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Introduction to Tutorial

The following section is an annotated version of the Results and Discussion section of the cor-
responding paper. The underlying R scripts are shown interspersed within the corresponding
segments of text. As stated in the methods, the Flow cytometry data was analyzed using
Bioconductor 2.2, a package implemented in R 2.7.2. The R scripts should also work in
subsequent versions as they are released.

Results and Discussion (Annotated Version)

The workflow for data analysis in a typical flow cytometry experiment has evolved with
recent technological advances [1] and can be grouped into two key steps, as summarized in
Figure 1. First, a pre-processing step was required to ensure that the observed levels of
fluorescence were independent and specific measures of the level of expression of the protein
of interest, assuming that the antibodies also exhibit specificity. In this study, expression
of CD4, CD44, and CD62L were used to characterize the efficiency of CD4+CD62L+ T cell
isolation from Balb/c splenocytes using magnetic microbeads. The second step involved
analysis of the cell populations including gating using statistically-based data-driven gates,
estimating probability density functions using kernel marginalization, and clustering using
principal component analysis.
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Installation

Following installation of R [2], basic Bioconductor packages and additional packages that are
required to process flow cytometry data were downloaded from the web within R using:

>source("http://www.bioconductor.org/biocLite.R")

>biocLite("flowCore")

>biocLite("flowViz")

>biocLite("flowUtils")

>biocLite("geneplotter")

>openVignette()
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Figure 1: Overview of the steps associated with the use of flow cytometry as a tool in
biological research. This manuscript will focus on how Bioconductor can be used during
pre-processing and analysis steps.

Additional Bioconductor packages may also be downloaded directly from the website [3].
Additional R packages can be installed using a menu option in the RGui (see ’Packages’-
>’Install package(s)’). These files need to be downloaded and installed only once. Subsequent
sessions can load the packages using library("package").
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> library(flowCore)

> library(flowViz)

> library(flowUtils)

> library(geneplotter)

> library(colorspace)

> library(grid)

Pre-processing

Data Entry

The experimental results were exported from the flow cytometer in FCS3.0 format [4](e.g.,
foo.fcs) following data acquisition. The default working directory is the installation di-
rectory for R. It may be more advantageous to change the directory to a working directory
(see ’File’->’Change dir’) where the foo.fcs files are stored. Following the definition of an
array, fclist, that contains the names of the FCS3.0 files to be analyzed,

> fclist <- c("MACSpurity_Tube_001.fcs", "MACSpurity_Tube_002.fcs",

+ "MACSpurity_Tube_003.fcs", "MACSpurity_Tube_004.fcs",

+ "MACSpurity_Tube_005.fcs", "MACSpurity_Tube_006.fcs",

+ "MACSpurity_Tube_007.fcs", "MACSpurity_Tube_008.fcs",

+ "MACSpurity_Tube_009.fcs")

the data files were loaded into the R workspace using a single command:

> fs <- read.flowSet(fclist, transformation = FALSE)

A summary of the loaded flowSet can be shown by typing the variable name at the command
line:

> fs

A flowSet with 9 experiments.

column names:

FSC-A SSC-A FITC-A PE-A APC-A Time

The information contained within a particular experimental data set (i.e., one fcs file)
were read and stored in a flowFrame. A flowFrame is the name of a meta-object, a digital
construct that collects different types of information (i.e., text and numerical data) into a
common identifier. A series of flowFrames can also be collected in a flowSet. Different
functions (e.g., phenoData() or exprs()) can be used to extract information from these
meta-objects, such as the measured fluorescent intensities of the different parameters for
each cell and the time that each cell was observed. As the filenames were not descriptive, a
list of title names, shown in Supplemental Tables 1 and 2, was created for use in subsequent
figures.

> Tclist <- c("Pre-sort Unstained", "FITC-CD4 Single", "PE-CD44 Single",

+ "APC-CD62L Single", "Pre-sort Population", "CD4+ Subset",

+ "CD4- Subset", "CD4+CD62L+ Subset", "CD4+CD62L- Subset")
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Gating on Forward Scatter and Side Scatter

Non-cellular debris and dead cells exhibit non-specific staining. These potentially confound-
ing observations were eliminated by gating on forward scatter and side scatter to help ensure
that the fluorescent measurements exhibit specificity for the target of interest. The gates
associated with isolating live splenocytes were initialized as follows. First, cells were re-
tained that had Forward Scatter areas between 50,000 and the maximum intensity using a
1-dimensional gate applied to the Forward Scatter parameter.

> rectGate <- rectangleGate(filterId = "FSC+", "FSC-A" = c(50000,Inf))

Second, the Forward Scatter and Side Scatter parameters were used to create a data-driven
gate (norm2Filter) that was centered at the median of the specified cell populations in
both dimensions and enclosed a region that included 95% of the population (i.e., 2 standard
deviations).

> morphGate <- norm2Filter(filterId = "MorphologyGate", "FSC-A",

+ "SSC-A", scale = 2)

Additional data-driven gates can also be used (e.g., kmeansFilter, a data-driven filter that
performs one-dimensional k-means clustering), especially for the subsequent analysis step.
Further refinement of the gates was achieved by combining individual gates using logical
arguments. The logical arguments are applied right to left and combined using ! (NOT), |
(OR), and & (AND).

> PositiveGate <- morphGate & rectGate

> RejectGate1 <- !morphGate & rectGate

> RejectGate2 <- !rectGate

The gates were applied to the entire flowset, although they can also be applied to individual
flowFrames.

> PosTFS <- Subset(fs, PositiveGate)

> RejTFS1 <- Subset(fs, RejectGate1)

> RejTFS2 <- Subset(fs, RejectGate2)

The statistics associated with gating were calculated to determine the number of cells re-
tained for subsequent analysis (see Supplemental Table 1).

