Supporting Information

Claesen and Bibb 10.1073/pnas.1008608107

SI Materials and Methods

PCR Targeting. PCR targeting primer couples (orf1 F/orf1 R) to (cypI F/cypI R) were used to amplify an apramycin resistance cassette from pIJ773 that also contains an oriT and is flanked by Flippase recombination enzyme (FLP) recognition sites. The resulting cassettes were used to delete orf1 to cyp1 in pIJ12404, resulting in cosmids pIJ12422-pIJ12430. These constructs were introduced into Streptomyces sp. OH-4156 by conjugation and selecting for apramycin resistance. Screening the apramycinresistant exconjugants for loss of kanamycin resistance (encoded by neo of SuperCosI) identified double cross-over mutants M1427-M1435 that each have a single wild-type ORF (orf1 to cypI) replaced by the pIJ773-derived cassette. The mutants were confirmed by PCR analysis using the corresponding primer couples (orf1 T1/orf1 T2) to (cypI T1/cypI T2). To avoid any polar effects of the mutations on the expression of downstream genes, we also constructed in-frame (scar) deletion mutations for all the putative cyp genes (orf1 to cypI). These mutations were made by introducing pIJ12422-pIJ12430 into Escherichia coli BT340 and growth at 42 °C. This procedure resulted in the FLP-mediated excision of the apramycin resistance cassette, leaving an 81-bp in-frame 'scar' sequence (1) and yielding pIJ12431-pIJ12439 $(\Delta orfl - \Delta cypI)$. Derivatives capable of integrating into the chromosome of a Streptomyces host were made by inserting a 5.2-kb SspI fragment from pIJ10702 that contained oriT, the apramycin resistance gene [aac(3)IV], and the ϕ C31 attP site and integrase gene by PCR targeting. The resulting cosmids (pIJ12440-pIJ12448) were transferred to S. coelicolor M1146, where stable integration at the ϕ C31 *attB* site occurred; no antibiotic selection was required to maintain the cosmids after integration. Each of the resulting strains (M1413-M1421) contained a cosmid with an individual gene $(\Delta orfl - \Delta cypI$, respectively) of the putative minimal gene set replaced by a scar sequence.

Similarly, *cypA*-containing cosmids from the *S. sp.* OH-4156 genomic library identified by hybridization (pIJ12400–pIJ12408) were targeted with the 5.2-kb pIJ10702 SspI fragment to yield integrative versions (pIJ12409–pIJ12417, respectively). These cosmids then were introduced into *Streptomyces venezuelae* ATCC 10712 by conjugation, yielding strains M1400–M1409.

Construction of Fusion Proteins. Gateway primer couples (Gat *cypA* F/Gat *cypD* F/Gat *cypD* R, and Gat *cypM* F/Gat *cypM* R) were used to amplify *cypA*, *cypD*, and *cypM*, respectively. The resulting PCR products were introduced into the pDONR207

 Gust B, et al. (2004) Lambda Red-mediated genetic manipulation of antibioticproducing Streptomyces. Adv Appl Microbiol 54:107–128. entry vector and shuttled into the pHM-GWA destination vector following the protocol of the Gateway cloning kit (Invitrogen). The resulting plasmids pIJ12489 (cypA), pIJ12493 (cypD), and pIJ12494 (cypM) were introduced into E. coli BL21 (DE3) by transformation. Recombinant 6-His-tagged maltose-binding protein (MBP)-CypA, 6-His-tagged MBP-CypD, and 6-His-tagged MBP-CypM were purified from 3 L of Lennox medium [L medium; tryptone 10 g/L, yeast extract 5 g/L, NaCl 5 g/L (2)] after induction with 0.5 mM isopropyl-β-D-1-thiogalactopyranoside at 30 °C for 4 h. Cell pellets were resuspended in 40 mL lysis buffer (50 mM Tris HCl, pH 7.9, 10% glycerol, 1 mM phenylmethanesulfonyl fluoride), lysed with a French press, and the cell lysate was clarified by centrifugation (20 min at $40,000 \times g$). The cleared lysate was applied to a 1-mL Ni2+-loaded Hi-Trap Chelating HD column (GE Healthcare), washed with 25 mM K₂HPO₄ (pH 7.9), 200 mM NaCl, and 20 mM imidazole, and eluted with an imidazole gradient. The eluted proteins were dialyzed into storage buffer [50 mM Tris HCl (pH 7.9), 50 mM NaCl, 1 mM Tris(2-carboxyethyl) phosphine (TCEP)], aliquoted, and stored at -80 °C. Protein concentrations were determined by a Bradford assay according to the manufacturer's instructions (Bio-Rad). BSA was used as the protein standard. We obtained preproCypA by digestion of 6-His-tagged MBP-CypA with tobacco etch virus protease following the Invitrogen protocol.

