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Derivation of modified Young-Laplace Equation (Equation 4a in the paper) 

For calculating the volume of a droplet sinking into the cylindrical entry port of a micro-fluidic 

device with a pseudo-concentric descend pattern (Fig. 2c and 2d in the paper) the continuously 

changing shape of the droplet is approximated as a stack of thin disks. At each ti time instant the 

radii, volumes, and surface areas of the disks depend of their position in the stack that is 

represented by the angle θi.j (Fig. S1), which varies between zero, at the apex, and θi,max, at the 

circumference of the contour line. When h/a >1 
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When h/a ≤1, θi,max can be calculated with the inverse sine function:  

)(sin 1

max,

i

i
R

a−=θ  

The radius of the disk j (ρi,j) in the stack is  

ρi, j= ji,isinθR  

and the pertinent area of disk j is denoted as: 
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Fig. S1: Cross sectional snapshot of a droplet at a time instant it  with notations utilized in our 

model calculations: ρi,j is the radius disc j, Ai,j is the pertinent area of disk j, Ri is the radius of the 

droplet, a is the half cord length, and Θi,j, dΘ, and Θi,max are angles used to designate individual 

discs in the stack of hypothetical discs. 

 

 As shown in Fig. 2d in the paper, the changing droplet surface is depicted with its 

surface points descending ji,dh  distances ranging between 
maxi,dh (at the apex) and zero (at the 

circumference of the contour line). These dhi,j distances are space and time dependent and can be 

approximated by a cosine function:  
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The quality of this approximation is demonstrated in Fig. S2 where the dhi,j distances were 

calculated from the drop geometry and by using Eq. S1 for the limiting cases: (i) hemispherical 

droplet, h = a and (ii) a droplet completely sunken into the entry port of the microfluidic device, 

h = 0.3a (where h is the height of the droplet and a is the cord of the contour line). As shown in 

the figure, the trigonometric function provides an excellent approximation for assessing dhi,j 



values during the entire sinking process; however, the cosine function gives best approximation 

when h/a=1. 
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Fig. S2: dhi,j distances as function of angle θ i,j calculated from geometrical analysis (○) and by 

using Eq. S1 (solid lines). The filled circles (●) represent the difference between the two 

calculated values (absolute error). (a) Limiting condition for the sinking sample droplet (h/a≈ 

1.4), (b) Limiting condition for the emerging reservoir droplet  (h/a≈  0.3). 

 

The conversion of interfacial energy Ei between the two time instants ti and ti+1, which is 

apparent in the changing shape of the descending droplet, can be expressed by:  
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where iP∆  is the variation in the pressure in the sample droplet from time ti to ti+1, iA  is the 

whole surface area of the droplet on which the pressure does work, and γ denotes the surface 

tension. iP∆  is a function of the droplet geometry, i.e., it is changing in time. However, its value 

is identical at every point on the cap.  

The integration of the ji,ji, dhA  function from θ i,j = 0 to θ i,j = maxi,θ  provides the surface 

energy at the water / air interface at  each it time instant:  
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The surface energy change between time intervals it  and 1i+t can be expressed as  
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Geometrical parameters of sample and reservoir droplets 

Water droplets form different shapes when dispenses onto surfaces with different hydrophilicity. 

Images of droplets captured at time zero on untreated (hydrophobic) and air plasma treated 

(hydrophilic) sample wells of PDMS-based micro-channels are shown in Fig. S3a and S3b. 
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Fig. S3: Water droplets on top of hydrophobic (a) and hydrophilic (b) wells. The correlations 

between the contact angle (ϕ), the radius (R), the height (h), and the half-chord length (a) of a 

droplet cap are shown on the example of Fig. S3b. 

 

The geometrical parameters of the sample and reservoir droplets were determined from the 

contact angle (ϕ) data as shown in Fig. S3c:  

a = Rsinϕ         (S5) 

h = R 1− cosϕ( )       (S6) 
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When a sample droplet, with a diameter smaller than the diameter of the entry port of the micro-

fluidic device, is dispensed over the filled entry port a spontaneously becomes equal to r and the 

radius (Ri) and volume (Vi) of the sinking droplet is calculated by using Eqs. 1 and 2. 

 

 


