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Partitioning of Data. The dataset was analyzed under various par-
titioning schemes. The model-based analyses were first done with
the data partitioned by gene (seven partitions). However, exami-
nation of the parameter trace files after 50 million generations
revealed that some parameters of the 18S partition had not con-
verged on a stationary phase. Therefore, it seemed that the 18S
partition did not contain enough data to adequately estimate all
parameters in the model. To reduce the number of partitions,
subsequent analyses combined the two ribosomal genes into one
partition and kept the protein-coding genes separately partitioned
or combined together into one partition. The dataset was also
analyzed with the two ribosomal genes in one partition, and the
protein-coding genes were combined together and partitioned by
codon position. We did not partition each protein-coding gene
separately by codon position, because this would have produced
a 17-partition analyses. Such an analysis would have been com-
putationally prohibitive and would have created some partitions
with very little information for parameter estimation.

Model Selection. Selection of best-fit models of nucleotide sub-
stitution for each data partition used in a Bayesian or Maximum
Likelihood (ML) analysis was based on the Akaike (AIC) and
BayesianInformationCriteria(BIC)as implemented inJModelTest
v.0.1.1 (1). Likelihood calculations were carried out for 88 models,
which included 11 substitution schemes [of which the general time-
reversible model (GTR) was the most complex], equal or unequal
base frequencies, a proportion of invariable sites (I), and rate vari-
ation among sites with four rate categories (G) on anML-optimized
tree.Model-selection uncertainty was quantified using theAIC and
BIC δ values (thedifference inAICorBIC score between themodel
with the smallest score and themodel in question); values within 2 δ
units of the best model were considered to have substantial support
and therefore, considered. The AIC and BIC weights were used
to approximate a 95% confidence set of models by summing the
weights of the rankedmodels until the sumwas 0.95 (as suggested in
the manual). Any model that was part of that set of models was
considered to have substantial support and was also considered.
If a model selected under the above criteria could not be im-
plemented inMrBayes, the least complexmodel that included all of
the parameters of the selected model, but could be implemented in
MrBayes, it was used instead.

Parsimony Analyses. We used Winclada v.10.00.08 (2) to remove
parsimony uninformative sites and analyzed the concatenated
dataset in Tree analysis using New Technology (TNT) (3). A tra-
ditional heuristic search was conducted first with tree bisection re-
connection (TBR), 1,000 random taxon-addition replicates holding
10 trees per replicate, and sequence indels treated as missing data.
Several new technology searches using Ratchet and Drift options
were also done. The minimum number of steps found in these
previous searcheswas usedas the target for a new technology-driven
search. This analysis was run until trees with this number of mini-
mum stepswere hit 1,550 times. The initial sequence additionswere
set to 10. Support for thebranches in the strict consensus of all of the
equally parsimonious trees found was assessed with 1,000 boot-
strap pseudoreplicates. Each resampled matrix was searched 10
times using a combination of drifting, tree-fusing, and random
sectorial searches, and the consensus tree of each iteration was
saved. The 1,000 consensus trees from the resampledmatrices were
opened in Winclada for calculation of nodal support of the strict
consensus of the most parsimonious trees.

ML Analysis. ML analyses were done in the program RaxML-VI-
HPC (4) with the concatenated dataset partitioned into four par-
titions: (i) ribosomal genes, (ii) first codon positions, (iii) second
codon positions, and (iv) third codon positions.We usedRaxML’s
rapid bootstrap algorithm, which uses the GTR+CAT approxi-
mation to conduct 1,000 bootstrap replicates. Every fifth bootstrap
tree was then used as a starting point to search for the highest-
scoringML tree under GTR+I+G for a total of 200ML searches.
The bootstrap support values were shown on the ML tree.

