SUPPLEMENTAL MATERIAL

Plasmid cDNAs: All GIT1 constructs were described previously,¹ including GFP- GIT1(WT), Flag-GIT1(WT) and Xpress-GIT1(WT). Briefly, the full-length mGIT1 was cloned into either Flag-tagged, Xpress-tagged or GFP-tagged vector and resulted in Flag-GIT1(WT), Xpress-GIT1(WT) or GFP-GIT1(WT).² All GIT1 mutants including Flag-GIT1(Y293F), Flag-GIT1(Y392F), Xpress-GIT1(Y321F), GFP-GIT1(Y293A) and GFP-GIT1(Y392A) were created by using QuikChange site-directed mutagenesis kits. The sequence and reading frame of GIT1 mutants were confirmed by sequencing analysis.

Cell Culture: A7r5 rat smooth muscle cells (A7r5 SMC) were purchased from ATCC. A7r5 SMC and HEK 293 cells were grown in 5% CO₂ at 37°C in Dulbecco's modified Eagle's medium supplemented with 10% fetal bovine serum, penicillin, and streptomycin (Invitrogen). SYF-/-, SYF+/+ fibroblast cell lines derived from src-/- yes-/- fyn-/-, src+/+ yes-/- fyn-/- mouse embryos respectively, were a generous gift from Jonathan A. Cooper (University of Washington) and cultured in DMEM supplemented with 10% fetal bovine serum and 500 μ g/ml G418.

Transient transfection siRNA or cDNA and Infection with adenovirus: For siRNA transfection, A7r5 SMC were transiently transfected with 100 nM control siRNA or GIT1 siRNA with Lipofectamine 2000 reagent in OptiMEM medium at 90% confluence. Rat GIT1 siRNA (AAGCTGCCAAGAAGAAGCTAC) and control non-silencing siRNA (AATTCTCCGACACGTGTCACT) were described previously³ and ordered from Ambion. After 6 hours, medium was replaced by a complete DMEM medium with 10% serum. For plasmid transfection, HEK293 cells were transfected with LipofectAMINE/plus, and A7r5 cells were transfected with Lipofectamine 2000 in OptiMEM medium at 90% confluence described previously.³ After 6 hours, the medium was replaced by a complete medium with 10% serum. For virus infection, cells were infected with 100MOI adenovirus, after 48 hours cells were treated and fixed for immunostaining or harvested for western blot analysis.

Cell lysate preparation: Cells were rinsed with ice-cold phosphate-buffered saline (PBS; 150mM NaCl, 20mM Na₂PO₄, pH 7.4) twice on ice and harvested in lysis buffer (150mM NaCl, 1mM EDTA, 1mM EGTA, 1% Triton X-100, 2.5mM sodium pyrophosphate, 5mM NaF, 1mM Na₃VO₄ plus 1:1000 protein inhibitor cocktail) and centrifuged at 10,000rpm for 10 minutes. The protein concentration was determined by the Bradford assay.

Immunoprecipitation and immunoblotting: For immunoprecipitation, 1µg of the indicated antibody, including PLC_Y (BD Bioscience), FlagM2 ⁴, and Xpress (Invitrogen), was added to 500µg cell lysates and incubated overnight at 4°C. On the second day, 30 µl protein A/G-agarose beads (Life Technologies, Inc) were added and the incubation continued for 1 hour at 4°C. Following two washes with cell lysis, the immunoprecipitates were subjected to western blot analysis. For immunoblots, cell lysates were separated by SDS-PAGE electrophoresis, transferred to nitrocellulose membranes, and incubated with appropriate primary antibodies including GIT1 (Santa Cruz, 1:1000), Actin (Santa Cruz, 1:3000), PLC_Y (BD Bioscience, 1:1000), FlagM2 (Sigma, 1:3000), Xpress (Invitrogen, 1:1000), pPLC_Y (Y783) (Cell signaling, 1:1000), and 4G10 (upstate, 1:1000). After the membranes were washed for 3 times, the membranes were incubated with fluorescence-conjugated secondary antibodies (Molecular

Probe, 1:10000) for 1 hour, then immunoreactive proteins were visualized by an Odyssey infrared imaging system (LI-COR Biotechnology).

Statistical Analysis: All values are expressed as mean \pm SD of three independent experiments performed in triplicate. Data analysis was done by Student's t test. A p < 0.05 was considered statistically significant.

REFERENCES

- 1. Haendeler J, Yin G, Hojo Y, Saito Y, Melaragno M, Yan C, Sharma VK, Heller M, Aebersold R, Berk BC. GIT1 mediates Src-dependent activation of phospholipase Cgamma by angiotensin II and epidermal growth factor. *J Biol Chem.* 2003;278:49936-49944.
- 2. Yin G, Haendeler J, Yan C, Berk BC. GIT1 functions as a scaffold for MEK1extracellular signal-regulated kinase 1 and 2 activation by angiotensin II and epidermal growth factor. *Mol Cell Biol.* 2004;24:875-885.
- 3. Pang J, Yan C, Natarajan K, Cavet ME, Massett MP, Yin G, Berk BC. GIT1 mediates HDAC5 activation by angiotensin II in vascular smooth muscle cells. *Arterioscler Thromb Vasc Biol.* 2008;28:892-898.
- 4. Hai CM, Hahne P, Harrington EO, Gimona M. Conventional protein kinase C mediates phorbol-dibutyrate-induced cytoskeletal remodeling in a7r5 smooth muscle cells. *Exp Cell Res.* 2002;280:64-74.
- 5. Linder S, Aepfelbacher M. Podosomes: adhesion hot-spots of invasive cells. *Trends Cell Biol.* 2003;13:376-385.