> Total <- as.numeric(fsApply(fs, nrow, use.exprs = TRUE))

> Live <- as.numeric(fsApply(PosTFS, nrow, use.exprs = TRUE))

> data1 <- data.frame(Files = Tclist, "Total Cells" = Total,

+ "Live Cells" = Live)

> data1 <- transform(data1, Percent = data1[, 3] * 100/data1[,2])

> tabS1 <- as.matrix(data1)

> library(xtable)

> xtable(tabS1, caption = "Number of cells retained for each sample

+ following gating.", label = "Tab:S1", align = c("l", "l", "r",

+ "r", "r"), digits = c(0, 0, 0, 1, 0))
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Files Total.Cells Live.Cells Percent
1 Pre-sort Unstained 10000 6784 67.84
2 FITC-CD4 Single 10000 6355 63.55
3 PE-CD44 Single 10000 6508 65.08
4 APC-CD62L Single 10000 6301 63.01
5 Pre-sort Population 10000 6090 60.90
6 CD4+ Subset 10000 7501 75.01
7 CD4- Subset 10000 6150 61.50
8 CD4+CD62L+ Subset 10000 7141 71.41
9 CD4+CD62L- Subset 10000 7163 71.63

Table 1: Number of cells retained for each sample following gating.

The results of the gating on the forward scatter and side scatter characteristics of the spleno-
cytes are shown in Supplemental Figure 2. The live cells are shown in blue using a contour
overlay that indicates the density of the spots. Dot plots of the rejected cells were superim-
posed on the figures and shown in red.

> opar <- par(mfrow = c(2, 2), mar = c(4, 4, 2, 2))

> Ptxt = c("A", "B", "C", "D")

> for (i in 5:8) {

+ plot(PosTFS[[i]], c("FSC-A", "SSC-A"), xlab = "FSC", xlim = c(0,

+ 262144), ylab = "SSC", ylim = c(0, 262144), nrpoints = 1000)

+ title(main = Ptxt[i - 4], outer = FALSE, adj = 0, cex.main = 2)

+ points(exprs(RejTFS1[[i]][, 1]), exprs(RejTFS1[[i]][, 2]),

+ pch = ".", col = "red")

+ points(exprs(RejTFS2[[i]][, 1]), exprs(RejTFS2[[i]][, 2]),

+ pch = ".", col = "red")

+ }

Compensating for Fluorescent Spillover

Given the difficulty of determining appropriate compensation values ‘on-the-fly‘, the current
generation of flow cytometers incorporate two advancements for the analysis of flow cytom-
etry data. First, contemporary software drivers for flow cytometers include an algorithm
for automatically calculating the fluorescent compensation matrix. Second, raw data is un-
compensated providing the opportunity to adjust compensation values after data collection.
The initial estimate for the compensation matrix was extracted from the text description
of MACSPurity_Tube_001.fcs. This initial estimate of the compensation matrix was based
upon prior experiments and was used to observe the data during acquisition. To illustrate
compensation using R/Bioconductor, it was not optimized.

> spillM <- description(PosTFS[[1]])$SPILL

> spillM
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Figure 2: Gating on Forward Scatter and Side Scatter parameters to identify live splenocytes
that were included in subsequent analysis: Pre-sort fraction (A), CD4+ fraction (B), CD4−

fraction (C), and CD4+CD62L+ fraction (D). The live cells are shown in blue. Rejected cells
appear as red dots.

FITC-A PE-A APC-A

[1,] 1.000000000 0.12 0

[2,] 0.017999996 1.00 0

[3,] 0.002999996 0.00 1

To illustrate how the compensation matrix can be refined at any time following data
acquisition, unstained and single-stained controls were used to estimate the compensation
matrix. The adjusted compensation matrix, expressed in terms of a fraction of the primary
signal and shown below, was used to modify the fluorescent measurements.

This adjusted spillover matrix, fij, was calculated as follows. Fluorescent spillover of
the primary parameter into secondary parameters was assumed to be a linear function of the
primary parameter. The observed parameters (Oij) were linearly combined using

Tij = Oi1 · f1j + Oi2 · f2j + Oi3 · f3j (1)
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to estimate the true fluorescent intensity (Tij) for parameter j in experiment i, where fkj

is the fraction of parameter k that spills over into parameter j. Upon rewriting Equation 1
in matrix notation and re-arranging the terms, the compensation matrix, F, was estimated
from the single stain controls using

F = O−1 · T (2)

by assuming that the observed intensities in the primary parameters provide an estimate
of the true fluorescent intensities (i.e., Tij = Oij if i = j else Tij = 0). The matrix of
the observed intensities (i.e., O) summarized the median values obtained from the single-
stain experiments. Prior to calculating the median values, the background fluorescence
was subtracted from the raw values. The background fluorescence, corresponding to the
median intensity of an unstained parameter, was obtained from the unstained and single-
stain experiments (see Supplemental Table 2).

> TMedians <- as.matrix(fsApply(PosTFS, each_col, median)[, -(1:2)])

> rownames(TMedians) <- c(1:length(PosTFS))

> data2 <- data.frame(Files = Tclist, "FITC-A" = TMedians[, 1],

+ "PE-A" = TMedians[, 2], "APC-A" = TMedians[, 3])

> tabS2 <- as.matrix(data2)

> library(xtable)

> xtable(tabS2, caption = "Median fluorescence in each parameter shown for

+ each sample.", label = "Tab:S2", align = c("l", "l", "r", "r", "r"),

+ digits = c(0, 0, 2, 2, 2))

Files FITC.A PE.A APC.A
1 Pre-sort Unstained 62.40 51.48 68.88
2 FITC-CD4 Single 68.64 95.16 29.52
3 PE-CD44 Single 71.76 762.84 19.68
4 APC-CD62L Single 46.80 12.48 266.91
5 Pre-sort Population 100.62 837.72 227.55
6 CD4+ Subset 1837.68 1184.04 838.86
7 CD4- Subset 84.24 533.52 172.20
8 CD4+CD62L+ Subset 1723.80 946.92 632.22
9 CD4+CD62L- Subset 1698.84 1461.72 573.18

Table 2: Median fluorescence in each parameter shown for each sample.

