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S| Methods

Observers. Seven students from the University of Birmingham,
United Kingdom, participated in this study. All observers had
normal or corrected to normal vision and all were right-handed.
The study was approved by the local ethics committee and all
participants gave written informed consent.

Stimuli. The stimuli were created with Matlab 7.1 (Mathworks), and
displayed with the PsychToolbox (1, 22). All stimuli (8 x 8°) were
created in greyscale. Bright (42 cd/m™) and dark (1 cd/m ) con-
tours defined a ring displayed on a gray background (21 cd/m™2).
All displays used in this study were gamma-corrected in luminance.
Each ring was divided in eight equal sectors (of 45° each) and all but
one had the same appearance (i.e., convex or concave). The light
source was simulated at a position of +22.5° or +67.5° away from
the vertical meridian (Fig. 1B).

The perception of concavity or convexity in combination to the
light source direction (left or right and + 22.5 or 67.5°) produces
eight types of images (Fig. 14). The odd sector could be located at
any of six positions shown in Fig. 14, image “a.” Note that, apart
from the odd sector, the eight images shown in this figure are the
results of rotating the first image (Fig. 14, image “a”) in steps of 45°.
The stimuli were blurred by applying low-pass filters to enhance
depth perception. To avoid a perceptual bias for convex stimuli
found in our previous study (3) when blur increased, we chose two
Gaussian filters with small SDs (either 2.82 or 4.00 pixels). As
a result, no differences in correct responses were found between
convex and concave stimuli (Fig. S1B). Once the filter was applied,
the image contrast was readjusted to cover the full range. All to-
gether, 96 stimuli were created and shown to all observers, corre-
sponding to two shapes (convex and concave), four light directions
(£22.5 and +67.5°), six odd sector positions (three on the left, three
on the right), and two blur levels.

Procedure. For each individual observer, we identified cortical
areas involved in the processing of 3D shape-from-shading. We
presented observers with 48 ring stimuli [two shapes (convex or
concave) X four light directions (+22.5° and +67.5°) x six sector
positions] and 24 scrambled versions of these stimuli. Observers
were instructed to perform a detection task on the fixation (i.e.,
participants were asked to press a button when the fixation cross
changed from “+” to “Xx”). Each observer was tested in four
scanning runs. Each run consisted of 18 blocks plus four fixation
intervals (including one at the start, one at the end, and one be-
tween each repetition) and lasted for 352 s. We tested six con-
ditions: left-lit convex, left-lit concave, right-lit convex, right-lit
concave, scrambled convex, and scrambled concave stimuli. Each
block comprised stimuli (» = 12) of one condition and it was
repeated three times. Blocks were presented in a randomized
sequence. Each stimulus was presented for 200 ms followed by
a blank interval (600 ms).

To investigate whether neural populations in these regions re-
flect biases in the perception of shape-from-shading, we presented
the same stimulus using eight image types (two shapes by four light
directions). Each observer participated in eight scanning runs. Each
run consisted of 18 blocks and two fixation intervals (one at the
beginning, one at the end) and lasted 288 s. The eight image types
(Fig. 1B) were repeated randomly two times in each scan. Each
image type (equaling six stimuli for the odd sector locations) de-
fined one block. Each stimulus was presented for 200 ms and
followed by a blank (600 ms). To ensure that our results could not
be explained by attentional differences, during all functional MRI
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(fMRI) experiments, observers were instructed to detect a change
in the orientation of the fixation cross (“x” turned “+”). Perfor-
mance for this task was 82% correct (+2%) for the first fMRI
experiment (ring stimuli vs. scrambled) and 80% (+£3%) for the
second (eight image types).

Mapping Regions of Interest. For each observer we identified: (i)
retinotopic areas, (i) the lateral occipital complex (LOC), (iii)
motion-related areas (V3B/KO, hMT+/V5), and (iv) shape-from-
shading responsive areas. We localized retinotopic areas using
standard mapping procedures (4-6). We localized the LOC, V3B/
KO, and hMT+/V5 using the general linear model, including
fixation periods and movement correction parameters as co-
variates of no interest. The LOC was defined as the set of con-
tiguous voxels in the ventral occipito-temporal cortex that showed
significantly stronger activation [#(165) > 4.0, P < 0.001] for intact
than scrambled images (7). The hMT+/V5 (8) was defined as the
set of contiguous voxels in the lateral occipito-temporal cortex that
showed significantly stronger activation [¢(165) > 4.0, P < 0.001]
for moving than static random dots. The V3B/KO was defined as
the set of contiguous voxels anterior to V3A that showed signifi-
cantly stronger activation [#(165) > 4.0, P < 0.001] for random-dot
displays that defined relative than transparent motion (9). To
identify cortical regions responsive to shape-from-shading, we
compared fMRI responses to the ring stimuli and scrambled ver-
sions of the stimuli using the general linear model. We performed
this analysis across the group of subjects and for each individual
observer. For the group analysis, smoothed volume time-course
data (Gaussian kernel of 6 mm FWHM) was z-transformed and
modeled with six regressors of interest [six stimulus conditions
(four light orientations and two scrambled) and fixation baseline]
convolved with a canonical hemodynamic response function.