Bayesian Analysis. The Bayesian analyses were done in MrBayes
v.3.1.2 (5). Each gene was individually analyzed under one or two
different models according to the results of the model tests de-
scribed above. The individual gene datasets were analyzed with
two independent runs with four chains each for ∼20 million gen-
erations. The parameter trace files of each run were observed to
verify that the runs had converged on the stationary distribution
and to decide on the appropriate number of generations to discard
as burn-in. Convergence was also assessed by observing the pos-
terior probabilities of clades over generations in the program
AWTY (6).
The concatenated dataset was analyzed under the different

partitioning schemes described above. For the concatenated an-
alyses, all partitions used the GTR+I+G model, with each pa-
rameter unlinked across partitions. Two individual runs of 20–50
million generations with four chains each were conducted for the
variously partitioned concatenated dataset (|28S|18S|Ops|Win|
Pol|Nak|EF-1α|, |28S,18S|Ops|Win|Pol|Nak|EF-1α|, and |28S|18S|
pos1|pos2|pos3|). Our preferred partitioning scheme, where the
two ribosomal genes are combined into one partition and the
protein-coding genes are combined together and partitioned by
codon position (|28S,18S|pos1|pos2|pos3|), was much more thor-
oughly analyzed. A total of 46 independent runs, 44 with four
chains and 2 with eight chains, were conducted. The number of
generations for each run varied from 4,096,000 to 23,353,000
generations. The tree files and parameter files with the burn-in
removed from each run that had reached convergence were com-
bined. Runs that had not converged were discarded. A maximum
clade credibility tree was constructed from these 268,560,000
postburn-in generations in TreeAnnotator v1.4.8 (7). We chose to
do numerous shorter runs instead of a few longer runs because of
run-time restrictions on the computer clusters at Cornell Uni-
versity’s Computational Biology Service Unit. Also, doing a large
number of independent runs from different starting points allowed
us to more fully explore tree space.

Divergence Time Estimates.We describe below the paleontological
evidence on which our 10 calibration points are based.
Calibration 1. The fossil beeEuglossamorenei, which is fromMiocene
Dominican amber, was described and placed within Euglossa based
on morphological characters (8). Several characters, however, dif-
ferentiated this species from any of the described subgenera, sug-
gesting that it represents a lineage of euglossine bees that is no
longer extant (8).We, therefore, placed this fossil as part of the stem
group of the genus Euglossa. Based on biostratigraphic and paleo-
geographic data, Dominican amber has been dated to be of late
EarlyMiocene through earlyMiddleMiocene (15–20Mya) age (9).
A lognormal distribution with a lognormal mean of 3 (20Mya), SD
of 1, and 0 offset of 11.6 Mya was applied as a prior for calibration
point 1.
Note that Eufriesea melissiflora was first described under the

name Paleoeuglossa melissiflora (10) but was later transferred to
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Eufriesea (8). This fossil cannot be placed within the crown group
ofEufrieseawith confidence but only its stem group. It is also from
Dominican amber of the same single sedimentary basin as E.
morenei.Therefore, this fossil was not used to inform a calibration
point, because E. morenei already informs a calibration node
nearer the tips of the tree.
Calibration 2. Apis lithohermaea (11) is the oldest fossil record for
crown-group Apis. The fossil is from the Chôjabaru Formation of
Iki Island, Japan, which has been dated to be from the middle
Miocene (11). Based on some keymorphological characters, it was
assigned to the dorsata species group and was described as being
quite similar to modernA. dorsata (11). This fossil, therefore, pro-
vides a minimum age for the diversification of A. dorsata from
A. cerana, a member of the mellifera species group. A lognormal
distribution with a lognormal mean of 2.8 (17 Mya), SD of 1, and
0 offset of 11.6 Mya was applied as a prior for calibration point 2.
Calibration 3. There are several fossil honey-bee species that are
thought tobelong to thestemgroupofApis (12).Theoldestof these
fossils is a compression fossil of A. henshawi from the Oligocene,
Rott, Germany. The age of this famous European shale deposit is
somewhat ambiguous, being either late Oligocene (Chattian) or
early Miocene (Aquitanian) age (13). A lognormal distribution
with a lognormalmeanof 3.5 (33Mya), SDof 1, and 0 offset of 20.4
Mya was applied as a prior for calibration point 3.
Note that the two fossil bee species of the armbrusteri species

group,A. armbrusteri andA.nearctica, are thought to share themost
recent common ancestor with extantApis species (11, 14). The type
specimen of A. armbrusteri was described from worker bees pre-
served on a slab of thermal limestone found near Böttingen in the
Swabian Alb, Württemburg, Germany (11). The Randecker Maar
is thought to be from the Early Miocene (13). A. nearctica was re-
cently described from a worker preserved in paper shale from the
Middle Miocene (Late Barstovian; 14–14.5 Mya) of the Stewart
Valley Basin in west-central Nevada (14). Potassium-argon dating
indicates an age of 16–10.5 Mya (13).
There have been a few reliable Bombus compression fossils