One of the challenges with single-stained controls is that the cell population used for the ex-
periment may be heterogeneous (e.g., splenocytes) and may bias the estimate of the median.
Partitioning the singly-stained cells into high and low expression groups via a kmeansFilter

was used to improve the estimate of O.

> # flowFrames need to be specified in a particular order in the flowSet

> # 1. unstained control
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> # 2. single stain for first column after SSC-A

> # 3. single stain for second column after SSC-A

> # etc

> #Use a kmeansFilter to select high expression groups

> kmfilt1 <- kmeansFilter("kmfilt1", "FITC-A" = c("Low", "High"))

> FITC.high <- fsApply(PosTFS[2], function(x) split(x, kmfilt1)$High)

> kmfilt2 <- kmeansFilter("kmfilt2", "PE-A" = c("Low", "High"))

> PE.high <- fsApply(PosTFS[3], function(x) split(x, kmfilt2)$High)

> kmfilt3 <- kmeansFilter("kmfilt3", "APC-A" = c("Low", "High"))

> APC.high <- fsApply(PosTFS[4], function(x) split(x, kmfilt3)$High)

>

> #Combine resulting flowFrames into a flowSet

> FiltFS = flowSet(PosTFS[[1]], FITC.high[[1]], PE.high[[1]], APC.high[[1]])

>

> #Calculate the background intensity for each parameter

> CMed = as.matrix(fsApply(FiltFS, each_col, median)[, -c(1:2,6)])

>

> #Sweep out medians determined from unstained control from single stained

> #controls

> bFiltFS <- transform(FiltFS, "FITC-A" = `FITC-A` - min(CMed[,1]),

+ "PE-A" = `PE-A` - min(CMed[, 2]), "APC-A" = `APC-A` - min(CMed[,3]))

>

> #Capture medians from single-stained flowFrames

> FObs = as.matrix(fsApply(bFiltFS[c(2:4)], each_col, median)[,-c(1:2,6)])

>

> #Estimate compensation spillover matrix and echo result

> fij = solve(FObs) %*% diag(diag(FObs))

> fij

[,1] [,2] [,3]

FITC-A 1.00386296 -0.1229754 -0.0137533848

PE-A -0.03153383 1.0038630 0.0004320279

APC-A 0.00000000 0.0000000 1.0000000000

> # Apply calculated compensation matrix to flowSet

> bPosTFS <- transform(PosTFS, "FITC-A" = `FITC-A` - min(CMed[,

+ 1]), "PE-A" = `PE-A` - min(CMed[, 2]), "APC-A" = `APC-A` -

+ min(CMed[, 3]))

> cPosTFS <- transform(bPosTFS, cFITC = fij[1, 1] * `FITC-A` +

+ fij[2, 1] * `PE-A` + fij[3, 1] * `APC-A`, cPE = fij[1, 2] *

+ `FITC-A` + fij[2, 2] * `PE-A` + fij[3, 2] * `APC-A`, cAPC = fij[1,

+ 3] * `FITC-A` + fij[2, 3] * `PE-A` + fij[3, 3] * `APC-A`)
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Linear-Log Data Transformation

A logarithmic transform is a common approach used to cope with the wide dynamic range
of the fluorescent measurements obtained by flow cytometry. However, fluorescent compen-
sation and subtraction of background fluorescent creates negative values. Plotting data on
logarithmic axes truncate the negative values and can lead to incorrect assessment of the
compensation for fluorescence spillover [5]. Various alternative methods for displaying fluo-
rescent values have been proposed [5, 6, 7]. A common theme for these different solutions is
to use a transform that is linear around zero and non-linear in other regions. In the following
section, a simple data transformation is implemented.

Similar to a recent transform proposed by Battye [7], one of the simplest data transforma-
tions is to convert the raw data using a linear relationship at lower values and a logarithmic
relationship at higher values:

Ŷ =

{
Mlinear · (Xraw − b) if Xraw < transition

log10 (Mlog · (Xraw − b)) if Xraw ≥ transition,
(3)

where Ŷ is the transformed “parameter intensity” and Xraw is the raw fluorescence value. A
smooth transition between these two relationships is ensured by setting the values and the
slopes of the linear and logarithmic relationships equal at the transition point. These two
constraints provide sufficient information to determine values for the two unknowns: Mlinear

and Mlog. In addition, we can add an additional constraint that the transformed variable
must equal zero when the raw variable equals zero. This shifts the transformed variable for
both the linear and logarithmic relationships by −b. Prior implementation of this split scale
transform required specifying five parameters. Implementing this split scale transform in
R/Bioconductor required specifying two values: the median of the untransformed popula-
tion and the distance (dist) in raw data units between the median adjusted values and the
transition point. This relationship was encoded as a function to be reused multiple times
within the script:

> linlogTransform = function(transformationId, median = 0, dist = 1,

+ ...) {

+ tr <- new("transform", .Data = function(x) {

+ idx = which(x <= median + dist)

+ idx2 = which(x > median + dist)

+ if (length(idx2) > 0) {

+ x[idx2] = log10(x[idx2] - median) - log10(dist/exp(1))

+ }

+ if (length(idx) > 0) {

+ x[idx] = 1/dist * log10(exp(1)) * (x[idx] - median)

+ }

+ x

+ })

+ tr@transformationId = transformationId

+ tr

+ }
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> lnlgT <- linlogTransform(transformationId = "splitscale", median = 0,

+ dist = 100)

>

> #Calculate X-labels for graphs

> lnlgTGraphs <- linlogTransform(transformationId = "splitscale",

+ median = 0, dist = 100)

> Xloc <- lnlgTGraphs(c(-200, -150, -100, -50, 0, 50, 100, 150,

+ 200, 250, 400, 550, 700, 850, 1000, 2500, 4000, 5500, 7000,

+ 8500, 10000, 25000, 40000, 55000, 70000, 85000, 1e+05))

> Xlab <- c(-200, " ", -100, " ", 0, " ", 100, " ", " ", " ", " ",

+ " ", " ", " ", expression(10^3), " ", " ", " ", " ", " ",

+ expression(10^4), " ", " ", " ", " ", " ", expression(10^5))

The transforms were applied to the measured fluorescent values. The transition value
was held constant for all of the parameters at a value of 100. The resulting transformed
values are deposited within the flowFrame in a new parameter.