SI Results

Psychophysical Results. Because the images are ambiguous (a convex
shape lit from below produces the same image as a concave shape lit
from above), there is no correct answer for the perceived shape of
the odd element in our psychophysical task. Therefore, the proper
way to display what the observers perceive is to report the propor-
tion of times convexity is perceived for each image type, as we have
done in Fig. 1C. However, it is still informative to look at our psy-
chophysical data if we assume that the light source is above. In this
case, image types “a,” “b,” “g,” and “h” from Fig. 14 correspond to
convex rings, and image types “c,” “d,” “e,” and “f” to concave rings
(see Fig. 1B). Fig. S14 represents the percentage of correct re-
sponses under this assumption for the four lighting directions. The
plot shows a maximum for stimuli from the left at —22.5°, which is
consistent with the claim that observers had a bias to the left for the
assumed light source position. In contrast, stimuli lit from the right at
67.5° were significantly different [F(1,12) = 35.9, P < 0.0001] and
produced performance close to chance.

Fig. S1B represents the percentage of correct responses when
the data are pooled across object shape (Upper) or across global
lighting direction (Lower). Again, assuming above illumination,
convex scores are percent-correct for reporting a concave odd
sector in a globally convex stimulus (and similarly for concave
scores). There are no differences between concave and convex
scores [F(1,54) = 0.91, P = 0.34], indicating that our stimuli did
not generate a biased response in favor of one of the two shapes.
This lack of bias for convex shapes was desired (to avoid a po-
tential confound) and expected from the choice of the low-pass
filters applied on the images (see our previous study in ref. 3).
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Finally, again assuming above illumination, left scores are per-
cent-correct for correctly reporting the shape of the odd sector
when the object is lit from the left side (and similarly for right
scores). Left scores are consistently larger than right scores [F
(1,54) = 22.09, P < 0.0001], indicating observers reported
a perceived shape that agreed better with the light-from-above
assumption when the object was lit from the left. This advantage
for left scores comes from the bias to the left for the assumed
light-source position, and as such is another measure of the left
bias of each observer.

Behavior Classifier Models. We detail here the simple models we
used to determine the expected accuracy performance of the Shape
and Light behavior classifiers. The Shape behavior model uses the
behavioral data for each observer (Fig. 1C) to determine the re-
liability of the shape judgment of each image. More precisely, it
represents the reliability with which an image is judged as a convex
ring with a normal distribution centered on the proportion of
convex judgments of that image (say around 80% for image “a”)
and with SD the SE of these judgments scaled by a noise factor.
This scaling noise factor could represent a mixture of the noise
inherent in the fMRI signal collection and the fact that our clas-
sifier used at most 100 voxels, whereas the observer as a whole has
access potentially to the output of many more cells in an area. The
value chosen for the scaling factor (constant for all images) did not
change the pattern of performance across the four classifiers, so we
decided to set it separately for each observer so that the maximum
model performance matched the best classifier performance found
across any cortical area for that observer.

Each classifier (e.g., the second one in Fig. 34) therefore has
access to two distributions representing the convexity strength of
the two images to classify (images “a” and “e” for the second
classifier). From Signal Detection Theory (10), the sensitivity to
classify these two images is represented by the distance between
the means of the distributions normalized by the SD of the
distributions. Intuitively, classification performance increases the
further apart the two distributions are and the less spread there
is around the means. Therefore, there are two factors that can
affect the classification accuracy, the difference in shape judg-
ment between the images and the variability of the decisions.
Classification accuracy will deteriorate with higher perceptual
similarity between the two images and higher variability in the
perceptual judgments.

