinf\cosy —siny 0
R(a,B,7)=|sinad cosa 0 0 1 0 siny cosy O
0 0 I\-sinf 0 cosp ) O 0 1

o . . N (87.1)
cosacos fcosy —sinasiny —cosacosfsiny —sin@cosy cosasinf
=| sina@cos fcosy+cosasiny —sinacosfsiny+cosacosy sinasinf
—sin fcosy sin fsin y cos f
Symbolically, eqn. S7.1 can be expressed as
R(a,5.7)=R_ ()R (B)R.(¥) (87.2)
The inverse of R(a, S, y) is given by
R_l(a’ ﬂ’ 7/) = R(_J/’_ﬂi_a) = Rz (_7)R) (_IB)RZ (_a) * (S7‘3)
The expression for (R/6a)R™" is given by
oR ., OR oooby
a_Ril :%RZ(—Q): 1 0 0|=M,. (87.4)
“ “ 0 0 0
Similarly, the results for R™'(6R/6f) and R (0R/dy) are given by
RR i yM, +cosy M, (S7.5)
op
R‘la—R=M3 (S7.6)
Iy

After inserting eqn. S7.4 into eqn. S6.2 or eqn. 24, dD',,,/0a. is given by

13



oD, (oD!
R

8 m'm j — _l'm'Dl ) (S7 10)
a .

Similarly, after inserting eqns. S7.5 and S7.6 into eqn. 22, the results for 6Dlm'm/6ﬁ and 8D',,,/dy are

given by
/ —iy iy
aDm'm = e_\/(l + m)(l —m+ l)Drln' m-1 " e_\/(l - m)(l +m+ l)Drln' m+l * (S71 1)
op 2 " |
anln'm . i
a—’ = _ZmDm,m (S712)
/4

A second equation for 8D',,,,/0f can be found by taking the complex conjugate of eqn. S7.11,

interchanging m’ with m, and interchanging R with R™ (see eqn. S7.3)

i —ia ia
—ala);'m =~ AT YA =msDD,,y, + A=)+ DD, (S7.13)

Eqns. S7.10 — S7.13 agree with eqns. 8, 3, 9, and 2, respectively on page 94 of Varshalovich et a

1'53

S8) Wigner Matrix Derivatives for Quaternions

In this section, derivatives of Wigner rotation matrices with respect to quaternions oD!, / oq,
are derived. Expressions for (8R/8qﬂ)R'1 are found and then inserted into eqn. 24 to arrive a set of
equations for oD’ / dq,, - The Cartesian rotation matrix R can be parameterized explicitly™ in terms
of quaternions g, = (qo, 91, 42, ¢3) by

9o +q, —4—q5 299, —995) 29,95 +409,)
R=| 2(9,9,+995) 40— +%—q5 29,95 —4,4,) |- (S8.1)
29,95 -909:) 24295 +900) 9o —4; —45 +4;

The inverse matrix is given by letting (qo, 91, 92, ¢43) — (g0, =91, —q2, —q3)

R_I(QO:qlan’%):R(QOa_%:_%s_%)- (S8.2)

and the quaternions satisfy a normalization condition
3
> g, =1. (S8.3)
#=0

Since quaternions satisfy a constraint condition, (c?R/@q,,)R'l is not antisymmetric. Nevertheless,

(8R/8qﬂ)R'1 can still be calculated and inserted into eqn. 24 to arrive 0D, / aq,, -

In order to calculate (6R/6q,,)R"1, one could simply differentiate eqn. S8.1 with respect to g, to
get 0R/0q,, and then right multiply by R, The result would be an expression which involves cubic

14



powers of g,. This expression could be simplified by the normalization condition, eqn. S8.3, into an
expression which is linear in g,,.

However, a more economical derivation of (6R/6q,,)R'1 can be found by first noting the
quaternion multiplication formulae for successive rotations. First, note that quaternions can be

expressed in vector notation by g, =(q,,9,,9,,9;) =(4,,9) - Suppose q,, p,, and r, are three different
quaternions related by
R(q,)R(p,)=R(7,) . (58.4)
It can be shown®” that » =g * p is given by Yy =Podo— P q.and ¥ =p,g+q,p+pxq. In
component form, this appears as
3 3 3
N =GuDo = 2 4Pis 1= oDt Podi+ DD Pk 1= 1,2,3, (S8.5)
i=1 j=1 k=1
where g 1s the Levi-Cita symbol defined by 1 for an even permutation of (1,2,3) , —1 for an odd
permutation of (1,2,3), and 0 if any index is repeated. Recall the inverse relation for quaternions in

eqn. S8.2. The expression (OR/d¢g,)R™" can be derived from eqns. S8.1 and S8.2 by noting

R R (g) = lim -2 R(@)R(p) = lim ~R(r)
0q rq 0q, r>a'0q,

7]

L OR(r) o, ’ (58.6)
r r,
im > =

p—»q = or 8qﬂ

where the limit of p — ¢ is short for (po, p1, p2, p3) — (90, —q1, —g2, —q3). The following expressions

for r, and Or, /0g, can be found from eqn. S8.5. It is important to first evaluate the derivative and then

apply the limit.

lim 7, =1, lim r, =0, (S8.7)
P9 P9

lim o — g, lim o _ g (S8.8)
r4 0g, r~47 0g,

. or, or,

lim —=-¢., hm—— S+ > & S8.9
p*)(]il aqo qz e aq q() z yqu ( )

where i,j = 1,2,3. The derivative of R(r) with respect to 7y can be found by simply replacing the ¢’s
with 7’s in eqn. S8.1 and then differentiate with respect to ro. After taking the limit of p — ¢ and
applying eqn. S8.7, the result becomes

Jim RO

pog 81’0

=2I. (S8.10)