> cPosTFS <- transform(cPosTFS, CD4 = lnlgT(cFITC), CD44 = lnlgT(cPE),

+ CD62L = lnlgT(cAPC))

Finally, confirmation of the appropriate compensation for fluorescence spillover is shown in
Supplemental Figure 3. Together, these pre-processing steps ensured that the parameter
intensities were independent and specific measures of the corresponding levels of protein
expression, assuming antibody specificity.

> Plim = c(-0.5, 2.75)

>

> #Set up themes for all subsequent lattice figures

> trellis.par.set(theme = col.whitebg())

> lw <- list(ylab.axis.padding = list(x = 0.5), left.padding = list(x = 0.1,

+ units = "inches"), right.padding = list(x = 0, units = "inches"),

+ panel = list(x = 1.5, units = "inches"))

> lh <- list(bottom.padding = list(x = 0, units = "inches"), top.padding <-

+ list(x = 0, units = "inches"), panel = list(x = 1.5, units = "inches"))

>

> lattice.options(layout.widths = lw, layout.heights = lh)

>

> # Plot results from spillover compensation in three panels - tp1, tp2, tp3

> tp1 <- xyplot(CD44 ~ CD4 | name, cPosTFS[c(1:4)], nrpoints = 1000,

+ labels = FALSE, layout = c(1, 4), aspect = 1, xlab = "CD4",

+ xlim = Plim, ylab = "CD44", ylim = Plim, scales = list(x = list(at = Xloc,

+ labels = Xlab), y = list(at = Xloc, labels = Xlab, rot = 0)),

+ strip = strip.custom(factor.levels = Tclist[c(1:4)]), panel = function(x,

+ frames, channel.x, channel.y, ...) {

+ panel.xyplot.flowset(x, frames, channel.x, channel.y, ...)

+ llines(c(-0.5, 2.5), c(0, 0))
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+ llines(c(0, 0), c(-0.5, 2.5))

+ })

> tp2 <- xyplot(CD62L ~ CD4 | name, cPosTFS[c(1:4)], nrpoints = 1000,

+ labels = FALSE, layout = c(1, 4), aspect = 1, xlab = "CD4",

+ xlim = Plim, ylab = "CD62L", ylim = Plim, scales = list(x = list(at = Xloc,

+ labels = Xlab), y = list(at = Xloc, labels = Xlab, rot = 0)),

+ strip = strip.custom(factor.levels = Tclist[c(1:4)]), panel = function(x,

+ frames, channel.x, channel.y, ...) {

+ panel.xyplot.flowset(x, frames, channel.x, channel.y, ...)

+ llines(c(-0.5, 2.5), c(0, 0))

+ llines(c(0, 0), c(-0.5, 2.5))

+ })

> tp3 <- xyplot(CD44 ~ CD62L | name, cPosTFS[c(1:4)], nrpoints = 1000,

+ labels = FALSE, layout = c(1, 4), aspect = 1, xlab = "CD62L",

+ xlim = Plim, ylab = "CD44", ylim = Plim, scales = list(x = list(at = Xloc,

+ labels = Xlab), y = list(at = Xloc, labels = Xlab, rot = 0)),

+ strip = strip.custom(factor.levels = Tclist[c(1:4)]), panel = function(x,

+ frames, channel.x, channel.y, ...) {

+ panel.xyplot.flowset(x, frames, channel.x, channel.y, ...)

+ llines(c(-0.5, 2.5), c(0, 0))

+ llines(c(0, 0), c(-0.5, 2.5))

+ })

> plot(tp1, position = c(0, 0, 0.33, 1), more = TRUE)

> plot(tp2, position = c(0.33, 0, 0.66, 1), more = TRUE)

> plot(tp3, position = c(0.66, 0, 1, 1), more = FALSE)

Analysis

As highlighted in Figure 1, subsequent data analysis can take multiple paths depending
on the research question. To illustrate one path using R/Bioconductor, flow cytometry was
used to demonstrate the efficiency of cell sorting using magnetic microbeads. Enrichment of a
CD4+CD62L+ T cell population from mouse splenocytes involve two main steps: enrichment
of a CD4+ subset using negative selection and subsequent enrichment of a CD4+CD62L+

subset using positive selection. Five aliquots were obtained from the pre-sort population
and after each stage of the isolation protocol: pre-sort, CD4+, CD4−, CD4+CD62L+, and
CD4+CD62L−. Expression of CD4, CD62L, and CD44 within these groups is shown in
Figures 5 and Supplemental Figure 4.

To calculate statistics for the aliquots, a statistically-based data-driven threshold was
used define whether a cell was positive for expressing the protein of interest. The threshold
was defined as the level of expression for which 95% of the unstained cells exhibited a lower
level of expression.

> #define positive limits

> # CD44 - from CD4 single-stained control experiment

11



CD4

C
D

44

−100
 0
 100
  
 
  
  103

 
  
  104

Pre−sort Unstained

−100
 0
 100
  
 
  
  103

 
  
  104

FITC−CD4 Single

−100
 0
 100
  
 
  
  103

 
  
  104

PE−CD44 Single

−100
 

0
 
100

       
103

     
104

−100
 0
 100
  
 
  
  103

 
  
  104

APC−CD62L Single

CD4

C
D

62
L

−100
 0
 100
  
 
  
  103

 
  
  104

Pre−sort Unstained

−100
 0
 100
  
 
  
  103

 
  
  104

FITC−CD4 Single

−100
 0
 100
  
 
  
  103

 
  
  104

PE−CD44 Single

−100
 

0
 
100

       
103

     
104

−100
 0
 100
  
 
  
  103

 
  
  104

APC−CD62L Single

CD62L

C
D

44

−100
 0
 100
  
 
  
  103

 
  
  104

Pre−sort Unstained

−100
 0
 100
  
 
  
  103

 
  
  104

FITC−CD4 Single

−100
 0
 100
  
 
  
  103

 
  
  104

PE−CD44 Single

−100
 

0
 
100

       
103

     
104

−100
 0
 100
  
 
  
  103

 
  
  104

APC−CD62L Single

Figure 3: Pairwise density plots for all three parameters - CD4, CD44, and CD62L - shown
separately for an unstained aliquot of the pre-sort population and singly stained controls:
FITC-CD4, PE-CD44, and APC-CD62L. Each panel corresponds to a particular pair: CD44
versus CD4 (left panel), CD62L versus CD4 (center panel), and CD44 versus CD62L (right
panel).

