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Supplementary Information for “Atomic Forces for Geometry-Dependent 

Point Multipole and Gaussian Multipole Models” by D.M. Elking et al. 

 

Additional Mathematical Derivations 
 

 
Introduction 

In this section of the Supplementary Information, additional mathematical details and 

derivations are provided.  In section S1, a short discussion on the Cartesian rotation matrix derivative 

AΩ ≡ (∂R/∂Ω)R-1 matrix is given.  The results for atomic gradients of Cartesian rotation matrices 

(∂R/∂ra′,q)R-1 are derived in sections S2-S5.  In sections S6, S7, and S8 the general expression for 

∂Dl
m′m/∂Ω is applied to the cases when Ω is an infinitesimal rotation, an Euler angle, and a quaternion, 

respectively.  Lastly, the results orient
a

orient
aa 2N1N →→ ×+×= FβFατ  and 0

' '' =∂∂×∑a aa rr η , which are used in 

the main text, are derived in sections S9 and S10, respectively. 

 

S1) Note on Cartesian Rotation Matrix Derivatives AΩ ≡ (∂R/∂Ω)R-1 

For many cases of Ω, the matrix AΩ ≡ (∂R/∂Ω)R-1 is antisymmetric, i.e. AΩ
ij = –AΩ

ji.  For 

example, if Ω is an Euler angle or a rotation about a coordinate axis, AΩ is antisymmetric.  If R(Ω) is 

an orthogonal rotation matrix for all of values of Ω, then the following relation holds  

IRR =ΩΩ )()( T ,         (S1.1) 

where I is the constant identity matrix, and R-1 = RT for real orthogonal Cartesian rotation matrices.  

After taking the derivative with respect to Ω of both sides of eqn. S1.1, the following result is obtained 
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which shows that AΩ ≡ (∂R/∂Ω)R-1 is antisymmetric.  For the cases when Ω is an Euler angle or a 

rotation about a coordinate axis, AΩ is antisymmetric.  Since an antisymmetric matrix A has the 

general form 
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the infinitesimal rotation matrices Mi defined in eqn. 28 of the main text forms a basis for A, i.e.  
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A similar argument applies to ĀΩ ≡ R-1(∂R/∂Ω) = R-1AΩR. 

If R(Ω) is a rotation matrix for only a limited subspace of the values for Ω, then eqn. S1.1 holds 

for the values in which R(Ω) is a rotation matrix, i.e. R(Ω)RT(Ω) = I(Ω).  In this case, I(Ω) is the 

identity matrix only for the values in which R(Ω) is a rotation matrix.  Eqn. S1.2 is no longer valid, 

since ∂I/∂Ω is not necessarily zero.  An example is quaternions (q0, q1, q2, q3), which satisfy an 

equation of constraint, 13

0
2 =∑ =μ μq .  In section S8, it is shown that (∂R/∂qμ)R-1 is not antisymmetric.   

  

S2) Preliminary note on Cartesian vectors 

 The expressions for (∂R/∂ra′,q)R-1 are derived using Cartesian vector analysis.  In order to 

provide a more economical derivation of (∂R/∂ra′,q)R-1, the Kronecker-delta δij and Levi-Cita εijk 

symbols70 are used to express Cartesian vectors in component form.  The δij and εijk symbols allow 

efficient evaluation and manipulations of vector equations and identities.  These conventions are 

outlined below. 

Suppose a and b are two arbitrary three dimensional vectors given by  

332211321 ˆˆˆ),,( xaxaxaaaa ++≡≡a         (S2.1) 

332211321 ˆˆˆ),,( xbxbxbbbb ++≡≡b .         (S2.2) 

where px̂  is the global or fixed coordinate basis for three dimensional space defined by )0,0,1(ˆ1 ≡x , 

)0,1,0(ˆ2 ≡x , and )1,0,0(ˆ3 ≡x .  The conventions used in this work can be summarized by the following 

rules: 

 1) Repeated indexes are summed over.  For example, ∑=
≡

3

1i iiii baba .   