The Light behavior model uses the behavioral data for each
observer to determine the bias to the left for the assumed light
source position from the shift of the scaled cosine of the fit of the
shape judgments (Fig. 1C). More precisely, it represents the
prior distribution for light directions as a von Mises distribution
(the generalization of the normal distribution for circular vari-
ables) with mean equal to the measured bias. We then assume
that the information in the image about light direction is un-
biased and can thus be represented by another von Mises dis-
tribution, with mean equal to the simulated light direction. Prior
and likelihood are combined using Bayes’ rule to produce
a posterior distribution that represents the relative evidence that
a particular image is lit from one direction or another. The Light
behavior model takes the mean of the posterior distribution as
the estimate of the light source for that image, and the variance
of that distribution as a measure of uncertainty of that estimate.
These light estimates are biased toward the mean of the prior:
that is, toward the above-left. We can thus compute the per-
formance of our Light behavior model that attempts to classify
pairs of images using the same Signal Detection Theory princi-
ples that we used for the Shape behavior model (see above).
More precisely, the performance of the Light behavior model
was estimated from the distance between the means of light
estimates normalized by the SD of the estimates.
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So far, we have neglected to discuss the concentration param-
eters (the equivalent of the inverse of the variance for von Mises
distributions) of the prior and likelihood functions. We first assume
that the concentration parameter of the likelihood is identical for all
light directions (a reasonable assumption given that the likelihood
represents the information in the image and that this information
does not change when one rotates the image). Then we note that the
actual values of the concentration parameters for the likelihood and
prior do not change the ordering of the performance for the four
pairs of images submitted to the classifier, they only change the
overall mean performance of the classifiers and the magnitude of
the difference between the classifiers. Because we are only in-
terested in the order of the performance of the four classifiers (we
use Spearman correlations to match these models to the classifiers
for each region in Fig. 5B), we have adjusted the concentration
parameters so that the maximum performance of our model (for
the “b—g” comparison) was identical to the best performance of
any brain area. The performance of the Light behavior model
is shown in Fig. 4C. Note that this performance is an asymmetric
U-shape with respect to the four comparisons, the asymmetry re-
sulting from the left bias for the estimated light direction.

Control Analyses for the Multivoxel Pattern Analysis Results. We
conducted several additional analyses to control for possible
confounds. First, multivoxel pattern analysis (MVPA) on univariate
signals from the same regions of interest (average signal across
voxels) showed that information about Shape classification could
not be reliably extracted from the average signal across voxels,
supporting the advantage of MVPA in decoding shape from
shading from brain patterns across voxels. Second, we ran the same
classifiers with randomly assigned category labels to the activation
patterns. Accuracies were not significantly different from chance,
suggesting that the classification results could not be attributed to
random patterns in the data. Third, analysis of the functional signal-
to-noise ratio showed no significant differences across areas (Fig.
S2), suggesting that differences in the MVPA results across areas
could not be simply attributed to differences in the fMRI signals
across areas. Comparison of MVPA and control analyses for se-
lected areas [V3B/KO, lateral occipital (LO), ventral intraparietal
sulcus (VIPS), parieto-occipital intraparietal sulcus (POIPS)] is
shown in Table S3. Finally, our MVPA results could not be sig-
nificantly confounded by differences in the attentional state of the
observers or eye movements across conditions. During scanning,
observers performed a fixation task (i.e., they were instructed to
detect a change at the fixation point) with no significant difference
in performance across stimulus conditions, ensuring similar at-
tention across all stimulus conditions. Eye-movement recordings
during scanning showed that there were no significant differences
in the eye position, number and amplitude of saccades across
stimulus conditions (Fig. S3).

Control analyses for the Light classifiers, similar to those reported
for the Shape classifiers, (Table S4) were conducted to ensure that the
classification accuracies observed could not be a result of random
statistical regularities in the data (shuffling) or extracted from average
signals across voxels (univariate analysis).

Image-Based Correlation. Could the performance of the Shape and
Light classifiers simply be explained by the pixel luminance dif-
ference between the stimuli, in other words without any reference to
the observer’s behavior? To address this question, we computed
the cross-correlations between the pairs of images that form the
bases of the classifiers: for example, the pair of images “b” and “f”
for the first Shape classifier. Because the odd element could be in
one of six positions, we considered all of the possible paired com-
binations (i.e., odd element in position i in image “b” with odd el-
ement in position j in image “f””). Across all these combinations, the
mean correlation of the Shape classifier was —0.506, —0.494, —0.494,
and -0.506 for classifiers 1 through 4 (Fig. 34). The negative cor-
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relations reflect the fact that white contours became black (and
reversely) when a convex shape was compared with a concave one
for the Shape classifier. More importantly, there was very little
variability across the four Shape classifiers, thereby indicating that
the pattern of performance revealed by our Shape behavior model
(Fig. 3C) is the consequence of the observers’ perception rather
than simply some luminance asymmetry in the stimuli.