CypD Assay. We incubated 6-His-tagged MBP-CypD (~25 μ M) with the preproCypA substrate (~120 μ M) at 30 °C in a 20- μ L volume at pH 7.9 (50 mM Tris HCl) under reducing conditions (2 mM TCEP). After 6 h incubation, the reaction mixture was analyzed by MALDI-TOF MS. The substrate peak with a mass of 6,087 Da was partially converted into a peak of 6,041 Da (Fig. S7 *A* and *B*). The 46-Da difference in mass is in good agreement with the removal of two hydrogen atoms and one molecule of CO₂.

CypM Assay. We incubated 6-His-tagged MBP-CypM (~7.5 μ M) with nonmethylated cypemycin (unknown concentration) at 30 °C in a 20- μ L volume at pH 7.9 (50 mM Tris HCl) under reducing conditions (2 mM TCEP) in the presence of added *S*-adenosyl methionine (2.5 mM) and MgCl₂ (10 mM). After 3 h incubation, the reaction mixture was analyzed by MALDI-TOF MS. The peaks corresponding to the nonmethylated substrate ([M+H]⁺= 2,068 Da; [M+Na]⁺ = 2,090 Da; [M+K]⁺ = 2,106 Da) were mostly converted into mature cypemycin ([M+Na]⁺ = 2,118 Da; [M+K]⁺ = 2,134 Da) by the addition of CypM (Fig. S7 *C* and *D*).

2. Lennox ES (1955) Transduction of linked genetic characters of the host by bacteriophage P1. *Virology* 1:190–206.

Fig. S1. Heterologous expression of the cypemycin biosynthetic gene cluster in *Streptomyces venezuelae*. MALDI-TOF spectra for *Streptomyces* sp. OH-4156, *S. venezuelae* with the empty vector pIJ10702 (M1400), and *S. venezuelae* derivatives with cosmids containing all the genes required for cypemycin production (M1401, M1402, M1403, M1404, M1405, and M1408) and those with a cosmid that does not (M1406, M1407, and M1409).

Fig. S2. *Micrococcus luteus* bioassay of the nine *S. venezuelae* derivatives with a *cypA*-containing cosmid. *Streptomyces* sp. OH-4156 (positive control), M1400 (empty vector, EV; negative control), and M1401–M1409 are the *S. venezuelae* clones containing hybridizing library cosmids. The halos observed for M1401, M1403, M1405, and M1408 are much smaller than that of the natural producer; although clones M1402 and M1404 failed to produce a halo, cypemycin production was confirmed by MALDI-TOF analysis.

DNAS Nd

Fig. S3. MALDI-TOF spectra for scar mutants in M1146. Spectra for *Streptomyces* sp. OH-4156 (positive control), M1146 with the inserted empty vector pIJ10702 (M1410), entire cosmid (M1411), minimal gene set (M1412), and individual mutants in *orf1* to *cyp1* (M1413–M1421). Cypemycin is detected as $[M+H]^+ = 2,096$ Da, $[M+Na]^+ = 2,118$ Da, and $[M+K]^+ = 2,134$ Da. The nondecarboxylated version of cypemycin (in M1417) appears as $[M+H]^+ = 2,142$ Da, $[M+Na]^+ = 2,164$ Da, and $[M+K]^+ = 2,180$ Da, and the nonmethylated intermediate (in M1418) as $[M+H]^+ = 2,068$ Da, $[M+Na]^+ = 2,090$ Da, and $[M+K]^+ = 2,106$ Da.