2) The Kronecker-Delta symbol is defined by 
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3) The antisymmetric Levi-Cita symbol ijkε is defined by 1231312123 === εεε ,  

1213132321 −=== εεε , and 0=ijkε  if any index is repeated, e.g. 0112 =ε  

4) The magnitude of a vector a is given by 2
3

2
2

2
1 aaaa ++=≡ a  

A scalar or dot product between two vectors ii xa ˆ≡a  and ii xb ˆ≡b can be represented by 

iiba=⋅ba ,          (S2.3) 

and a vector or cross product between two vectors a and b can be represented by 
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kijkji xba ˆε=×ba .         (S2.4) 

In particular, the kth component of ba×  is given by 

 ( ) ijkjik ba ε=×ba .         (S2.5) 

The following important result can be readily verified  

jpiqjqippqtijt δδδδεε −= .        (S2.6) 

Note the ix̂  basis is orthonormal and right-handed, i.e.  

ijji xx δ=⋅ ˆˆ           (S2.7) 

kijkji xxx ˆˆˆ ε=×           (S2.8) 

Eqn. S2.7 is a short hand way of expressing 1ˆˆ 11 =⋅ xx , 0ˆˆ 21 =⋅ xx , .., while eqn. S2.8 is short for 

321 ˆˆˆ xxx =× , 132 ˆˆˆ xxx =× , and 213 ˆˆˆ xxx =× . 

 

S3) Derivation of the local basis vector gradients 

 The local frame basis vectors 'ˆix  for the type of local frame defined in Figure 1 of the main text 

are defined in terms of the bond vectors α ≡ rN1 – ra and β = rN2 – ra by 
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It will be convenient to express the basis vectors in component form by 
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The local basis vectors are orthonormal and right handed, i.e. ijji xx δ=⋅ 'ˆ'ˆ  and 'ˆ'ˆ'ˆ kijkji xxx ε=× . 

The Cartesian rotation matrix R from local to global frames is constructed by the column 

vectors of 'ˆix  by 
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or in component from, 'ˆ , pipi x=R .  The result for 1
,' )( −∂∂ aqaa RrR  (a′ = a, N1, N2; q = 1, 2, 3 for x, y, 

z) are found by first deriving expressions for (∂R/∂αq)R-1 and (∂R/∂βq)R-1.  The corresponding results 

for (∂R/∂ra′,q)R-1 can be found from (∂R/∂αq)R-1 and (∂R/∂βq)R-1 by a simple chain rule argument.   
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Since the Cartesian rotation matrix R is constructed from the relative atomic positions α ≡ rN1 – r1 and 

β = rN2 – r1, R is translationally invariant, i.e. (∂R/∂rN1,q)R-1 + (∂R/∂rN2,q)R-1 + (∂R/∂ra,q)R-1 = 0. 

The general strategy for calculating (∂R/∂αq)R-1 and (∂R/∂βq)R-1 is described as follows.  

Derivatives of pipix R='ˆ ,  with respect to αq and βq are found by differentiating eqn. S3.2.  The 

derivatives qpix α∂∂ 'ˆ , and qpix β∂∂ 'ˆ , are then converted back to the local basis vectors 'ˆ , pix  by 
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The results for qpiqpix αα ∂∂=∂∂ R'ˆ ,  and qpiqpix ββ ∂∂=∂∂ R'ˆ ,  are right multiplied by 

'ˆ ,
1

ririir x==− RR  and summed in section S4.  The orthonormal property pqqp xx δ=⋅ 'ˆ'ˆ  is used to derive 

compact expressions for (∂Rpi/∂αq)Rri and (∂Rpi/∂βq)Rri, which are then converted back into bond 

vectors α and β.  Lastly, the antisymmetric matrices (∂R/∂αq)R-1 and (∂R/∂βq)R-1 are expressed in the 

infinitesimal rotation matrix Mp basis in section S5.  This last result is used to demonstrate the 

relationship between orientation force and torque.  

 

A) Derivatives of 1,1 'ˆ ppx R=  

The derivative of 'ˆ ,1 px  with respect to αq is given by differentiating 'ˆ ,1 px  in eqn. S3.2 

( )'ˆ'ˆ1'ˆ ,1,13,1 qppq
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      (S3.6) 

while the derivative 'ˆ ,1 px  with respect to βq is zero, 

0'ˆ ,1 =
∂
∂

p
q

x
β

          (S3.7) 

B) Derivatives of 2,2 'ˆ ppx R=  

 The derivatives of 'ˆ ,2 px  with respect to αq or βq can be derived through a chain rule argument 

using γr as an intermediate.  For example,  
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The result for rpx γ∂∂ 'ˆ ,2 has a form identical to eqn. S3.6 
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qr αγ ∂∂ is given by 
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Similarly qr βγ ∂∂  is given by  
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Recall the local frame basis is constructed to be orthonormal, i.e. 1'ˆ'ˆ'ˆ'ˆ ,2,2,1,1 == pppp xxxx , and 