Similarly, we computed the cross-correlations across all pos-
sible paired combinations relevant to the Light classifiers: for
example, the pair of images “b” and “g” for the first Light
classifier. The mean correlation of the Light classifier was —0.093,
0.247, 0.247, and —0.093 for classifiers 1 through 4 (Fig. 44). The
positive correlations reflect the fact that some image pairs were
quite similar (e.g., images “a” and “h”), and the near-zero cor-
relations reflect the fact that about half of the pixels retained
their contrast polarity (black or white), whereas the other half
inverted their contrast (e.g., images “b” and “g”). More impor-
tantly, the pattern of correlations was symmetric across the four
classifiers (i.e., performance of classifier 1 equals that of classifier
4, and classifier 2 equals classifier 3), thereby indicating that the

. Brainard DH (1997) The Psychophysics Toolbox. Spat Vis 10:433-436.

2. Pelli DG (1997) The VideoToolbox software for visual psychophysics: Transforming
numbers into movies. Spat Vis 10:437-442.

3. Gerardin P, de Montalembert M, Mamassian P (2007) Shape from shading: New
perspective from the Polo Mint stimulus. J Vis 7(11):13, 1-11.

4. Engel SA, et al. (1994) fMRI of human visual cortex. Nature 369:525.

5. Sereno M, et al. (1995) Borders of multiple visual areas in humans revealed by
functional magnetic resonance imaging. Science 268:889-893.

6. DeYoe EA, et al. (1996) Mapping striate and extrastriate visual areas in human

cerebral cortex. Proc Nat/ Acad Sci USA 93:2382-2386.

Gerardin et al. www.pnas.org/cgi/content/short/1006285107

unbalance of our Light behavior model (Fig. 4C) is the conse-
quence of the observer’s perception rather than simply some
luminance aspects of the stimuli.

Although all of the necessary information about image-pair
similarity is contained in these correlation coefficients, we trans-
formed these correlation coefficients into a performance value
(proportion correct) for easier comparison with our behavior-
based models. This transformation involves a model that attempts
to discriminate two images that are noisy versions of two templates,
templates that are more or less correlated. For the same level of
noise, discrimination performance will be at chance if the two
templates are perfectly correlated, and performance will increase
as the correlation decreases. Note that the relationship between
correlation and performance is monotonically decreasing, so the
ordering of performance is not affected by the level of noise ac-
tually chosen (only the ordering is relevant for the Spearman rank
correlations used to generate Fig. 5B). The outcome of these
simulations was used to generate Figs. 3B (Shape Image Model)
and 4B (Light Image Model) in the article.
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Fig. S1. Performance under the above illumination assumption. (A) With the assumption that light comes from above, each image type from Fig. 1A is as-
signed a particular shape (convex or concave ring). This plot shows the performance of the observers under this assumption for the four lighting directions. The
asymmetry of the plot is a signature of the bias to the left for the assumed light source position. (B) Comparison of performance for different shapes of the odd
element and different global lighting directions. There are no biases to report convex rather than concave shapes (Upper) but a consistent advantage for left
illuminations. Each symbol represents one observer (n = 7).
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Fig. S2. Functional signal-to-noise ratio is shown across all regions of interest (ROIs) for responses to stimuli in the main experiment. We computed the
average functional signal-to-noise ratio for the voxels included in the multivariate analysis by taking the difference between the mean response to the stimuli
and the mean response to the fixation, divided by the SD of the mean across all stimulus conditions and fixation. Error bars indicate SEM across observers.
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Fig. 3. Eye movements were recorded from three participants during the main experiment using the ASL 6000 videographic eye tracker (Applied Science
Laboratories). Eye tracking data were preprocessed using the Eyenal software (Applied Science Laboratories) and analyzed using custom Matlab (Mathworks)
software. We computed (A) horizontal eye position, (B) vertical eye position, (C) proportion of saccades for each condition at different saccade amplitude
ranges, (D) number of saccades per trial per condition, and (E) the mean horizontal eye position. For each condition, plots of the horizontal and vertical eye
positions for each stimulus type peaked and were centered on the fixation at 0°. A repeated-measurement ANOVA indicated that there was no significant
difference between stimulus conditions on mean horizontal eye position [F(7, 84) = 0.63, P = 0.575], mean vertical eye position [F(7, 84) = 0.877, P = 0.625],
mean saccade amplitude [F(7, 84) = 1.46, P = 0.9], or the number of saccades per trial per condition [F(7, 11) = 3.4, P = 0.19]. These results suggest that it is