> CD441 <- density(exprs(cPosTFS[[2]])[, 11])

> CumV <- 0

> limCD441 <- 0

> while (CumV < 0.95) {

+ limCD441 <- limCD441 + 1

+ CumV <- sum(CD441$y[1:limCD441])/sum(CD441$y)

+ }
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>

> # CD44 - from CD62L single-stained control experiment

> CD442 <- density(exprs(cPosTFS[[4]])[, 11])

> CumV <- 0

> limCD442 <- 0

> while (CumV < 0.95) {

+ limCD442 <- limCD442 + 1

+ CumV <- sum(CD442$y[1:limCD442])/sum(CD442$y)

+ }

> ValCD44 <- max(c(CD441$x[limCD441], CD442$x[limCD442]))

>

> #Estimate high value for CD44 - from CD4+CD62L+ fraction

> CD443 = density(exprs(cPosTFS[[8]])[, 11])

> CumV <- 0

> limCD443 <- 0

> while (CumV < 0.95) {

+ limCD443 <- limCD443 + 1

+ CumV <- sum(CD443$y[1:limCD443])/sum(CD443$y)

+ }

> HiValCD44 <- CD443$x[limCD443]

>

> # CD4 - from CD44 single-stained control experiment

> CD41 = density(exprs(cPosTFS[[3]])[, 10])

> CumV <- 0

> limCD41 <- 0

> while (CumV < 0.95) {

+ limCD41 <- limCD41 + 1

+ CumV <- sum(CD41$y[1:limCD41])/sum(CD41$y)

+ }

>

> # CD4 - from CD62L single-stained control experiment

> CD42 = density(exprs(cPosTFS[[4]])[, 10])

> CumV <- 0

> limCD42 <- 0

> while (CumV < 0.95) {

+ limCD42 <- limCD42 + 1

+ CumV <- sum(CD42$y[1:limCD42])/sum(CD42$y)

+ }

> ValCD4 <- max(c(CD41$x[limCD41], CD42$x[limCD42]))

>

> # CD62L - from CD4 single-stained control experiment

> CD621 = density(exprs(cPosTFS[[2]])[, 12])

> CumV <- 0

> limCD621 <- 0

> while (CumV < 0.95) {
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+ limCD621 <- limCD621 + 1

+ CumV <- sum(CD621$y[1:limCD621])/sum(CD621$y)

+ }

>

> # CD62L - from CD44 single-stained control experiment

> CD622 = density(exprs(cPosTFS[[3]])[, 12])

> CumV <- 0

> limCD622 <- 0

> while (CumV < 0.95) {

+ limCD622 <- limCD622 + 1

+ CumV <- sum(CD622$y[1:limCD622])/sum(CD622$y)

+ }

> ValCD62 <- max(c(CD621$x[limCD621], CD622$x[limCD622]))

> # Pairwise plots for pre-sort, CD4+, and CD4- aliquots

> tp1 <- xyplot(CD44 ~ CD4 | name, cPosTFS[c(5:7)], nrpoints = 1000,

+ labels = FALSE, layout = c(1, 3), aspect = 1, xlab = "CD4",

+ xlim = Plim, ylab = "CD44", ylim = Plim, scales = list(x = list(at = Xloc,

+ labels = Xlab), y = list(at = Xloc, labels = Xlab, rot = 0)),

+ strip = strip.custom(factor.levels = Tclist[c(5:7)]), panel = function(x,

+ frames, channel.x, channel.y, ...) {

+ panel.xyplot.flowset(x, frames, channel.x, channel.y, ...)

+ llines(c(-1, 2.75), c(ValCD44, ValCD44))

+ llines(c(-1, 2.75), c(HiValCD44, HiValCD44), lty = 2)

+ llines(c(ValCD4, ValCD4), c(-1, 2.75))

+ })

> tp2 <- xyplot(CD62L ~ CD4 | name, cPosTFS[c(5:7)], nrpoints = 1000,

+ labels = FALSE, layout = c(1, 3), aspect = 1, xlab = "CD4",

+ xlim = Plim, ylab = "CD62L", ylim = Plim, scales = list(x = list(at = Xloc,

+ labels = Xlab), y = list(at = Xloc, labels = Xlab, rot = 0)),

+ strip = strip.custom(factor.levels = Tclist[c(5:7)]), panel = function(x,

+ frames, channel.x, channel.y, ...) {

+ panel.xyplot.flowset(x, frames, channel.x, channel.y, ...)

+ llines(c(-1, 2.75), c(ValCD62, ValCD62))

+ llines(c(ValCD4, ValCD4), c(-1, 2.75))

+ })

> plot(tp1, position = c(0, 0, 0.5, 1), more = TRUE)

> plot(tp2, position = c(0.5, 0, 1, 1), more = FALSE)

> # Pairwise plots for CD4+CD62L+ and CD4+CD62L- aliquots

> tp1 <- xyplot(CD44 ~ CD4 | name, cPosTFS[c(8:9)], nrpoints = 1000,

+ labels = FALSE, layout = c(1, 2), aspect = 1, xlab = "CD4",

+ xlim = Plim, ylab = "CD44", ylim = Plim, scales = list(x = list(at = Xloc,

+ labels = Xlab), y = list(at = Xloc, labels = Xlab, rot = 0)),
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Figure 4: Pairwise density plots for CD4, CD62L, and CD44 expression shown separately
for aliquots obtained from pre-sort, CD4+, and CD4− fractions. Each panel corresponds to
a particular pair: CD44 versus CD4 (left panel) and CD62L versus CD4 (right panel). The
solid lines indicate the expression threshold for a cell to be associated with positive expres-
sion. Ninety five percent of the unstained cell fraction was contained below the threshold.
The dotted line indicates the upper limit of CD44 expression for 95% of the CD4+CD62L+

fraction.