0'ˆ'ˆ ,2,1 =pp xx .  After inserting eqns. S3.9 and S3.10 into eqn. S3.8, the desired result for qpx α∂∂ 'ˆ ,2  

becomes 
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The last line follows from  

pqiqpiqipiqpqpqp xxxxxx δ===++ −1
,3,3,2,2,1,1 'ˆ'ˆ'ˆ'ˆ'ˆ'ˆ RRRR .      (S3.13) 

Similarly, qpx β∂∂ 'ˆ ,2  is given by combining eqns. S3.9 and S3.11 
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C) Derivatives of 3,3 'ˆ ppx R=  

The expressions for qpx α∂∂ 'ˆ ,1  and qpx α∂∂ 'ˆ ,2  are used to find qpx α∂∂ 'ˆ ,3 by differentiating 

eqn. S3.2 
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After inserting eqns. S3.6 and S3.12 into eqn. S3.15, qpx α∂∂ 'ˆ ,3  becomes 
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where 'ˆ'ˆ'ˆ 321 xxx =× , 'ˆ'ˆ'ˆ 213 xxx =× , 'ˆ'ˆ'ˆ 132 xxx =×  has been used.  Eqn. S3.16 can be simplified by first 

recalling the result jpiqjqippqtijt δδδδεε −=  from eqn. S2.6 and noting 
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Inserting eqns. S3.17 into S3.16, qpx α∂∂ 'ˆ ,3  becomes 
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Similarly, the result for qpx β∂∂ 'ˆ ,3  can be found by combining eqns. S3.7 and S3.14, 
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S4) Derivation of (∂R/∂αq)R-1 and (∂R/∂βq)R-1 

In this section, the q
pr
αA  and q

pr
βA  matrices given by 
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will be derived.  q
pr
αA  can be found by inserting eqns. S3.6, S3.12, and S3.18 into S4.1 
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Recall eqn. S3.17 after a cyclic change of indexes 

prttrprp xxxxx ε'ˆ'ˆ'ˆ'ˆ'ˆ ,1,2,3,3,2 =− .          (S4.4) 

After substituting eqns. S3.13 and S4.4 into eqn. S4.3, q
pr
αA  becomes 

( ) prttqqrprpqpr xxxxq ε
γα

δδ
α

α 'ˆ'ˆ'ˆ'ˆ1
,1,32,1,1

αβA ⋅
+−=       (S4.5) 

The antisymmetry property between the p and r indexes in the first term of eqn. S4.5 can be expressed 

by noting that 
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where pqpqx δ=,ˆ  is a global frame basis vector.  Inserting this result into S4.5 gives 
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It is evident from eqn. S4.7 that q
pr
αA  is antisymmetric with respect to p and r from the antisymmetric 

Levi-Cita symbol εprt, i.e. qq
prrp
αα AA −= .  q

pr
αA  can be expressed back in terms of the α and β vectors by 

recalling the definitions of 'ˆix in eqn. S3.2 and expressing this result as 
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Substituting eqn. S4.8 into eqn. S4.7 results in 

( ) prttqtqpr xq εα
αγα
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Finally, γ2 can be expressed in terms of α and β by  

2

2
22 )(

α
βγ αβ ⋅

−=          (S4.10) 

Inserting this result into eqn. S4.9 gives 
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22222     (S4.11) 

The result for q
pr
βA can be found by inserting eqns. S3.7, S3.14, and S3.19 into eqn. S4.2 to give 

( )'ˆ'ˆ'ˆ'ˆ'ˆ1
,3,2,2,3,3 rprpqpr xxxxxq −=

γ
βA        (S4.12) 

Now apply eqn. S4.4 to eqn. S4.12 to get 

prttqpr xxq ε
γ

β 'ˆ'ˆ1
,1,3−=A          (S4.13) 

q
pr
βA  can be expressed in terms of the vectors  α and β  by inserting eqns. S4.8 and S4.10 into eqn. 

S4.13 
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S5) Expression of q
pr
αA  and q

pr
βA  in terms of infinitesimal rotation matrices 

Recall the definitions for the infinitesimal rotation matrices from eqn. 28 of the main text 
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The matrix elements of Mt (t = 1,2,3) can be conveniently expressed in terms of the Levi-Cita 

antisymmetric symbol by 

prtprt ε−=,M           (S5.2) 

Therefore, the antisymmetric rotation derivative matrix q
pr
αA  in eqn. S4.11 can be expressed in terms of 

Mt by 
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or in matrix form 

∑= t tt
q

q X MA
αα          (S5.4) 

where  

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

⋅−
⋅

+×−≡ tqtqt xX
qa

α
βααα

βα
βα

βαα
])([

)ˆ(1
22222     (S5.5) 