unlikely that our results were significantly confounded by eye movements.
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Fig. S4. (A) Shape classification (convex vs. concave) based on the assumed left (22.5° and 67.5°) and right (22.5° and 67.5°) light sources position [VIPS, POIPS,
and dorsal intraparietal sulcus (DIPS): n = 3]. Prediction accuracy for the convex and concave classification across the assumed four light-source positions. Mean
classification accuracy (pattern size = 100 voxels per area) across participants is shown for each ROI; error bars indicate SEM across observers. The dashed line
indicates the chance classification level (50%). A significant main effect of light orientation was found for all these areas [VIPS: F(3,24) = 90.6, P < 0.0001; POIPS:
F(3,24) = 25.5, P < 0.0001; and DIPS: F(3,24) = 34, P < 0.0001]. (B) Light classification (left vs. right) for the four classifiers of Fig. 4A across three subregions of the
IPS (VIPS, POIPS and DIPS: n = 3). Prediction accuracy for the convex and concave classification across the assumed four light-source positions. No significant
main effect of light orientation was found in these areas [VIPS: F(3,24) = 2.39, P = 0.09; POIPS: F(3,24) = 0.9, P = 0.4; and DIPS: F(3,24) = 0.05, P = 0.06].

Table S1. Tables of Talairach coordinates for ROI (group analysis; n = 7) for all areas showing
significantly stronger activation for the ring stimuli vs. scrambled stimuli

PoloMint localizer LH RH

ROI X y z X y z

LO -39 -64 -5 a4 -57 -8
V3B/KO -34 -78 13 36 -77 13
VIPS =24 -68 28 26 -67 27
POIPS -20 -67 43 20 -60 a4
DIPSM -25 -52 55 20 -54 51
DIPSA 34 -40 a4
PMv 46 0 27
SPL -20 -57 56 21 -55 59
Postcentral -52 =24 38

LH, left hemisphere; RH, right hemisphere; LO, lateral occipital; V3B/KO, kinetic occipital, VIPS: ventral intra-
parietal sulcus; POIPS, parieto-occipital intraparietal sulcus; DIPS, dorsal intraparietal sulcus median (M) and
anterior (A); PMv, premotor ventral; SPL, superior parietal lobule; Postcentral area. Individual analysis: only three
subjects showed sufficient amount of selected voxels (>50) to run the classifiers in areas VIPS, POIPS, and DIPS (see
Fig. 54).
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Table S2. Effects of light directions on classifiers performance

Shape classification Light classification
Areas F(3,24) P Areas F(3,24) P
Vi 2.33 0.08 V1 170.6 <0.0001
V2 61.67 <0.001 V2 164 <0.0001
V3v 8.09 0.054 V3v 103.8 <0.0001
V4v 9.13 0.084 V4v 24.1 <0.001
LO 55.79 <0.0001 LO 2.78 0.08
V3d 26.22 <0.0001 V3d 184.9 <0.0001
V3A 28.74 <0.0001 V3A 75.45 <0.0001
V7 24.18 <0.0001 V7 38.2 <0.0001
V3B/KO 51.19 <0.0001 V3B/KO 64.8 <0.0001
hMT+/V/5 52.49 <0.0001 hMT+/V/5 3.56 <0.05
IPS 34.02 <0.0001 IPS 0.18 0.9

Repeated-measures ANOVAs were performed on individual cortical areas to test the main effects of the four
light directions on the classification accuracies obtained in the MVPA on Shape and Light. The table shows the
F-ratios and associated P values.