Fig. 54. MALDI-TOF spectra of the apramycin-marked mutants in *Streptomyces* sp. OH-4156. Spectra for M1427 ($\Delta orf1$) to M1435 ($\Delta cypI$) show the same phenotypes as the heterologously expressed mutants (Fig. S5). No cypemycin intermediate was detected in the culture of M1431 ($\Delta cypD$), whereas its heterologous counterpart (M1417) produced nondecarboxylated cypemycin. A possible explanation is that the replacement of *cypD* in this mutant with the pIJ773-derived cassette causes a polar effect on the downstream *cypM* gene, making M1431 a $\Delta cypDM$ double mutant. The product of this mutant, cypemycin lacking the S-[(Z)-2-aminovinyl]-D-cysteine (AviCys) and *N*,*N*-dimethyalanine (Me₂-Ala), is thought to be unstable but has been isolated from a heterologously expressing $\Delta cypDM$ double mutant. Differences in protease activity between M1146 and *Streptomyces* sp. OH-4156 could account for this observation.

Fig. S5. Quadrupole TOF (Q-TOF) spectrum of cypemycin. Fragmentation of the modified linear peptide allows determination of the amino acid sequence and the nature and locations of modified residues. The amino acid sequence between Pro3 and the AviCys residue (which does not fragment easily into interpretable masses) can be readily discerned and is shown above the spectrum.

Fig. S6. Structural verification of the truncated cypemycin derivatives. (*A*) After alkylation of the free thiol groups in the product of the $\Delta cypD$ mutant, a single mass shift of +57 Da was observed indicating the presence of only one free thiol group. Nondecarboxylated cypemycin appears as $[M+H]^+ = 2,142$ Da, $[M+Na]^+ = 2,164$ Da, and $[M+K]^+ = 2,180$ Da. The alkylated version is observed as $[M+H]^+ = 2,199$ Da and $[M+O]^+ = 2,215$ Da. (*B*) *Q*-TOF analysis of the compound produced by the $\Delta cypD$ mutant shows that Cys19 has been dehydrated to dehydroalanine. (C) Q-TOF analysis confirming that the mass difference of the compound produced by the $\Delta cypM$ mutant is localized to the first two amino acids and thus is very likely to reflect the lack of the two N-terminal methyl groups.

Fig. 57. Biochemical assays for CypD decarboxylase and CypM methyltransferase activity. (*A*) Decarboxylation assay control without added CypD. (*B*) Upon incubation with the CypD enzyme, the mass peak corresponding to the 6,087-Da preproCypA substrate is partially converted to the 6,041-Da decarboxylated product. (*C*) Methyl transfer assay control without added CypM. (*D*) Nonmethylated cypemycin $([M+H]^+ = 2,068 Da, [M+Na]^+ = 2,090 Da, and [M+K]^+ = 2,106 Da)$ was converted to mature cypemycin $([[M+Na]^+ = 2,118 Da and [M+K]^+ = 2,134 Da)$ upon incubation with CypM.

Fig. S8. Analysis of the complementation of the $\Delta cypL$ mutant M1424 confirms production of both cypemycin and the nondecarboxylated form.