Similarly qβA  can be expressed in terms of Mt by 

∑= t tt

q
q X MA

ββ          (S5.6) 

where 

( )
222 )( βα

βα
⋅−

×
≡

βα
αβ tq

t

q

X         (S5.7) 

Thus, the final Cartesian derivative matrixes with respect to atomic position 1
,' )( −∂∂ aqaa RrR  (a′ 

= a, N1, N2; q = 1, 2, 3 for x, y, z) are given by inserting eqns. S5.4 and S5.6 into eqn. S3.4 
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( ) ∑

∑

∑

=+−=
∂
∂

==
∂
∂

==
∂
∂

−

−

−

t tt
a,q

t tt
,q

t tt
,q

qa
qq

q
q

q
q

X

X

X

MAAR
r
R

MAR
r
R

MAR
r
R

,

N2,

N1,

1

1

N2

1

N1

βα

β

α

      (S3.8) 

where 
qq

tt XX
α

≡
N1,

, 
qq

tt XX
β

≡
N2,

, and ( )qqqa

ttt XXX
βα

+−≡
,

. 

 

S6) Wigner Function Derivatives ∂Dl
m′m/∂Ω and Infinitesimal Rotation Matrices 

Recall the expressions for ∂Dl
m′m/∂Ω from eqns. 22 and 24 of the main text 

∑∑
−= −=

+−
−

−− Ω∂
∂

=Ω
Ω∂
∂ 1

1

1

1
,'

11
,1,' ][][)]([

i k

l
kimmki

i
lm

k
iml

l
mm DDCBD RRRR .    (22) 

∑∑
−= −=

+−
−

−− Ω∂
∂

=Ω
Ω∂
∂ 1

1

1

1
,'

11
'',1' ][][)]([

i k

l
mkimik

i
lm

k
iml

l
mm DDCBD RRRR .   (24) 

where the constants k
lmB  and k

lmC  are defined in eqns. A.8 and A.10 of the appendix, respectively. 

)32)(12(
)1)(1(   ,

)32)(12(2
)2)(1( 01

++
+−++

≡
++
+±+±

≡±

ll
mlmlB

ll
mlmlB lmlm .    (A.8) 

2
)1)((

12
121 −±±

−
+

≡± mlml
l
lClm , ))((

12
120 mlml

l
lClm −+
−
+

≡ .   (A.10) 

As a first step in the calculation of ∂Dl
m′m/∂Ω, either AΩ ≡ (∂R/∂Ω)R-1 or ĀΩ ≡ R-1(∂R/∂Ω) is inserted 

into eqns. A.14 – A.16 in order to arrive at the expressions for D1[AΩ] and D1[ĀΩ], respectively.  For 

many cases of Ω (e.g. Ω is an Euler angles, atomic position), AΩ and ĀΩ are antisymmetric (see section 

S1).  If AΩ is antisymmetric, then AΩ can be expanded in the basis of infinitesimal rotation matrices 

Mp (eqn. S1.4) ∑ =
Ω =

3

1p ppa MA .  Since the D1[R] is a linear function of R from eqns. A.14 – A.16,  

∑
=

Ω =
3

1

11 ][][
p

ppDaD MA          (S6.1) 

and the expression for ∂Dl
m′m/∂Ω from eqn. 24 is given by 
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px

l
mm

p
p

i k

l
mkimpik

i
lm

k
iml

p
p

l
mm

Da

DDCBaD

ˆ

'
3

1

1

1

1

1
,'

1
'',1

3

1
'

][

][][)]([

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Φ∂

∂
=

=Ω
Ω∂
∂

∑

∑∑∑

=

−= −=
+−−−

=

R

RMR

   (S6.2) 

where ( )
px

l
mmD ˆ' Φ∂∂ is the derivative of Dl

m′m with respect to rotation about the px̂  coordinate axis 

defined by 

∑∑
−= −=

+−−−≡⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Φ∂

∂ 1

1

1

1
,'

1
'',1

ˆ

' ][][][
i k

l
mkimpik

i
lm

k
iml

x

l
mm DDCBD

p

RMR     (S6.3) 

A similar result holds by inserting ĀΩ ≡ R-1(∂R/∂Ω) into eqn. 22. 

The infinitesimal rotation matrix derivatives of Wigner functions ( )
px

l
mmD ˆ' Φ∂∂ defined in eqn. 