described from the Miocene. These are Bombus vetustus, B. luia-
nus, and B. proavus.However, these fossils do not reveal sufficient
morphological synapomorphies ofBombus to be placed within the
crown group of Bombus instead of the stem group (15). Grimaldi
and Engel (13) mention the existence of various European Oli-
gocene Bombus spp. but give no citation for these. We could not
find any described Bombus fossils from the Oligocene that are
still believed to belong toBombus, and therefore, we assume that
these fossils have not yet been described; we do not know if they
would belong to the stem or crown group of Bombus. Therefore,
the Bombus fossils could only be used as a minimum age on the
node uniting Bombini with Meliponini. However, there have
been much older fossils described that could be placed as
a minimum age for this node, and therefore, we do not use any of
the Bombus fossils in this analysis.
Calibration 4. Kelneriapis eocenica is a fossil bee from the Baltic
amber thought to be most similar to, and perhaps sister to, Hy-
potrigona (16). Therefore, this fossil can be used to set a minimum
age on the node of the most recent common ancestor of Hypo-
trigona and its sister lineage in the phylogeny.Liotrigonopsis rozeni
is also a fossil bee from the Baltic amber and is thought to be
morphologically similar to the extant genus Liotrigona (16), which
is hypothesized to be the sister genus to Hypotrigona (17). Lio-
trigona was not included in this analysis, however, but this fossil
also serves to inform a minimum age on the split of Hypotrigona
from other extant stingless bees. K/Ar radiometric studies of
the Baltic amber, which occurs in the blau Erde (blue Earth)
throughout northern Europe, indicate it to be 44.1 ± 1.1 Mya
(middle of the Lutetian stage of the Eocene) (18). A lognormal
distribution with a lognormal mean of 3.85 (47Mya), SD of 1, and
0 offset of 33.9 Mya was applied as a prior for calibration point 4.

Note that Proplebeia dominicana, P. tantilla, and P. vetusta are
fossil bees fromDominican amber. A study of the extinct fauna of
stingless bees in Dominican Amber corroborated the hypothesis
that Proplebeia is a distinct group within the lineage of Neotropical
Plebeia (s.s) (19).Plebeiawas not included in this phylogeny but has
been placed within a largeNeotropical clade of stingless bees (17),
which is represented in this analysis by the most recent common
ancestor of Trigona and Melipona. Therefore, a minimum age of
15–20 Mya (Calibration 1 discusses age of Dominican amber)
could be placed on this node, but calibration point 4 already pro-
vides a much older age estimate for this node.
Calibration 5. Cretotrigona prisca is the oldest crown-group bee fossil
recorded. It is from theLateCretaceous amber ofNew Jersey (20).
It was first placed within Trigona (20) but was later placed sister to
the African genusDactylurina (21). These two genera superficially
resemble each other but are not phylogenetically close to one
another (17). Therefore, this fossil can only be used as a minimum
age on the node uniting all of the extant stingless bees.
The age of this fossil has been debated. It was first thought to be

Campanian (ca. 80 Mya) in origin based on chemical comparison
with other New Jersey ambers (20). However, based on the other
insects found in this amber, it was suggested that it was of Tertiary
age—probably from the Paleocene (22). It was once again argued
that it was of Cretaceous age based on infrared spectroscopy and
pyrolysis gas chromatography as well as the presence of other in-
sects in the amber fragment dated to the Turonian (23). This fossil
is usually now treated as being of Late Maastrichtian (ca. 65–70
Mya) age (21). A lognormal distribution with a lognormal mean of
4.25 (70Mya), SDof 1, and 0offset of 55Myawas applied as a prior
for calibration point 5.
Note that there are numerous fossils from the Baltic amber that