Table S1. Plasmids, strains, and primers used in this study

PNAS PNAS

Plasmid*	Description	Ref. or source
General plasmids		
pIJ10257	oriT,	(1)
pIJ10702	<i>bla, aac(3)IV, oriT,</i> φC31 <i>int-attP</i> (also known as pMJCos1)	(2)
pIJ773	pBS SK+ containing cassette P1-FRT-oriT-aac(3)/V-FRT-P2	(3)
pIJ790	λ-RED (gam, bet, exo), cat, araC, rep101 ^{ts}	(3)
pSET152	lacZα, pUC19ori, RP4oriT, ϕ C31 int-attP, aac(3)IV	(4)
pUZ8002	tra, neo, RP4	(5)
SuperCosl	neo, bla	Stratagene
pDONR 207	donor vector for Gateway	Invitrogen
pHM-GWA	Gateway destination vector for MBP fusions	(6)
Library cosmids for heterologous e	xpression in S. venezuelae	
pJJ12400	genomic library cosmid 1N16 in Supercosl	This work
pJJ12401	genomic library cosmid 3003 in Supercosl	This work
pJJ12402	genomic library cosmid 4J11 in Supercosl	This work
pU12403	genomic library cosmid 6C03 in Supercosl	This work
pU12404	genomic library cosmid 6123 in Supercosl	This work
pl112405	genomic library cosmid 7P24 in Supercost	This work
pU12406	genomic library cosmid 8819 in Supercost	This work
pU12400	genomic library cosmid 8G13 in Supercost	This work
pU12407	genomic library cosmid 8118 in Supercost	
pU12408	plui 2400 with plui 2702 backbong	
pD12409		
pIJ12410	pij 12401 with pij 10702 backbone	
pU12411		
plJ12412	pIJ12403 with pIJ10/02 backbone	This work
pIJ12413	pIJ12404 with pIJ10/02 backbone	This work
pIJ12414	plJ12405 with plJ10702 backbone	This work
pIJ12415	pIJ12406 with pIJ10702 backbone	This work
pIJ12416	plJ12407 with plJ10702 backbone	This work
plJ12417	plJ12408 with plJ10702 backbone	This work
Minimal gene set constructs		
pIJ12418	pIJ12404 targeted with 773 cassette upstream of orf1	This work
pIJ12419	pIJ12418 with in-frame deletion upstream of orf1	This work
pIJ12420	pIJ12419 targeted with 773 cassette downstream of cypl	This work
pIJ12421	pSET152 with minimal gene set excised from pIJ12420	This work
Gene-deletion constructs		
plJ12422	pIJ12404 ∆ <i>orf1::(oriT-aac(3)IV</i>)	This work
plJ12423	pIJ12404 ∆ <i>cypA</i> ::(oriT-aac(3)IV)	This work
plJ12424	pJJ12404 $\Delta cypH::(oriT-aac(3)IV)$	This work
pIJ12425	pIJ12404 $\triangle cvpL::(oriT-aac(3)IV)$	This work
pU12426	pJJ12404 $\triangle cvpD::(oriT-aac(3)/V)$	This work
pl112427	$p 12404 \land cvpM:(oriT-aac(3)/V)$	This work
pl112428	$p[112404 \land cvnT''(oriT-aac(3)/V)$	This work
pl112429	$n[112404 \land cvnP:(oriT-aac(3)/V)]$	This work
pl12423	$p[112404 \land cvp]::(orrit_{aac}(3)/V)$	This work
pU12430	nll12/22 in-frame deletion of orf1	This work
pl12437	nll12422 in-frame deletion of crnA	This work
pl/12432	pl/12423 in frame deletion of cypA	
pi 12433	pU12424 in-frame deletion of cyph	
pD12434	pU12425 in-frame deletion of cypl	
pD12435	pD12426 in-frame deletion of <i>cypD</i>	
pij12436	pU12427 In-frame deletion of <i>cypIN</i>	
pij12437	pij 12428 in-frame deletion of <i>cyp1</i>	
pIJ12438	pIJ12429 in-frame deletion of cypP	This work
pIJ12439	pIJ12430 in-frame deletion of <i>cypI</i>	I his work
pIJ12440	plJ12431 with plJ10702 backbone	This work
pIJ12441	pIJ12432 with pIJ10/02 backbone	This work
pIJ12442	pIJ12433 with pIJ10702 backbone	This work
plJ12443	plJ12434 with plJ10702 backbone	This work
pIJ12444	pIJ12435 with pIJ10702 backbone	This work
pIJ12445	pIJ12436 with pIJ10702 backbone	This work
pIJ12446	pIJ12437 with pIJ10702 backbone	This work
plJ12447	pIJ12438 with pIJ10702 backbone	This work
plJ12448	pIJ12439 with pIJ10702 backbone	This work
Complementation constructs		
plJ12449	pIJ10257 containing cloned cypA	This work

Table S1. Cont.