+ strip = strip.custom(factor.levels = c("CD4+CD62L+", "CD4+CD62L-")),

+ panel = function(x, frames, channel.x, channel.y, ...) {

+ panel.xyplot.flowset(x, frames, channel.x, channel.y, ...)

+ llines(c(-1, 2.75), c(ValCD44, ValCD44))

+ llines(c(-1, 2.75), c(HiValCD44, HiValCD44), lty = 2)

+ llines(c(ValCD4, ValCD4), c(-1, 2.75))

+ })

> tp2 <- xyplot(CD62L ~ CD4 | name, cPosTFS[c(8:9)], nrpoints = 1000,

+ labels = FALSE, layout = c(1, 2), aspect = 1, xlab = "CD4",
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+ xlim = Plim, ylab = "CD62L", ylim = Plim, scales = list(x = list(at = Xloc,

+ labels = Xlab), y = list(at = Xloc, labels = Xlab, rot = 0)),

+ strip = strip.custom(factor.levels = c("CD4+CD62L+", "CD4+CD62L-")),

+ panel = function(x, frames, channel.x, channel.y, ...) {

+ panel.xyplot.flowset(x, frames, channel.x, channel.y, ...)

+ llines(c(-1, 2.75), c(ValCD62, ValCD62))

+ llines(c(ValCD4, ValCD4), c(-1, 2.75))

+ })

> plot(tp1, position = c(0, 0, 0.5, 1), more = TRUE)

> plot(tp2, position = c(0.5, 0, 1, 1), more = FALSE)
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Figure 5: Pairwise density plots for CD4, CD62L, and CD44 expression shown separately
for aliquots obtained from CD4+CD62L+, and CD4+CD62L− fractions. Each panel corre-
sponds to a particular pair: CD44 versus CD4 (left panel) and CD62L versus CD4 (right
panel). The solid lines indicate the expression threshold for a cell to be associated with
positive expression. Ninety five percent of the unstained cell fraction was contained below
the threshold. The dotted line indicates the upper limit of CD44 expression for 95% of the
CD4+CD62L+ fraction.

> # Calculate statistics for gating

> CD4PGate <- rectangleGate(filterId = "CD4+", CD4 = c(ValCD4, Inf))

> CD44HGate <- rectangleGate(filterId = "CD44hi", CD44 = c(HiValCD44, Inf))

> CD62PGate <- rectangleGate(filterId = "CD62L+", CD62L = c(ValCD62, Inf))

> Total = vector("list", 5)

> CD4PP = vector("list", 5)
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> CD4CD62PP = vector("list", 5)

> CD44tCD4CD62PP = vector("list", 5)

> for (i in 5:9) {

+ CD4P = Subset(cPosTFS[[i]], CD4PGate)

+ CD4PCD62P = Subset(cPosTFS[[i]], CD62PGate & CD4PGate)

+ CD4PCD62CD44HP = Subset(cPosTFS[[i]], CD44HGate & CD62PGate &

+ CD4PGate)

+ Total[[i-4]] <- nrow(cPosTFS[[i]])

+ CD4PP[[i-4]] <- nrow(CD4P) * 100/Total[[i-4]]

+ CD4CD62PP[[i-4]] <- nrow(CD4PCD62P) * 100/Total[[i-4]]

+ CD44tCD4CD62PP[[i-4]] <- nrow(CD4PCD62CD44HP) * 100/Total[[i-4]]

+ }

> data3 <- data.frame(Fractions = Tclist[c(5:9)], "Total Cells" =

+ as.numeric(Total), "CD4$^+$ (%)" = as.numeric(CD4PP),

+ "CD4$^+$CD62L$^+$ (%)" = as.numeric(CD4CD62PP),

+ "CD4$^+$CD62L$^+$CD44$^{high}$" = as.numeric(CD44tCD4CD62PP))

> tab3 <- as.matrix(data3)

> library(xtable)

> xtable(tab3, caption = "Efficiency statistics for na\"ive

+ CD4$^+$CD62L$^+$ T cell isolation from Balb/c splenocytes",

+ label = "Tab:3", align = c("l", "l", "r", "r", "r", "r"),

+ digits = c(0, 0, 0, 2, 2, 2))

Fractions Total CD4+ CD4+CD62L+ CD4+CD62L+CD44high

Cells
1 Pre-sort Population 6090 30.46 18.92 3.50
2 CD4+ Subset 7501 97.77 85.14 6.12
3 CD4- Subset 6150 21.53 11.22 1.54
4 CD4+CD62L+ Subset 7141 98.46 90.46 4.08
5 CD4+CD62L- Subset 7163 96.52 65.00 6.69

Table 3: Efficiency statistics for näıve CD4+CD62L+ T cell isolation from Balb/c splenocytes

As an alternative, a Bayesian framework could be used for gating such that the gate could
be refined based upon new data. In practice, classification of a cell into a subset can be
obtained by calculating the ratio of the marginalized density of a particular aliquot relative
to the marginalized density of a negative control population at a given level of parameter
intensity [8]. The disadvantage of this approach is that the particular parameter intensity
used for gating would depend on each aliquot.