S6.3 will be derived as follows.  First the results for D1[Mp] are found by inserting Mp given in eqn. 28 

into eqns. A14 – A16 to arrive at   

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

=
010
101
010

2
][ 1

1 iD M , 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−=

010
101
010

2
1][ 2

1 MD , 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
=

100
000
001

][ 3
1 iD M . (S6.4) 

In component form, D1[Mp] appears as 

( )0,1,1,0,1,0,0,1,1
1

2
][ kikikikiik

iD δδδδδδδδ +++
−

= −−M      (S6.5) 

( )0,1,1,0,1,0,0,1,2
1

2
1][ kikikikiikD δδδδδδδδ −+−= −−M      (S6.6) 

( )1,1,1,1,3
1 ][ ikikik iD δδδδ −= −−M         (S6.7) 

After inserting eqns. S6.5 – S6.7, k
lmB  (eqn. A.8), and k

lmC (eqn. A.10) into eqn. S6.3, the results for 

( )
px

l
mmD ˆ' Φ∂∂  are given by  

( )][][
2

][
,1',1''

ˆ

'

1

RRR l
mmlm

l
mmlm

x

l
mm DKDKiD

+
+

−
− +

−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Φ∂

∂      (S6.8) 

( )][][
2
1][

,1'',1''
ˆ

'

2

RRR l
mmlm

l
mmlm

x

l
mm DKDKD

+
+

−
− −−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Φ∂

∂      (S6.9) 



 12

]['][
'

ˆ

'

3

RR l
mm

x

l
mm DimD

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Φ∂

∂         (S6.10) 

where ))(1( mlmlKlm m+±≡± .  If R is set equal to the identity matrix I, mm
l

mmD ',' ][ δ=I , and eqns. 

S6.8 – S6.10 become 

( )1,'1,'
ˆ

'

2
][

1

+
+

−
− +

−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Φ∂

∂
mmlmmmlm

x

l
mm KKiD δδI       (S6.11) 

( )1,'1,'
ˆ

'

2
1][

2

+
+

−
− −=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Φ∂

∂
mmlmmmlm

x

l
mm KKD δδI       (S6.12) 

mm
x

l
mm imD

,'
ˆ

'

3

][ δ−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Φ∂

∂ I         (S6.13) 

where ±
± = lmlm KK m
1  was used.  Eqns. S6.11 – S6.13 agree with eqns. 5 – 7, respectively on page 116 of 

Varshalovich et al.53   

The expressions for ( )
px

l
mmD ˆ' Φ∂∂  given in eqns. S6.8 – S6.10 can be used to find derivatives of 

spherical tensors Tlm with respect to an infinitesimal rotation.  Suppose )ˆ(rTlm  transforms to )'ˆ(rTlm  

under a rotation R where rRr ˆ'ˆ = ,  i.e.  

∑
−=

−=
l

lm
lm

l
mmlm rTDrT

'
'

1
' )ˆ(][)'ˆ( R .        (S6.14) 

The derivative of )'ˆ(' rTT lmlm ≡  with respect to an infinitesimal rotation about the px̂ axis is given by 

∑
−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Φ∂

∂
=⎟

⎠
⎞

⎜
⎝
⎛

Φ∂
∂ l

lm x

l
mm

lm
x

lm

pp

DrTT
'

*

ˆ

'
'

ˆ

][)ˆ(' R .       (S6.15) 

For p = 1, 2, 3, ( )
pxlmT ˆ' Φ∂∂ is found by inserting eqns. S6.8 – S6.10 into eqn. S6.15 

( )''
2

'
11

ˆ1

+
+

−
− +=⎟

⎠
⎞

⎜
⎝
⎛

Φ∂
∂

lmlmlmlm
x

lm TKTKiT ,       (S6.16) 

( )''
2
1'

11
ˆ2

+
+

−
− −−=⎟

⎠
⎞

⎜
⎝
⎛

Φ∂
∂

lmlmlmlm
x

lm TKTKT ,       (S6.17) 

''

3ˆ
lm

x

lm imTT
=⎟

⎠
⎞

⎜
⎝
⎛

Φ∂
∂ .         (S6.18) 

The expressions for torque in eqns. 31 – 33 of the main text can be found by letting Tlm = Qlm be the 

multipole moment and inserting eqns. S6.16 – S6.18 into eqn. 25. 
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S7) Wigner Matrix Derivatives for Euler Angles 

In this section, ∂Dl
m′m/∂Ω is derived for the case when Ω is an Euler angle using the expressions 

given in eqns. 22 and 24 of the main text by first calculating R-1(∂R/∂Ω) or (∂R/∂Ω)R-1, respectively.  