PNAS PNAS

Plasmid*	Description	Ref. or source
pJ12450	pU10257 containing cloned cvpH	This work
nll12451	nl10257 containing cloned cyp/	This work
nll12452	nl10257 containing cloned cyp2	This work
nll12453	nl10257 containing cloned cypb	This work
Fusion protein constru	icts	
nll12489	pHM-GWA containing cloned cvpA	This work
pl/12493	pHM-GWA containing cloned cyp	This work
pl/12494	pHM-GWA containing cloned cypB	this work
	····· ································	
Strain	Description	Ref.
Micrococcus luteus		
ATCC4698	Indicator strain in bio-assay	(2)
Escherichia coli		
BT340	DH5α/pCP20	(7)
BW25113	K-12 derivative: $\Delta araBAD$, $\Delta rhaBAD$	(8)
DH5α	strain used for general cloning and plasmid maintenance	Stratagene
ET12567	dam, dcm, hsdM, hsdS, hsdR, cat, tet	(9)
XL1-Blue	strain used for Supercosl library	Stratagene
BL21 (DE3)	strain used for fusion protein production	(10)
Streptomyces venezue	lae	
ATCC 10712	Wild type strain; used to construct the S. venezuelae derivatives	(11)
M1400	pIJ10702 in _{\$\phi} C31 attB (empty vector)	This work
M1401	pIJ12409 in φC31 <i>attB</i>	This work
M1402	pIJ12410 in φC31 <i>attB</i>	This work
M1403	plJ12411 in φC31 <i>attB</i>	This work
M1404	pIJ12412 in φC31 <i>attB</i>	This work
M1405	pIJ12413 in φC31 <i>attB</i>	This work
M1406	pIJ12414 in φC31 <i>attB</i>	This work
M1407	pIJ12415 in φC31 <i>attB</i>	This work
M1408	pIJ12416 in φC31 <i>attB</i>	This work
M1409	pIJ12417 in φC31 <i>attB</i>	This work
Streptomyces coelicolo	or	
M1146	M145 \triangle act \triangle red \triangle cpk \triangle cda; parental strain used to construct the S. coelicolor derivatives	J. P. Gomez-Escribano
M1410	plJ10702 in ϕ C31 <i>attB</i> (empty vector)	This work
M1411	plJ12413 in ϕ C31 attB (full cosmid insert)	This work
M1412	plJ12421 in ϕ C31 attB (minimal gene set)	This work
M1413	pIJ12440 in ϕ C31 attB (Δ orf1)	This work
M1414	pIJ12441 in ϕ C31 attB (Δ cypA)	This work
M1415	pIJ12442 in ϕ C31 attB (Δ cypH)	This work
M1416	pIJ12443 in ϕ C31 attB (Δ cypL)	This work
M1417	plJ12444 in ϕ C31 attB (Δ cypD)	This work
M1418	pIJ12445 in ϕ C31 attB (Δ cypM)	This work
M1419	pJJ2446 in ϕ C31 attB (Δ cypT)	This work
M1420	pIJ12447 in ϕ C31 attB (Δ cypP)	
M1421	pU12448 in ϕ C31 attB (Δ cypI)	
M1422	pIJ12441 in ϕ C31 attB (Δ cypA) and pIJ12449 in ϕ B11 attB	
M1423	pU12442 in ϕ C31 attB (Δ cypH) and pU12450 in ϕ BT1 attB	
M1424	pIJ12443 in ϕ C31 attB (Δ cypL) and pIJ12451 in ϕ B11 attB	
M1425	pU12444 in ϕ C31 attB (Δ cypD) and pU12452 in ϕ BT1 attB	
W11426	piji 2445 in ϕ C31 attb ($\Delta cypin$) and piji 2453 in ϕ B11 attb	This work
Streptomyces sp. OH-2	1150	(12)
VV I	wild type strain; used to construct the S. sp. OH-4156 mutants	(12) This seconds
M1427	$\Delta ort1::(ort1-aac(3)IV)$	
M1428	$\Delta cypA::(oriT-aac(3)IV)$	
IVI1429	$\Delta cypH::(oriteac(3))V)$	This work
IVI 1430	$\Delta cypL::(orit-aac(3))V)$	This work
IVI1431	$\Delta cyp \mathcal{L}:(orit-aac(3) V)$	This work
IVI 1432	$\Delta cypiv::(orif-aac(3)iV)$	This work
IVI 1433	$\Delta cyp I::(orl I-aac(3)IV)$	I NIS WORK
IVI 1454	$\Delta cy \mu r(om-aac(3))v)$	
IVI 1435	$\Delta cypr(orreadc(3))v$	

Table S1. Cont.