As shown in Table 3, magnetic bead enrichment from the starting population of Balb/c
splenocytes was used to obtain a population of cells that were >98.459599495869% positive
for CD4+ and >90.463520515334% positive for both CD4+ and CD62Lhigh (i.e., näıve CD4+

T cells). As the population of CD4+ CD62Lhigh splenocytes may contain a mixture of
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both central memory and näıve T cells, the activation marker CD44 was used assess the
contribution of the central memory pool. Greater than

> Res <- 100 - as.numeric(CD44tCD4CD62PP[[4]])

95.92% of CD4+CD62Lhi cells were observed by flow cytometry to express intermediate to low
levels of CD44, consistent with a näıve T cell population (i.e., CD4+CD62LhiCD44lo). The re-
sults suggest that contribution of the central memory population (i.e., CD4+CD62LhiCD44hi)
was minor. In comparison, a high level of CD44 expressions was observed in the CD4+

CD62Llo population, consistent with an effector T cell population (i.e., CD4+CD62LloCD44hi).
These different T cell subsets can be clearly identified in Figure 6.

> tp1 <- levelplot(CD62L ~ CD44, cPosTFS[6], n = 100, contour = TRUE,

+ aspect = 1, labels = FALSE, colorkey = FALSE, col.regions = gray(50:0/50),

+ xlab = "CD44", xlim = Plim, ylab = "CD62L", ylim = Plim,

+ scales = list(x = list(at = Xloc, labels = Xlab), y = list(at = Xloc,

+ labels = Xlab, rot = 0)))

> tp2 <- levelplot(CD62L ~ CD44, cPosTFS[8], n = 100, contour = TRUE,

+ aspect = 1, labels = FALSE, colorkey = FALSE, col.regions = gray(50:0/50),

+ xlab = "CD44", xlim = Plim, ylab = "CD62L", ylim = Plim,

+ scales = list(x = list(at = Xloc, labels = Xlab), y = list(at = Xloc,

+ labels = Xlab, rot = 0)))

> plot(tp1, position = c(0, 0, 0.5, 1), more = TRUE)

> plot(tp2, position = c(0.5, 0, 1, 1), more = FALSE)

CD44

C
D

62
L

−100
 0
 100
  
 
  
  103

 
  
  104

−100
 

0
 
100

       
103

     
104

CD44

C
D

62
L

−100
 0
 100
  
 
  
  103

 
  
  104

−100
 

0
 
100

       
103

     
104

Figure 6: A smoothed contour plot for CD62L versus CD44 expression. The CD4+

population (left panel) is comprised of two populations: a CD62L+CD44med subset and
a CD62L−CD44high subset. The CD62L−CD44high subsets was eliminated from the
CD4+CD62L+ population (right panel) upon sorting using a anti-CD62L antibody. The
contours are colored by density estimation.

Marginalized Probability Density Functions

The fluorescent intensities can be presented in the form of a function that describes the
probability of observing particular parameter intensity. This function is referred to as a
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probability distribution function (PDF). A PDF function is similar to a histogram but is
normalized to the total number of observed events, facilitating comparisons among experi-
mental conditions and groups. The PDFs for each time point were obtained by kernel density
estimation using the function density [9]. Kernel density estimation is a non-parametric
smoothing technique used to estimate probability density functions from independent sam-
ples drawn from the population of interest. While it shares some similarity with estimating
a density function using a normalized histogram, the kernel method exhibits less bias in esti-
mating the density function. The bias in a histogram estimator with a bin width h is of order
h. In contrast, the kernel is centered at each point and, by using a symmetric kernel, yields
a leading bias term for the kernel estimate of order h2. Default values for the bandwidth
were used. Representative PDFs for CD4 and CD62L expression are shown in Figure 7.

> # Set up parameters for ranges used for x and y axis in figures

> yrng <- c(0, 4)

> xrng <- c(-0.5, 2.5)

>

> # Superimpose the PDFs on the same figure

> opar <- par(mfcol = c(2, 2), mar = c(4, 4, 2, 2))

> Pidx = c(5, 6, 8, 1)

> Plty = c(1, 2, 3, 4)

> PCols <- c("red", "darkgreen", "blue", "black")

>

> # This function is a lower-level function that requires numerical

> # input. The command, exprs(cPosTFS[[1]])[,10], extracts the

> # numerical data associated with column 10 from the first flowFrame

> # in flowSet cPosTFS.

> # CD4 Plots

> plot(density(exprs(cPosTFS[[Pidx[1]]])[, 10], na.rm = TRUE, kernel = "rect"),

+ col = PCols[1], xlab = "CD4", xlim = xrng, ylab = "Density",

+ main = "", ylim = yrng, xaxt = "n", lwd = 2, lty = 1)

> title(main = "A", outer = FALSE, adj = 0, cex.main = 2)

> axis(1, Xloc, labels = Xlab)

> for (i in 2:length(Pidx)) {

+ lines(density(exprs(cPosTFS[[Pidx[i]]])[, 10], na.rm = TRUE,

+ kernel = "rect"), col = PCols[i], lwd = 2, lty = Plty[i])

+ }

>

> # CD62L Plots

> plot(density(exprs(cPosTFS[[Pidx[1]]])[, 12], na.rm = TRUE, kernel = "rect"),

+ col = PCols[1], xlab = "CD62L", xlim = xrng, ylab = "Density",

+ ylim = yrng, xaxt = "n", main = "", lwd = 2, lty = Plty[1])

> title(main = "B", outer = FALSE, adj = 0, cex.main = 2)

> axis(1, Xloc, labels = Xlab)

> for (i in 2:length(Pidx)) {

+ lines(density(exprs(cPosTFS[[Pidx[i]]])[, 12], na.rm = TRUE,
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Figure 7: Marginalized probability density functions for CD4 (A) and CD62L (B) expres-
sion shown for the different aliquots obtained during MACs cell sorting of Balb/c spleno-
cytes: Unstained fraction (dot-dashed), Pre-sort fraction (solid), CD4+ fraction (dashed),
and CD4+CD62Lfraction (dotted).

+ kernel = "rect"), col = PCols[i], lwd = 2, lty = Plty[i])

+ }
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More generally, a PDF is a continuous function that summarizes the distribution in protein
expression or activity within a population of cells. The presence of a bimodal PDF distri-
bution indicates that multiple subsets exist within a population. Quantifying the relative
contribution of a particular subset can be achieved by deconvoluting a bimodal PDF in terms
of a series of overlapping probability distributions (e.g., overlapping Gaussians) that have
different median parameter intensities. An analogous approach is used to quantify the cell
cycle phase distribution of cells following DNA staining [10, 11].