The Cartesian rotation matrix as a function of Euler angles53-56 R(α, β, γ) is formed from the product 

three successive rotations.  First, the ix̂  coordinate system is rotated about the 3x̂ axis by an angle α to 

arrive at the 'ˆix  coordinate system, i.e. 'ˆ)ˆ('ˆ 3 jj jkk xxx ∑= αR .  Next, the 'ˆix  coordinate system is 

rotated about the 'ˆ2x axis by an angle β to arrive at the ''ˆix  coordinate system, i.e. 

'ˆ)'ˆ(''ˆ 2 kk kll xxx ∑= βR .  Lastly, the ''ˆix  coordinate system is rotated about the ''ˆ3x   axis by an angle γ   

to arrive at the '''ˆix  coordinate system, i.e. 'ˆ)''ˆ('''ˆ 3 ll lii xxx ∑= γR .  The total transformation is given by 

jj jii xx ˆ),,('''ˆ ∑= γβαR , where ∑≡ lk liklkjji xxx )''ˆ()'ˆ()ˆ(),,( 323 γβαγβα RRRR .  In matrix form, R(α, 

β, γ) is given by 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
+−+
−−−

=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −
=

βγβγβ
βαγαγβαγαγβα
βαγαγβαγαγβα

γγ
γγ

ββ

ββ
αα
αα

γβα

cossinsincossin
sinsincoscossincossinsincoscoscossin
sincoscossinsincoscossinsincoscoscos

100
0cossin
0sincos

cos0sin
010

sin0cos

100
0cossin
0sincos

),,(R

.  (S7.1) 

Symbolically, eqn. S7.1 can be expressed as 

)()()(),,( γβαγβα zyz RRRR =        (S7.2) 

The inverse of R(α, β, γ) is given by 

)()()(),,(),,(1 αβγαβγγβα −−−=−−−=−
zyz RRRRR .    (S7.3) 

 The expression for (∂R/∂α)R-1 is given by 

3
1

000
001
010

)()( MRRRR
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −
=−

∂
∂

=
∂
∂ − α

α
α

α z
z .     (S7.4) 

Similarly, the results for R-1(∂R/∂β) and R-1(∂R/∂γ) are given by 

21
1  cos sin MMRR γγ
β

+=
∂
∂−        (S7.5) 

3
1 MRR =
∂
∂−

γ
          (S7.6) 

 After inserting eqn. S7.4 into eqn. S6.2 or eqn. 24, ∂Dl
m′m/∂α is given by 
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l
mm

x

l
mm

l
mm DimDD

'
ˆ

',' '
1

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Φ∂

∂
=

∂
∂
α

       (S7.10) 

Similarly, after inserting eqns. S7.5 and S7.6 into eqn. 22, the results for ∂Dl
m′m/∂β and ∂Dl

m′m/∂γ are 

given by 

l
mm

i
l

mm

il
mm DmlmleDmlmleD

1,'1,'
' )1)((

2
)1)((

2 +−

−

++−−+−+=
∂

∂ γγ

β
.  (S7.11) 

l
mm

l
mm imD

D
'

,' −=
∂

∂
γ

         (S7.12) 

A second equation for  ∂Dl
m′m/∂β can be found by taking the complex conjugate of eqn. S7.11, 

interchanging m′ with m, and interchanging R with R-1 (see eqn. S7.3) 

l
mm

i
l

mm

il
mm DmlmleDmlmleD

,1',1'
' )1')('(

2
)1')('(

2 +−

−

++−++−+−=
∂

∂ αα

β
.  (S7.13) 

Eqns. S7.10 – S7.13 agree with eqns. 8, 3, 9, and 2, respectively on page 94 of Varshalovich et al.53  

 

S8) Wigner Matrix Derivatives for Quaternions 

 In this section, derivatives of Wigner rotation matrices with respect to quaternions μqDl
mm ∂∂ '  

are derived.  Expressions for (∂R/∂qμ)R-1 are found and then inserted into eqn. 24 to arrive a set of 

equations for μqDl
mm ∂∂ ' .  The Cartesian rotation matrix R can be parameterized explicitly55 in terms 

of quaternions qμ ≡ (q0, q1, q2, q3) by 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+−−+−
−−+−+
+−−−+

=
2
3

2
2

2
1

2
010322031

1032
2
3

2
2

2
1

2
03021

20313021
2
3

2
2

2
1

2
0

)(2)(2
)(2)(2
)(2)(2

qqqqqqqqqqqq
qqqqqqqqqqqq
qqqqqqqqqqqq

R .   (S8.1) 

The inverse matrix is given by letting (q0, q1, q2, q3) → (q0, –q1, –q2, –q3)  

),,,(),,,( 32103210
1 qqqqqqqq −−−=− RR .      (S8.2) 

and the quaternions satisfy a normalization condition 

 1
3

0

2 =∑
=μ

μq .          (S8.3) 

Since quaternions satisfy a constraint condition, (∂R/∂qμ)R-1 is not antisymmetric.  Nevertheless, 

(∂R/∂qμ)R-1 can still be calculated and inserted into eqn. 24 to arrive μqDl
mm ∂∂ ' . 