havebeenplacedwithin thecorbiculatebees (16).Manyof thesedo
not fall within extant tribes but have been instead assigned to their
own fossil tribes. Electrobombini, Electrapini, and Milikertini are
corbiculate tribes containing only fossil bees. In a cladistic analysis
with representatives of extant corbiculates and a few outgroups,
the phylogenetic relationships among and within these tribes were
analyzed (16). However, because of the difference in topology of
the corbiculate tribes between most morphological and molecular
studies described in the paper, these fossils can at best be used as
a minimum age for the common ancestor of corbiculates. Pending
a clearer resolution of extant and fossil corbiculate relationships,
these fossil corbiculates provide limited information on the age of
the extant groups. However, C. prisca is also placed within the
corbiculates and is of much older age.
Calibration 6.Therehavebeen threefossil beespeciesdescribedfrom
the Baltic amber that have been placed in the fossil bee tribe Bor-
eallodapini. Boreallodapini most resembles the extant Ceratinini
and Allodapini (Xylocopinae). A phylogenetic analysis placed it
as sister to the Allodapini, with Ceratinini being sister to Bor-
eallodapini + Allodapini (16). These tribal relationships are in
agreementwith those found in this present phylogeny of extant taxa
only, and therefore, these fossils were used to inform a minimum
age for the node uniting Allodapini and Ceratinini (Calibration 1
discusses the age of the Baltic amber). A lognormal distribution
with a lognormal mean of 3.85 (47 Mya), SD of 1, and 0 offset of
33.9 Mya was applied as a prior for calibration point 6.
Calibration 7. Paleohabropoda oudardi from the lacustrine shales of
Menat in France has been placed within the tribe Anthophorini
based on a morphological cladistic analysis and wing morpho-
metrics (24). Evidence frompollen and themammals also found in
Menat suggest it is of Paleocene age. K/Ar analysis proposes a date
of ∼56Mya for theMenat fossils (25). This fossil is used to inform
the calibration of the node uniting the Anthophorini. A lognormal
distribution with a lognormal mean of 4.09 (60Mya), SD of 1, and
0 offset of 23 Mya was applied as a prior for calibration point 7.
Calibration 8. Xylocopa gabrielae was described from a female bee
preserved as a compression fossil from the Eocene–Oligocene

Cardinal et al. www.pnas.org/cgi/content/short/1006299107 2 of 8

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1006299107/-/DCSupplemental/pnas.201006299SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1006299107/-/DCSupplemental/pnas.201006299SI.pdf?targetid=nameddest=STXT
www.pnas.org/cgi/content/short/1006299107


boundary (34Mya) of Florissant, Colorado (26). The combination
of characters present in the fossil indicates that it is a species of
Xylocopa; however, because of a general lack of preserved fea-
tures, it is not possible to assign it to any recognizable subgenera
(26). Therefore, there is the possibility that this fossil is part of the
stem, rather than crown, group of Xylocopa. However, this age
seems reasonable for the node of extant xylocopines, because there
is a Miocene fossil from China closely resembling extant Xylocopa
(Nyctomelitta) (27) and fossils from Switzerland of Middle Oligo-
cene age (28)most likely related toXylocopa s.s. andCopoxyla (29).
A lognormal distribution with a lognormal mean of 3.53 (34 Mya),
SDof 1, and 0 offset of 23Myawas applied as a prior for calibration
point 8.
Calibration 9. The oldest fossil of a melittid bee is Paleomacropis
eocenicus from the early Eocene amber of Oise (France) (30). In
a cladistic analysis, it formed the sister group to Macropis with
another fossil bee Eomacropis glaesaria, falling as the sister to
Macropis+Paleomacropis (30).E. glaesaria is fromBaltic amber of
the late Eocene (16). The Paris Basin amber of Oise, France, is
thought to be of Ypresian age (13). This fossil is used to calibrate
the node representing the common ancestor of Macropis and its
sister group. A lognormal distribution with a lognormal mean of
4.01 (55 Mya), SD of 1, and 0 offset of 40.4 Mya was applied as
a prior for calibration point 9.
Calibration 10. Probombus hirsutus was first described as a bumble-
bee. However, after doubts were placed on this (22), it was re-
examined and transferred to the Megachilidae (31). The fossil is
thought to bepart of theMegachilinae, probably related toOsmiini
or Megachilini (31), which together form a monophyletic group.
We, therefore, use this fossil to calibrate the node uniting the Os-
miini, Megachilini, and Anthidiini. This fossil is from a spon-
godiatomitic volcanic paleolake (maar) deposit in Menat, Puy-de-
Dôme, France. K/Ar analysis proposes a date of ∼56 Mya for the