Table S3. Comparison of multivariate, univariate, and shuffling analysis for representative areas: Shape

Hemispheres All Left Right
V3b/KO
Light Source (MVPA rule) L67 L22 R22 R67 L67 L22 R22 R67 L67 L22 R22 R67
ROC: multivariate 54.90 64.70 57.80 58.60 51.20 56.60 66.80 55.40 54.40 68.20 52.40 59.90
ROC: univariate 41.30 53.60 56.50 49.80 48.08 48.80 52.00 51.90 47.00 53.05 55.90 55.80
ROC: shuffle 48.00 49.10 48.00 50.00 48.00 52.50 51.80 51.80 53.00 51.65 49.35 50.65
LO
Light Source (MVPA rule) L67 L22 R22 R67 L67 L22 R22 R67 L67 L22 R22 R67
ROC: multivariate 52.00 58.80 62.20 55.60 49.30 59.00 64.50 56.00 50.80 54.60 65.10 59.00
ROC: univariate 45.60 55.90 51.30 47.00 50.70 50.70 50.25 56.00 46.00 55.70 53.80 51.75
ROC: shuffle 48.00 50.50 49.15 52.45 51.50 52.00 48.00 50.75 49.00 51.30 49.00 50.65
VIPS
Light Source (MVPA rule) L67 L22 R22 R67 L67 L22 R22 R67 L67 L22 R22 R67
ROC: multivariate 50.30 68.75 58.70 50.00 47.00 65.30 64.60 44.40 58.00 65.30 52.30 50.00
ROC: univariate 49.20 48.00 45.00 52.20 49.35 53.40 54.00 49.00 49.00 55.50 50.50 52.70
ROC: shuffle 53.45 50.40 51.30 50.35 54.80 52.70 48.65 49.70 48.00 51.15 50.52 51.40
POIPS
Light Source (MVPA rule) L67 L22 R22 R67 L67 L22 R22 R67 L67 L22 R22 R67
ROC: multivariate 58.30 63.50 58.30 52.00 52.30 68.75 42.70 46.90 56.25 60.40 57.30 51.00
ROC: univariate 50.00 52.00 48.00 48.00 48.00 55.20 47.90 53.50 49.15 51.30 49.70 55.50
ROC: shuffle 53.50 51.50 51.00 52.00 53.40 50.60 49.15 49.40 52.80 50.45 49.55 51.55
Shape classification (convex, concave) according to each light source position (left or right 67.5° and 22.5°).
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Table S4. Comparison of multivariate, univariate, and shuffling analysis for representative areas: Light

Hemispheres All Left Right
V1
Light Source (MVPA rule) Cx67 Cx22 Cv22 Cv67 Cx67 Cx22 Cv22 Cv67 Cx67 Cx22 Cv22 Cv67
ROC: multivariate 64.10 56.70 46.80 61.20 56.80 56.00 50.70 59.70 63.30 54.70 48.00 65.80
ROC: univariate 53.60 50.35 50.00 52.00 49.00 51.00 49.50 49.30 50.00 49.50 49.15 50.65
ROC: shuffle 52.70 51.30 51.00 52.80 52.00 48.30 51.30 54.50 46.35 52.40 53.70 49.20
V3
Light Source (MVPA rule) Cx67 Cx22 Cv22 Cve7 Cx67 Cx22 Cv22 Cve7 Cx67 Cx22 Cv22 Cve7
ROC: multivariate 65.50 52.80 49.90 64.20 50.80 51.10 51.10 63.30 62.30 54.20 49.40 53.50
ROC: univariate 55.00 48.70 46.30 54.20 50.60 52.60 48.60 48.00 52.40 50.15 47.80 52.10
ROC: shuffle 53.40 48.00 51.50 51.20 47.75 47.80 53.20 53.00 48.20 50.00 49.50 50.65
V3A
Light Source (MVPA rule) Cx67 Cx22 Cv22 Cv67 Cx67 Cx22 Cv22 Cv67 Cx67 Cx22 Cv22 Cv67
ROC: multivariate 58.50 56.00 51.00 63.00 56.30 53.50 48.80 63.20 52.70 54.90 49.00 53.70
ROC: univariate 47.00 56.40 48.40 52.90 49.00 54.00 50.70 46.40 52.15 50.40 50.00 51.50
ROC: shuffle 53.00 47.00 50.70 49.60 48.00 49.0 52.00 52.20 48.90 51.30 50.80 49.30
VP
Light Source (MVPA rule) Cx67 Cx22 Cv22 Cve7 Cx67 Cx22 Cv22 Cve7 Cx67 Cx22 Cv22 Cve7
ROC: multivariate 64.10 55.40 49.90 55.20 50.70 48.75 45.50 53.70 57.00 54.60 50.40 57.30
ROC: univariate 47.00 52.40 50.30 52.40 50.05 49.40 49.00 48.60 54.00 52.05 51.10 50.50
ROC: shuffle 50.00 47.00 52.00 50.50 51.00 50.60 52.30 48.80 48.70 50.70 49.72 47.00
Light classification (left, right) according to each lit shape (convex or concave at 22.5° and 67°).
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