In order to calculate (∂R/∂qμ)R-1, one could simply differentiate eqn. S8.1 with respect to qμ to 

get ∂R/∂qμ, and then right multiply by R-1.  The result would be an expression which involves cubic 
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powers of qμ.  This expression could be simplified by the normalization condition, eqn. S8.3, into an 

expression which is linear in qμ.   

However, a more economical derivation of (∂R/∂qμ)R-1 can be found by first noting the 

quaternion multiplication formulae for successive rotations.  First, note that quaternions can be 

expressed in vector notation by ),(),,,( 03210 qqqqqqq r
≡≡μ .  Suppose qμ, pμ, and rμ are three different 

quaternions related by  

)()()( μμμ rpq RRR =  .        (S8.4) 

It can be shown55 that pqr ∗≡  is given by qpqpr rr
⋅−= 000 , and qppqqpr rrrrr

×++= 00 .  In 

component form, this appears as 

 ∑
=

−=
3

1
000

i
ii pqpqr , ∑∑

= =

++=
3

1

3

1
00

j k
ijkkjiii pqqppqr ε    i = 1, 2, 3,   (S8.5) 

where εijk is the Levi-Cita symbol defined by 1 for an even permutation of (1,2,3) , –1 for an odd 

permutation of (1,2,3), and 0 if any index is repeated.  Recall the inverse relation for quaternions in 

eqn. S8.2.  The expression (∂R/∂qμ)R-1 can be derived from eqns. S8.1 and S8.2 by noting 

∑
=→

→→

−

∂
∂

∂
∂

=

∂
∂

=
∂
∂

=
∂
∂

−

−−

3

0

1

)(lim

)(lim)()(lim)()(

1

11

ν μ

ν

ν

μμμ

q
r

r
r

r
q

pq
q

q
q

q

qp

qpqp

R

RRRRR

,    (S8.6) 

where the limit of p → q-1 is short for (p0, p1, p2, p3) → (q0, –q1, –q2, –q3).  The following expressions 

for rν and ∂rν /∂qμ can be found from eqn. S8.5.  It is important to first evaluate the derivative and then 

apply the limit.    

1lim 01
=

−→
r

qp
,    0lim

1
=

−→
i

qp
r ,       (S8.7) 

0
0

0
1

lim q
q
r

qp
=

∂
∂

−→
,   i

i
qp

q
q
r
=

∂
∂

−→

0
1

lim ,        (S8.8) 

i
i

qp
q

q
r

−=
∂
∂

−→
0

1
lim ,  ∑+=

∂
∂

−→ k
kijkij

j

i

qp
qq

q
r εδ01

lim      (S8.9) 

where i,j = 1,2,3.  The derivative of R(r) with respect to r0 can be found by simply replacing the q’s 

with r’s in eqn. S8.1 and then differentiate with respect to r0.  After taking the limit of p → q-1  and 

applying eqn. S8.7, the result becomes 

IR 2)(lim
0

1
=

∂
∂

−→ r
r

qp
.         (S8.10) 

A similar procedure can be applied for the derivative R(r) with respect to ri (i = 1,2,3) to yield the 

following result 
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i
i

qp r
r MR 2)(lim

1
=

∂
∂

−→
,         (S8.11) 

where Mi are the infinitesimal rotation matrices.  Eqns. S8.7 – S8.11 can be inserted into eqn. S8.6 to 

arrive at the result for (∂R/∂qμ)R-1 

∑−=
∂
∂ −

i
iiqq

q
)(2 0

1

0

MIRR         (S8.12) 

∑−+=
∂
∂ −

jk
kjijkii

i

qqq
q

)(2 0
1 MMIRR ε       (S8.13) 

Eqn. S8.13 can be written out explicitly for i = 1, 2, 3 by 

)(2 3223101
1

1

MMMIRR qqqq
q

−++=
∂
∂ −       (S8.14) 

)(2 1331202
1

2

MMMIRR qqqq
q

−++=
∂
∂ −       (S8.15) 

)(2 2112303
1

3

MMMIRR qqqq
q

−++=
∂
∂ −       (S8.16) 

Note (∂R/∂qμ)R-1 is not antisymmetric due to the presence of the terms containing I. 