A similar procedure can be applied for the derivative R(r) with respect to r; (i = 1,2,3) to yield the

following result
15



lim 2R

p>q Or,

=2M,, (S8.11)

where M; are the infinitesimal rotation matrices. Eqns. S8.7 — S8.11 can be inserted into eqn. S8.6 to

arrive at the result for (8R/6q#)R'1

R R 2g 13 M) (S8.12)

aq, i

—R :2(qil+q0Mi _Zgy'kquk) (S8.13)
i Jjk

Eqn. S8.13 can be written out explicitly fori =1, 2, 3 by

oR _

ER =2(q 1 +g,M, +¢;M, —q,M,) (S8.14)
1

OR _

aR =2(q,1+¢,M, +qM; —g;M,) (S8.15)
2

OR _

7R =2(q;1+ qM; +¢,M, —gM,) (S8.16)
3

Note (8R/8qﬂ)R'] is not antisymmetric due to the presence of the terms containing I.

In order to arrive at the final expression for D!, / aq,, , the following intermediate result is

needed
1 1
Z Z Blk—l,m'—iClim'Dilk [I]Drln'—i+k,m[R] = lDrln',m[R] s (88 17)
i=—lk=-1

where I is the identity matrix. After inserting eqns. S8.12 — S8.16 for (8R/8qﬂ)R'1 into eqn. 24 for

i

oD! . / dq,, , and using eqns. S8.17, S6.8 — 86.10, the final results for dD,,, / dq, becomes

8Drln'm T 1 . - / . n !

W = z(qol +im q; )Dm'm + (QZ + 1q, )Klm'Dm'—l,m + (_qz + 1q, )Klm'Dm'H,m (8818)
0

aDrIn'm .y ! . - / . + !

? = 2'(QIl +im QZ )Dm'm + (_Q3 _Z‘IO )Klm'Dm'—l,m + (q3 - lqO )Klm'Dm'Jrl,m (8819)
1

an{n'm I} l . - 1 . + i

W = 2(6]2] —um QI )Dm'm + (_qO +lq3 )Klm'Dm'—l,m + (qO +lq3 )Klm'Dm'+l,m (8820)
2

al)rln'm T i . - i . + /

W =2q;l —im'qy)D,,, +(q, —iq,)K;,, D,y + (=4, —1G,) K} Dy (58.21)
3

/

m'm

A second set of equations for 6D / 0q,, can be found by taking the complex conjugate of

eqns. S8.18 — S8.21, interchanging m’ with m, and interchanging R with R™ (eqn. S8.2)
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al)rln'm

oq = 2(q,! +imq;)D,,,, +(=q, +ig))K,, D, +(q, +iq)K D, ., (58.22)

0

al)rln'm . i . - i . + i

W = 2(qll - lqu )Dm'm + (_q3 - lqO )KlmDm'm—l + (q3 - lqO )KlmDm'm-H (8823)
1

8D,lnvm . ! . - ! . + !

? =2(q,l +imq,)D,,, +(q, —ig;)K,, D, +(=qy —iq;)K;,, D,y (58.24)
2

aD,lnvm . ! . - . +

? = 2(q3l - lqu )Dm'm + (QI + lqz )KlmDm'm—l + (_QI + l‘b )KlmDm'mH : (8825)
3

Eqns. S8.22 — S8.25 could have also been derived by calculating R'1(8R/8qﬂ) and inserting these

results into eqn. 22.

S9) Proof of T, = ax F™" + B x F“"

a—NI1

. orient orient
The expressions for F," (| and F,"

are given by inserting eqn. 37 into eqn. 39

orient 1 s (”.B
FHNLq:—(—Z(qua)-‘ra+ — > (axl})qa-‘caj
L
1, o-B)a-T, y
‘_(u_z"q'(“”““az[azﬁz—(u-mz](a B)qj
or
| e :—(izaxra s ePrer,) axBJ (89.2)
o o [a’B" —(a-P)7]
Similarly,
orient __ a‘.Ta
a—>N2 — azﬂz —((I'B)Z G‘XB (893)
Using the property Ax(BxC) = B(A-C) — C(A'B), a.xF”""" and pxF”%, become
ax Foa = —(;—2((1((1 1,)-1,07 )+ az[(;‘z' l:}z)(_“(';fé)z] (a(a-) - po? )J (S9.4)
BXForient _ a'Ta (uBZ _B(GB)) (895)

Adding eqns. S9.4 and S9.5 gives the final result for 7.



. ) 1 o-T
WxE xR = (r,at —agaw,)+ T a =

a

(S9.6)

a

$10) Proof of > r,.xdn/or, =0

The variable # denotes any bond length », bond angle 6, or torsion angle w. For all cases, 7 can
be expressed as a function of a scalar product of relative atomic positions. For example, the bond

length 7,;, between two atoms a and b is given by

rab = Vrab 'rab (SIOI)

where r,, = r, — 1} is the relative displacement between atoms @ and b. Similarly, the bond angle 6.
between atoms a, b, ¢ is given by
0,4, =cos”' (—r“b b J (S10.2)

FapTen

a

and the torsion angle w,s.; between atoms a, b, c, d is given by

r,r r,-r, )(r, -r,

@y = COS_I ab _“de ( ab " cb )( dg cb) (8103)
Tanae Fan¥ac¥eb

Thus, the generic variable 7 is a function of the dot product r,p 1.4, i.€. 7 =75 (rep'reqg). Letting x =

Yap'Ycd,

on _on
r Xx——=—-r xr S104
“ or ox ‘0 ( )

a

Therefore, za,ra, xon/or , is given by

D . on =r, x on +1, % on +r, x5_77+rd 91
“ or or, or, or, or,
on
:a(raxrcd_rbxrcd +rcxrab_rcdxrab) (SIOS)

=0
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