Menat fossils (25). A lognormal distribution with a lognormal
mean of 4.09 (60 Mya), SD of 1, and 0 offset of 48.6 Mya was ap-
plied as a prior for calibration point 10.
Note that Protolithurgus ditomeus was described from Baltic

amber (16). In a cladistic analysis, it was placed sister to all other
lithurgines because of the plesiomorphic retention of some char-
acters (16). This fossil can, therefore, only be used to calibrate
the node uniting Lithurgini with the other Megachilinae.
Four fossil species described from the Baltic amber have been

assigned to the fossil genus Glyptapis (16). The phylogenetic po-
sition of Glyptapis is uncertain and may possibly be more closely
allied to Anthidiini than other Osmiini. Therefore, these fossils
can tentatively be used as aminimumage on the node representing
the most recent common ancestor of Anthidiini and extant Os-
miini, which is the same node used for calibration point 10.
Four fossil species described from the Baltic amber and one

fromRovno Amber (of roughly contemporaneous age) have been
assigned to the fossil genus Ctenoplectrella of the subtribe Cteno-
plectrellina (32, 33). Glaesosmia genalis has also been described
from a fossil of the Baltic amber (16). A third genus was recently
added to the tribe Ctenoplectrellini or subtribe Ctenoplectrellina.
The type species, Friccomelissa schopowi (34), is described from
a fossil recovered from a Messel pit near Darmstadt, Hesse,
Germany. The Messel Formation is from the lower mid-Eocene,
Geiseltalian, ca. 47Mya (34).Friccomelissamight represent a stem
group to Ctenoplectrellini (34). Ctenoplectrellina has been placed
in the tribe Osmiini, which might be paraphyletic with respect to
the Megachilini (16). Ctenoplectrellina is now its own tribe (Cte-
noplectrellini) (34) and may be sister to extant Osmiini + Mega-
chilini; therefore, it cannot provide a minimum age to the most
recent common ancestor of Osmiini + Megachilini but to one
nodeback from there,which iswhere calibration point 10 is placed.
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Fig. S1. Bayesian maximum clade credibility tree of the concatenated dataset showing relationships among apid bees and outgroups. Posterior probabilities
are shown on the left of each node.
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Fig. S2. ML clade credibility tree of the concatenated dataset showing relationships among apid bees and outgroups. Bootstrap support values are shown in
percent values on the right of each node.
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Fig. S3. Strict consensus of 32 equally parsimonious trees of the concatenated dataset showing relationships among apid bees and outgroups. Bootstrap
support values are shown in percent values on the left of each node.

Cardinal et al. www.pnas.org/cgi/content/short/1006299107 6 of 8

www.pnas.org/cgi/content/short/1006299107


Ammobatini
Caenoprosopidini
Nomadini
Ammobatoidini
Hexepeolini
Townsendiellini
Biastini
Neolarrini
Epeolini
Brachynomadini
Osiris
Epeoloides
Protepeolini
Isepeolini
Ericrocidini
Rhathymini
Parepeolus
Coelioxoides
Melectini
Anthophorini
Epicharis
Centris
Bombini
Meliponini
Apini
Eulaema
Aglae
Exaerete
Euglossa
Eufriesea
Ceratinini
Allodapini
Manueliini
Xylocopini
Tetrapedia
Ctenoplectrina
Ctenoplectra
Ancyloscelis
Exomalopsini
Emphorini
Tapinotaspidini
Eucerini
Ancylini
Outgroups

Fig. S4. Pruned version of the Bayesian maximum clade credibility tree of the concatenated dataset. Alternative equally parsimonious reconstructions of
cleptoparasitism are mapped onto the tree. Cleptoparasitic taxa are shown in red, and nest-making taxa are in black. The main tree shows the hypothesis of
four independent origins of cleptoparasitism, whereas Inset shows the reconstruction within orchid bees when three independent origins with one reversal
back to nest making are hypothesized.
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Fig. S5. Pruned version of the Bayesian maximum clade credibility tree of the concatenated dataset. Cleptoparasitic taxa are shown in red, and nest-making
taxa are in black. Cleptoparasitism is mapped onto the tree according to the results of our model-based ancestral state reconstruction. Pie charts show the
probability of the ancestral state being cleptoparasitic or nest making at four key nodes in the tree.
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Fig. S6. Distribution, mean, and variance of the 100 Bayes Factor tests when the node uniting Euglossa, Exaerete, and Aglae was constrained to be nest
making versus cleptoparasitic. Values above 0 indicate support for a nest-making ancestor, and those above 6 are considered to be strong support for
this hypothesis.
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