Supplemental Figure I. Representative immunofluorescent images showing F-actin (Phalloidin) and cortactin localization in podosomes. A7r5 cells were starved for 6 hours and then treated with or without 1 μ M PDBU for 60 min. Cells were fixed and double-stained for either cortactin or TRITC-Phalloidin. F-actin is in red. Cortactin is in green. Merged images are shown in panel c and f. Arrows indicate podosomes. Insets are enlarged images of podosome-enriched areas.

Supplemental Figure II

Supplemental Figure II. Ability of specific GIT1 mutants to form podosomes. A7r5 cells were transfected with GFP-GIT1 mutants- GIT1(WT), GIT1(Y293A) and GIT1(Y321F), **GIT1(**Y392A) and stimulated with PDBU for 60 minutes. Cells were then stained with phalloidin to detect F-actin. Merged images were used to assess co-localization of GIT1 mutants with podosomes. Arrows indicate podosome positive structures. Supplemental FigureIII

Supplemental Figure III: (A) HEK 293 were co-transfected with PLC γ and pcDNA3 vector or Xpress-GIT1 (WT) or Xpress-GIT1 (Y321F) for 24 hours and then starved for 6 hrs. Cells were treated with 1 μ M PDBU for 10 min. Cell lysates were immunoprecipitated with PLC γ antibody and immunobloted with pPLC γ antibody. Blot was reprobed with PLC γ antibody (lower panel). (B) Immnoprecipitation was performed with Xpress antibody and blot was probed for PLC γ . Blot was reprobed for GIT1. Fold changes with respect to control are indicated.

Supplemental Figure IV

Cell type	A7r5 SMC	HEK293	Neuron
Location	Podosomes	Focal	Synapses
		adhesions	
Potential targeting	PIX, PAK	FAK, Paxillin	Grb4, CaMK, PIX
proteins			
GIT1	Y392	Y321	Y392
phosphorylation site			
Signaling pathways	Src	Src	Src
	pGITIY392	pGIT1Y321	pGIT1Y392
	pPLCγ	pMEK1	Grb4
		pERK1/2	
Reference	1, 5-7	2, 8	9, 10

REFERENCES:

- 1. Haendeler J, Yin G, Hojo Y, Saito Y, Melaragno M, Yan C, Sharma VK, Heller M, Aebersold R, Berk BC. GIT1 mediates Src-dependent activation of phospholipase Cgamma by angiotensin II and epidermal growth factor. *J Biol Chem.* 2003;278:49936-49944.
- 2. Yin G, Haendeler J, Yan C, Berk BC. GIT1 functions as a scaffold for MEK1extracellular signal-regulated kinase 1 and 2 activation by angiotensin II and epidermal growth factor. *Mol Cell Biol.* 2004;24:875-885.
- 3. Pang J, Yan C, Natarajan K, Cavet ME, Massett MP, Yin G, Berk BC. GIT1 mediates HDAC5 activation by angiotensin II in vascular smooth muscle cells. *Arterioscler Thromb Vasc Biol.* 2008;28:892-898.
- 4. Nunes GL, Sgoutas DS, Redden RA, Sigman SR, Gravanis MB, King Iii SB, Berk BC. Combination of vitamins C and E alters the response to coronary balloon injury in the pig. *Arterioscler Thromb Vasc Biol.* 1995;15:156-165.
- 5. Hai CM, Hahne P, Harrington EO, Gimona M. Conventional protein kinase C mediates phorbol-dibutyrate-induced cytoskeletal remodeling in a7r5 smooth muscle cells. *Exp Cell Res.* 2002;280:64-74.

- 6. Webb BA, Eves R, Crawley SW, Zhou S, Cote GP, Mak AS. PAK1 induces podosome formation in A7r5 vascular smooth muscle cells in a PAK-interacting exchange factor-dependent manner. *Am J Physiol Cell Physiol*. 2005;289:C898-907.
- 7. Jones NP, Katan M. Role of phospholipase Cgamma1 in cell spreading requires association with a beta-Pix/GIT1-containing complex, leading to activation of Cdc42 and Rac1. *Mol Cell Biol.* 2007;27:5790-5805.
- 8. Yin G, Zheng Q, Yan C, Berk BC. GIT1 is a scaffold for ERK1/2 activation in focal adhesions. *J Biol Chem.* 2005;280:27705-27712.
- 9. Saneyoshi T, Wayman G, Fortin D, Davare M, Hoshi N, Nozaki N, Natsume T, Soderling TR. Activity-dependent synaptogenesis: regulation by a CaM-kinase kinase/CaM-kinase I/betaPIX signaling complex. *Neuron.* 2008;57:94-107.
- Segura I, Essmann CL, Weinges S, Acker-Palmer A. Grb4 and GIT1 transduce ephrinB reverse signals modulating spine morphogenesis and synapse formation. *Nat Neurosci.* 2007;10:301-310.