PNAS PNAS

Strain	Description	Ref.
Primer	Sequence	Site
Degenerate primers and	probes for cypA	
Cyp deg F	gcnacnccngcnacnc	
Cyp deg R	rcanacnawdagngtn	
Cyp probe 1	gcsacsccsgcsacsccsacsgtsgcscagttcgtsatccagggs	
Cyp probe 2	gcsacsccsgcsacsccsacsgtsgcscagttcgtsatccagggstcsacsatctcsctsgtstgc	
cypA-specific probe/test	primers	
cypA 11	gacggtctcttgaaggtctg	
CYPA 12	cccccgccacttccatc	
IVIINIMAI gene set PCR-ta	rgeting primers and test primers	
Upr		Yhal
Down F		Scol
Down R		3361
Un T1	tagaatgaacaatggaagtcaac	
Un T2	cantasantacanac	
Down T1	gagttcccoctactgag	
Down T2	ccgaaaagtgccacctgac	
Individual gene-deletion	PCR-targeting primers and test primers	
orf1 F	caccgcgtccgggggggggccgtcatggaacggcccggctaactagtattccggggatccgtcgacc	Spel
orf1 R	gacgggatgggcgggcacgcgcggggggggggggcacatggctgctgctgctgctgctgctgctgctgctgctgctgc	Nhel
сурА F	gaccaccgacgaagggttagtgaagtgcgatctgagatgactagtattccgggggatccgtcgacc	Spel
<i>сурА</i> R	gtgacgggcctctccggcggcaggctcagtcccgcgtcagctggtaggctggagctgcttc	Nhel
<i>сурН</i> F	tctacctgctgccgcgcgagcaggcctcgtacgcgctcc <u>actagt</u> attccggggatccgtcgacc	Spel
<i>сурН</i> R	gatcgaccggtgcgccgagccgcgcaccacctcgaactt <u>gctagc</u> tgtaggctggagctgcttc	Nhel
cypL F	ggggcgctcgccgcgcacctggtcgcgaccgtgctgcag <u>actagt</u> attccggggatccgtcgacc	Spel
<i>cypL</i> R	cactcggaggtgaggatcggcttcatccgctggtccgc <u>gctagc</u> tgtaggctggagctgcttc	Nhel
cypD F	ccatgtcacgggctccatcagcgcggcgctcgtgccgtg <u>actagt</u> attccgggggatccgtcgacc	Spel
<i>cypD</i> R	ggcaggttgaaccccacctcggccgtctgccggttgctc <u>gctagc</u> tgtaggctggagctgcttc	Nhel
<i>сурМ</i> F	gccaacaggatgcggaaggaagggcgttccggtgagtga <u>actagt</u> attccggggatccgtcgacc	Spel
<i>сурМ</i> R	tggcgccctccgcggcgatcgccggcacttcgctcactg <u>gctagc</u> tgtaggctggagctgcttc	Nhel
cypT F	cgctcgcgggagatgctggtcgttctggagcggcagtga <u>actagt</u> attccggggatccgtcgacc	Spel
cyp1 R	ggtcggcctcgaccgcggtgatgctgtccgtggtcatccgctggctg	Nhei
cypP F	atggtggacgcctgcgacggcctcatggagctgggatgaactagtattccggggatccgtcgacc	Spel
CypP R		innei Spol
cypi F cypi P		Sper
orf1 T1		INTEL
orf1 T2	atconggatchacag	
cvnH T1	atccggggccgacag	
cvpH T2	acaacacaatcac	
cvpL T1	aagttcgaggtggt	
cypL T2	cccqcaqccaqtqq	
cypD T1	gatgaagccgatcctcacc	
cypD T2	acacccaggcgacgag	
<i>сурМ</i> Т1	cgagttcgcgccgc	
сурМ Т2	gttgcttccggtgaggc	
<i>сурТ</i> Т1	ggtctggaggtgacgg	
<i>сурТ</i> Т2	gtgtacgcccagtcctg	
cypP T1	cctggtcgccaccc	
cypP T2	catggtgtccatcctgcc	
<i>cypl</i> T1	acgacggtgtcctggag	
cypl T2	ctcagcagcgggaactc	
eriners for complementa	ation constructs	Nalal
CYPA 10257 F	aaaaacatatgactcttacgagcacgaattccgC	NGEI
CYPA 10257 K	aaaaaaay	
Cypri 10237 F CynH 10257 P	aaaaa <u>cacacycccycyyyaycyacc</u>	Hindill
cyp11 10237 R	aaaaaaayuuuaayaauuaayaauuu	Ndol
cype 10257 R	aaaaaaaaatttaaaaaaatttaaaaaaaaaaaaaaaaa	HindIII
cvpD 10257 F	aaaaacatataaacatagaagaattcgaaaa	Ndel
<i>cypD</i> 10257 R	aaaaa <u>aagctt</u> tcactcaccggaacgccc	HindIII

