Supporting Information

Properties of the modular model of a two-component signal transduction

system

First, we will show that in Eq. (2) (see main text), [R - P] (the concentration of

phosphorylated regulator) approaches C_p in the limit of large $[R]_{total}$ (total regulator

concentration). Rewrite Eq. (2) as

$$2[\mathbf{R} - \mathbf{P}] = C_t + C_p + [\mathbf{R}]_{total} - \sqrt{(C_t + C_p + [\mathbf{R}]_{total})^2 - 4C_p[\mathbf{R}]_{total}}$$
(S1)

(note that the quantities C_t and C_p are both positive).

Denote

 $a = C_t + C_p,$ $b = 4C_p,$

$$y = a + [\mathbf{R}]_{total}$$

With this notation, from Eq. (S1) we get

$$2[R - P] = a + [R]_{total} - \sqrt{(a + [R]_{total})^2 - b[R]_{total}} = y - \sqrt{y^2 - b(y - a)}$$
$$= y - \sqrt{y^2 - by + ab} .$$

It follows that

$$\lim_{[R]_{total} \to \infty} 2[R - P] = \lim_{y \to \infty} \frac{1 - \sqrt{1 - b/y} + ab/y^2}{1/y} = \lim_{x \to 0} \frac{1 - \sqrt{1 - bx} + abx^2}{x},$$
 (S2)

where x = 1/y. Because both the numerator and the denominator in Eq. (S2) approach 0 as $x \to 0$, we use L'Hôspital's rule to calculate that limit. After differentiating both the numerator and the denominator in Eq. (S2), we get

$$\lim_{[R]_{lotal} \to \infty} 2[R - P] = \lim_{x \to 0} \frac{b - 2abx}{2\sqrt{1 - bx + abx^2}} = b/2 = 2C_p.$$
(S3)

This expression proves that $[\mathbf{R} - \mathbf{P}] \rightarrow C_p$ in the limit of large $[\mathbf{R}]_{total}$.

Next, we will show that the variable [R - P] in Eq. (2) (main text) is a monotonically increasing function of $[R]_{total}$. Write Eq. (2) as $[R - P] = g([R]_{total})$. We have that

$$g([R - P]) = a + [R]_{total} - \sqrt{(a + [R]_{total})^2 - 4C_p[R]_{total}};$$

$$g'([R - P]) = 1 - \frac{a + [R]_{total} - 2C_p}{\sqrt{(a + [R]_{total})^2 - 4C_p[R]_{total}}}.$$

If $a + [R]_{total} \le 2C_p$, then $g'([R - P]) \ge 1$, and, therefore, g is monotonically increasing.

Let us assume that $a + [R]_{total} > 2C_p$. In this case, g'([R - P]) > 0 will follow if

$$a + [\mathbf{R}]_{total} - 2C_p < \sqrt{(a + [\mathbf{R}]_{total})^2 - 4C_p [\mathbf{R}]_{total}}$$

or, equivalently,

$$(a + [\mathbf{R}]_{total} - 2C_p)^2 < (a + [\mathbf{R}]_{total})^2 - 4C_p[\mathbf{R}]_{total}.$$

After some algebra, this inequality is reduced to

 $-aC_p+C_p^2<0.$

Because $a = C_p + C_k > C_p$, the inequality above holds, proving that [R - P] in Eq. (2) is a monotonically increasing function of [R]_{total}.

Now, we will prove that $[R]_{total}$ is an increasing function of B in Eqs. (1)–(2). Let the pair $\{[R]_{total} = R_0, [R - P] = P_0\}$ be the solution to Eqs. (1)–(2) for a certain value $B = B_0$. Now, let $B_1 > B_0$, and let $\{R_1, P_1\}$ be the solution to Eqs. (1)–(2) for B_1 . We need to prove that $R_1 > R_0$. Consider the functions $[R]_{total} = f_B([R - P])$ and $[R - P] = g([R]_{total})$ defined by Eq. (1) and Eq. (2), respectively. Because g is monotonically increasing, g^{-1} exists (and also is monotonically increasing), and Eq. (2) is equivalent to

 $[R]_{total} = g^{-1}([R - P])$. We have that $g^{-1}(P_1) = f_{B_1}(P_1) = R_1$. Further,