In order to arrive at the final expression for μqDl
mm ∂∂ ' , the following intermediate result is 

needed 

][][][ ,'

1

1

1

1
,'

1
'',1 RRI l

mm
i k

l
mkimik

i
lm

k
iml lDDDCB =∑∑

−= −=
+−−− ,     (S8.17) 

where I is the identity matrix.  After inserting eqns. S8.12 – S8.16 for (∂R/∂qμ)R-1 into eqn. 24 for 

μqDl
mm ∂∂ ' , and using eqns. S8.17, S6.8 – S6.10, the final results for μqDl

mm ∂∂ '  becomes 

l
mmlm

l
mmlm

l
mm

l
mm DKiqqDKiqqDqimlq

q
D

,1''12,1''12'30
0

' )()()'(2 +
+

−
− +−++++=

∂
∂   (S8.18) 

l
mmlm

l
mmlm

l
mm

l
mm DKiqqDKiqqDqimlq

q
D

,1''03,1''03'21
1

' )()()'(2 +
+

−
− −+−−++=

∂
∂   (S8.19) 

l
mmlm

l
mmlm

l
mm

l
mm DKiqqDKiqqDqimlq

q
D

,1''30,1''30'12
2

' )()()'(2 +
+

−
− +++−+−=

∂
∂   (S8.20) 

l
mmlm

l
mmlm

l
mm

l
mm DKiqqDKiqqDqimlq

q
D

,1''21,1''21'03
3

' )()()'(2 +
+

−
− −−+−+−=

∂
∂   (S8.21) 

 A second set of equations for μqDl
mm ∂∂ '  can be found by taking the complex conjugate of 

eqns. S8.18 – S8.21, interchanging m′ with m, and interchanging R with R-1 (eqn. S8.2) 
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Eqns. S8.22 – S8.25 could have also been derived by calculating R-1(∂R/∂qμ) and inserting these 

results into eqn. 22. 

 

 

 

S9) Proof of orient
a

orient
aa 2N1N →→ ×+×= FβFατ  

 The expressions for orient
a 1N→F  and orient

a 2N→F  are given by inserting eqn. 37 into eqn. 39 

( )

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

⋅−
⋅⋅

+×⋅−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅×

⋅−
⋅

+⋅×−=→

q
a

aq

aqaq
orient

qa

βα
βαβαα

ταβαταx
α

ταβα
βαβαα

βαταx
α

F

])([
))(()(ˆ1

])([
)ˆ(1

22222

22222,1N

   (S9.1) 

or 

⎟⎟
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⎞
⎜⎜
⎝

⎛
×

⋅−
⋅⋅

+×−=→ βα
βαβαα

ταβατα
α

F
])([

))((1
222221N

a
a

orient
a      (S9.2) 

Similarly, 

 βα
βαβα

ταF ×
⋅−

⋅
=→ 2222N )(

aorient
a         (S9.3) 

Using the property A×(B×C) = B(A·C) – C(A·B), orient
a 1N→×Fα  and orient

a 2N→×Fβ  become 

( ) ( )⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⋅

⋅−
⋅⋅

+−⋅−=× →
2

2222
2

21N )(
])([

))(()(1 βαβαα
βαβαα
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α

Fα a
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orient
a   (S9.4) 

( ))(
)(

2
2222N βαβαβ

βαβα
ταFβ ⋅−
⋅−

⋅
=× →

aorient
a       (S9.5) 

Adding eqns. S9.4 and S9.5 gives the final result for τa. 
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S10) Proof of 0
' '' =∂∂×∑a aa rr η  

 The variable η denotes any bond length r, bond angle θ, or torsion angle ω.  For all cases, η can 

be expressed as a function of a scalar product of relative atomic positions.  For example, the bond 

length rab between two atoms a and b is given by 

abababr rr ⋅=           (S10.1) 

where rab ≡ ra – rb is the relative displacement between atoms a and b.  Similarly, the bond angle θabc 

between atoms a, b, c is given by 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ⋅
= −

cbab

cbab
abc rr

rr1cosθ          (S10.2) 

and the torsion angle ωabcd between atoms a, b, c, d is given by 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ⋅⋅
−

⋅
= −

2
1 ))((

cos
cbdcab

cbdccbab

dcab

dcab
abcd rrrrr

rrrrrr
ω       (S10.3) 

Thus, the generic variable η is a function of the dot product rab·rcd, i.e. η = η (rab·rcd).  Letting x ≡ 

rab·rcd,  

cda
a

a x
rr

r
r ×

∂
∂

=
∂
∂

×
ηη          (S10.4) 

Therefore, ∑ ∂∂×
' ''a aa rr η is given by 
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    (S10.5) 