Principal Component Analysis

The CD4+ and CD4+CD62L+ fractions were further characterized using principal component
analysis [12]. Principal component analysis (PCA) is a multivariate statistical technique
that allows for the discovery of variables that form a coherent subset and are relatively
independent of other subsets of variables. Variables that vary in synchrony with other
variables are lumped together into independent principal components. The utility of this
approach is in creating a lower-dimensional description of the population, such as multi-
dimensional scaling or clustering (e.g., [13]).

To illustrate the approach, three principal components (PCs) were created from the
three variables - CD44, CD62L, and CD4 - that characterize the cell population using the R
function princomp. As principal component analysis is a linear modeling technique, extreme
values can influence the quality of the results. Thus the lin-log transformed variables were
used in the analysis. The resulting scoring coefficients, shown in Table 4, were used to
calculate the principal component values for another cell fraction using:

PCi,p = C1i ∗ v1p + C2i ∗ v2p + . . . + Cni ∗ vnp, (4)

where v’s are variable values for the p cell and C’s are the scoring coefficients for the ith

principal component (PC) and nth variable. A scoring coefficient is related to a correlation
coefficient such that a value for the CD62L scoring coefficient of 0.711 in PC1 means that
50.6% (100·0.7112) of the variance in CD62L expression is represented in PC1. The difference
in sign between the scoring coefficients for CD44 and CD62L in PC1 indicates that these two
variables are inversely related in the dataset. PC1 versus PC2 projections for the CD4+ and
CD4+CD62L+ fractions are shown in Figure 8. The difference in the two populations at a low
value for PC1 corresponds to the elimination of the CD44high subset in the CD4+CD62L+

fraction, as seen in Figure 6 and inferred from the PC loading coefficients.

> # Assemble PCA observations from CD4+ subset

> PCAobs = exprs(cPosTFS[[6]])[, c(10:12)]

>

> #calculate covariance matrix for observations then PCA

> covfs1 <- cov(PCAobs, use = "complete.obs")

> fs1PCA <- princomp(PCAobs, subset = complete.cases(PCAobs), cor = TRUE,

+ scores = TRUE)

>

> #Print out loadings of PCA

> PCAload <- loadings(fs1PCA)
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> data4 <- data.frame(Parameters = c(rownames(PCAload), "Std Dev"),

+ PC1 = c(PCAload[1:3], fs1PCA$sdev[1]), PC2 = c(PCAload[4:6],

+ fs1PCA$sdev[2]), PC3 = c(PCAload[7:9], fs1PCA$sdev[3]))

> tab4 <- as.matrix(data4)

> library(xtable)

> xtable(tab4, caption = "Summary statistics for Principal Component

+ Analysis of CD4+ Fraction", label = "Tab:4", align = c("l", "l",

+ "r", "r", "r"), digits = c(0, 0, 2, 2, 2))

Parameters PC1 PC2 PC3

1 CD4 0.1901 0.9532 0.2349
2 CD44 -0.6774 0.3006 -0.6714
3 CD62L 0.7106 0.0315 -0.7029
4 Std Dev 1.2272 1.0056 0.6948

Table 4: Summary statistics for Principal Component Analysis of CD4+ Fraction

> # Predict the corresponding PCs for new data

> scoreCD4 <- predict(fs1PCA, exprs(cPosTFS[[6]])[, c(10:12)])

> scoreCD4CD62L <- predict(fs1PCA, exprs(cPosTFS[[8]])[, c(10:12)])

>

> opar <- par(mfcol = c(1, 1), mar = c(4, 4, 2, 2))

> # Plot results for PCs 1 and 2

> plot(scoreCD4[, 1:2], pch = 21, col = "blue", bg = "blue", cex = 0.5,

+ xlab = "Principal Component 1", ylab = "Principal Component 2")

> cols2 <- densCols(scoreCD4CD62L[, 1:2], nbin = 30, colramp =

+ colorRampPalette(c("white", "red")))

> points(scoreCD4CD62L[, 1:2], pch = 22, cex = 0.5, lwd = 0.25,

+ bg = cols2, col = "red")

As mentioned above, PCA identifies linear relationships embedded within high dimen-
sional data. As the number of dimension increases in a flow cytometry experiment, generat-
ing and analyzing each pairwise comparison between parameters becomes an onerous task.
In addition, a three-way relationship among parameters can be difficult to identify from
two-dimensional projections. PCA may be particularly helpful in focusing the analysis to
specific combinations of parameters that exhibit interesting relationships, such as the inverse
relationship between CD44 and CD62L. Depending on the motivating question, more com-
plex non-linear relationships can be also investigated in R using computationally intensive
techniques such as Gaussian Mixture Models (e.g., MCLUST [14]).

In summary, R/Bioconductor is a versatile platform for the analysis of complex data,
such as polychromatic flow cytometry data. The value of flow cytometry to inform biological
questions requires a multi-step process where the quality of the data can be ensured. As illus-
trated here, this process for quality control, whether in a high-throughput or low-throughput
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Figure 8: Projections of the CD4+ (filled circles) and CD4+CD62L+ (squares) fractions
within the subspace defined by principal component 1 and principal component 2.

setting, is aptly suited to R/Bioconductor. A compendium of text, data, and R scripts pro-
vides a clear-cube, rather than black box, approach to the analysis and interpretation of flow
cytometry data. The additional effort required to learn this new computational tool is re-
warded by the ability to apply a large suite of statistical and graphical tools to your dataset.
Specifically, processing can be streamlined by establishing a common workflow in the form
of R script templates for typical flow cytometry experiments. Subjectivity can be minimized
via use of data-driven gates. Scientific judgement can be focused quickly on embedded trends
within this high-dimensional data. Ultimately, the existing analysis algorithms within the
R platform provide a rich resource for asking complex questions using polychromatic flow
cytometry.
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