Table S1. Cont.

Strain	Description	Ref.
сурМ 10257 F	aaaaacatatgagtgacccgagcgtgta	Ndel
<i>сурМ</i> 10257 R	aaaaaaaagctttcactgccgctccagaacga	HindIII
10257 seq F	acgtccatgcgagtgtcc	
10257 seq R	ccaaacggcattgagcgtc	
Primers for fusion pr	rotein constructs	
Gat cypA F	${\tt ggggacaagtttgtacaaaaaagcaggcttagaaaacctgtattttcagggcatgactcttacgagcacgaattccgc$	
Gat <i>cypA</i> R	ggggaccactttgtacaagaaagctgggtttcagcagaccaggcagatcg	
Gat cypD F	${\tt ggggacaagtttgtacaaaaaagcaggcttagaaaacctgtattttcagggcgtgaacgtggagaagttcgaggg$	
Gat cypD R	ggggaccactttgtacaagaaagctgggtttcactcaccggaacgccc	
Gat <i>cypM</i> F	${\tt ggggacaagtttgtacaaaaaagcaggcttagaaaacctgtattttcagggcgtgagtga$	
Gat cypM R	ggggaccactttgtacaagaaagctgggtttcactgccgctccagaacga	

*Unless otherwise stated, all plasmids generated in this work were maintained in DH5a.

2. Boakes S, Cortés J, Appleyard AN, Rudd BA, Dawson MJ (2009) Organization of the genes encoding the biosynthesis of actagardine and engineering of a variant generation system. Mol Microbiol 72:1126–1136.

Gust B, et al. (2004) Lambda Red-mediated genetic manipulation of antibiotic-producing *Streptomyces. Adv Appl Microbiol* 54:107–128.
Flett F, Mersinias V, Smith CP (1997) High efficiency intergeneric conjugal transfer of plasmid DNA from *Escherichia coli* to methyl DNA-restricting streptomycetes. *FEMS Microbiol Lett*

155:223–229.
Paget MS, Chamberlin L, Atrih A, Foster SJ, Buttner MJ (1999) Evidence that the extracytoplasmic function sigma factor sigmaE is required for normal cell wall structure in *Streptomyces coelicolor* A3(2). J Bacteriol 181:204–211.

6. Busso D, Delagoutte-Busso B, Moras D (2005) Construction of a set Gateway-based destination vectors for high-throughput cloning and expression screening in *Escherichia coli*. Anal Biochem 343:313–321.

7. Cherepanov PP, Wackernagel W (1995) Gene disruption in *Escherichia coli*: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. *Gene* 158:9–14.

8. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645.

9. MacNeil DJ, et al. (1992) Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene 111:61-68.

10. Studier FW, Moffatt BA (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189:113–130.

11. Stuttard C (1982) Temperate phages of Streptomyces venezuelae: Lysogeny and host specificity shown by phages SV1 and SV2. J Gen Microbiol 128:115–121.

12. Komiyama K, et al. (1993) A new antibiotic, cypemycin. Taxonomy, fermentation, isolation and biological characteristics. J Antibiot (Tokyo) 46:1666–1671.

^{1.} Hong HJ, Hutchings MI, Hill LM, Buttner MJ (2005) The role of the novel Fem protein VanK in vancomycin resistance in Streptomyces coelicolor. J Biol Chem 280:13055–13061.