 $f_{B_0}(P_1) < f_{B_1}(P_1) = g^{-1}(P_1)$, which follows from the definition of the function f_B . At the same time, $g^{-1}(0) = 0 < f_{B_0}(0) = \tau B_0$. Therefore, due to the continuity of g^{-1} and f_{B_0} , these functions attain the same value X for some $[\mathbb{R} - \mathbb{P}]_X \in (0, P_1)$. Therefore, the pair $\{X, [\mathbb{R} - \mathbb{P}]_X\}$ is the solution to Eqs. (1)–(2) for $B = B_0$. Because this solution is unique (see Supplementary Information in Ref. 1), $X = R_0$ and $[\mathbb{R} - \mathbb{P}]_X = P_0$. This implies that $P_0 < P_1$. Because g^{-1} is a monotonically increasing function, $R_0 = g^{-1}(P_0) < g^{-1}(P_1) = R_1$, Q.E.D.

Parameter values for the models

For the modular model of two-component signal transduction (Eqs. (1)–(2)), we used the following parameter values (taken from Ref. 1): D = 40, $C_t = 1$, and C_p , τA , and τB as indicated in the main text. For the simple model of positive autoregulation (Eqs. (3)– (4)) we used the following parameter values (taken from Ref. 2): $k_{-a} = 20 \text{ min}^{-1}$, H = 2, $K = 5 \mu M^{-2}$, $k_d = 0.08 \text{ min}^{-1}$, and k_1 , k_2 , k_a as indicated in the main text.

References

- Miyashiro, T. & Goulian, M. (2008). High stimulus unmasks positive feedback in an autoregulated bacterial signaling circuit. *Proc Natl Acad Sci USA* 105, 17457-17462.
- Mitrophanov, A. Y. & Groisman, E. A. (2008). Positive feedback in cellular control processes. *Bioessays* 30, 542-555.
- Shin, D. & Groisman, E. A. (2005). Signal-dependent binding of the response regulators PhoP and PmrA to their target promoters *in vivo*. *J Biol Chem* 280, 4089-4094.
- Perez, J. C., Shin, D., Zwir, I., Latifi, T., Hadley, T. J. & Groisman, E. A. (2009).
 Evolution of a bacterial regulon controlling virulence and Mg²⁺ homeostasis.
 PLoS Genetics 5, Art. No. e1000428.

 Shin, D., Lee, J., Huang, H. & Groisman, E. A. (2006). A positive feedback loop promotes transcription surge that jump-starts *Salmonella* virulence circuit. *Science* 314, 1607-1609.

Strain	Description	Source
EG13918	phoP-HA	Ref. 3
EG14338	Deletion of PhoP box in EG13918	Ref. 4
EG14943	Replacement of the PhoP box with -35 hexamer in EG13918	Ref. 5

Table S1. Bacterial strains used in this study.

Primer No.	Target genes	Sequences (5' - 3')
4443	<i>mgtA</i> forward	TAATTGCCACAAAACTTATG
4446	<i>mgtA</i> reverse	TCGCGGGAGAGGGGTGGGTT
4485	<i>mgtC</i> forward	GCGGGATTACGCACTAATGC
4486	<i>mgtC</i> reverse	GTCATGGAGCTCAGAATAAAAACG
6964	pagC forward	AAAAGATTAAATCGGAGCGGGA
6965	pagC reverse	TGACGCTCCATCCGCAATA
7013	pagD forwrad	ACATCATGCTTTTATGCTTTGGTC
7017	pagD reverse	AAACCAGAACAATGGCCTGAA
4489	phoP forward	GATGAAGACGGCCTTTCCTTAA
4490	phoP reverse	GAACCGGCAGTGAAACATCA
7108	<i>ugtL</i> forward	CGATTAGCTGACGGCTTTGTTT
7114	<i>ugtL</i> reverse	GATTTCTTCATTTTGAGCCTCCTC
7116	yobG forward	TGAAAAATTTCGATGGGTCG
7118	<i>yobG</i> reverse	TGATATTAAACACCTGCGCCC
3023	rrs forward	CCAGCAGCCGCGGTAAT
3024	<i>rrs</i> reverse	TTTACGCCCAGTAATTCCGATT

Table S2. Primers used for RT-PCR.