Study of the Individual Cytochrome b₅ and Cytochrome b₅ Reductase Domains of Ncb5or Reveals a Unique Heme Pocket and a Possible Role of the CS Domain

Bin Deng², Sudharsan Parthasarathy⁵, WenFang Wang², Brian R. Gibney⁸, Kevin P. Battaile⁷, Scott Lovell⁶, David R. Benson^{4,5}, Hao Zhu^{1,2,3}

From Department of Clinical Laboratory Sciences¹, Physical Therapy and Rehabilitation Science², Biochemistry and Molecular Biology³, University of Kansas Medical Center, Kansas City, KS 66160 Department of Chemistry⁴, Molecular Biosciences⁵, University of Kansas, Lawrence, KS 66045 Protein Structure Laboratory⁶, Structural Biology Center, University of Kansas, Lawrence, KS 66047 IMCA-CAT⁷, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 Department of Chemistry⁸, Brooklyn College, Brooklyn, NY 11210 Running Head: Unique heme pocket and possible role of CS in human Ncb5or

Address correspondence to: Hao Zhu, Ph.D., 3901 Rainbow Blvd., MSN 4048G-Eaton, Kansas City, KS 66160, Phone: (913)-588-2989, FAX: (913)-588-5222, E-mail: <u>hzhu@kumc.edu</u>; David R. Benson, Ph.D., 1251 Wescoe Hall Drive, 2010 Malott Hall, Lawrence, KS 66045, Phone: (785)-864-4090, FAX: (785)-864-5396, <u>E-mail: drb@ku.edu</u>.

SUPPELMENTAL DATA

FIGURE LEGENDS

Supplemental Figure 1. Sequence alignment of Cyb5A from vertebrates. Residue numbers and helices of human Cyb5A corresponding to those in Figure 1B are labeled. Conserved amino acid residues in each group are marked by "*" (identical, heme-ligands in red) or "-" (chemically similar). All are annotated from genomic sequences except those from human, mouse, rat, bovine, horse, pig, rabbit, Xenopus and Zebrafish are confirmed by transcript or protein sequences. GenBank accession numbers are: Human (NP 683725), Chimpanzee (XP 001135885), Monkey (XP 001083378), Orangutan (ENSPPYP00000010369), Guinea pig (ENSCPOP0000010893), Mouse (NP 080073), Rat (NP 071581), Bovine (NP 776458), Horse (NP 001153204), Pig (NP 001001770), Goat (ABQ12619), Dog (XP 533373), Rabbit (P00169), Opossum (XP 001373630), Zebrafinch (XP 002195467), Chicken (NP 001001748), Xenopus laevis (NP 001086707), Xenopus tropicalis (NP 001015979), Rice fish (ENSORLT00000004278), Zebrafish (NP 998300), salmon (ACI66502), pufferfish (ENSTNIP0000008519), Fugu (ENSTRUP00000013474), Stickleback (ENSGACP0000002650), C. Armatus (CAE75863), Rainbow smelt (ACO09548). A 92% identity or a 96% similarity is found for human and rat Cyb5A sequences.

Supplemental Figure 2. Sequence alignment of Ncb5or-b₅ core from animals. Residue numbers and helices of human Ncb5or-b₅ corresponding to those in Figure 1B are labeled. Conserved amino acid residues in each group are marked by "*" (identical, heme-ligands in red) or "-" (chemically similar). All sequences are annotated from genomic sequences except sequences of human, mouse and rat have been confirmed by cloned cDNAs. Ncb5or is also named Cyb5R3, b5/b5R, and b5+b5R. GenBank accession numbers are: Human (NM 016230), Chimpanzee (XM 518614), Monkey (XM 001085835), Guinea pig

(EB369672), Mouse (NM_024195), Rat (NM_133427), Bovine (NM_001038159), Horse (XM_001499913), Sheep (DY519717), Dog (XM_532219), Squirrel (CO734025), Platypus (XM_001512881), Opossum (XM_001375853), Zebrafinch (XM_002188637), Chicken (XM_001233870), Xenopus laevis (NM_001016756), Little skate (CV222314), Rice fish (AM140533), Zebrafish (NM_001020660), Salmon (DY707237), Stickleback (DN714575), Pimephales (DT192112), Pea aphid (XM_001948299), Beetle (XM_963135), Honeybee (XM_394412), Jewel Wasp (XM_001601866), Drosophila (NM_137575), Louse (XM_002428283), Deer tick (XM_002401084), Mosquito (XM_001650886), Tunicate (XR_053035), Lancelet (XM_002603916), C.elegans (NM_001026613), Teladorsagia (CB038604), Trichuris (BM277379), Sea urchin (CD307914), Coral (EZ038676), Sea anemone (DV081463), Trichoplax (XM_002112883), Hydra (XM_002165807). A 93% identity or a 100% similarity is found for human and rat Ncb5or-b5 sequences.

Supplemental Figure 3. 2Fo-Fc electron density map contoured at 1σ showing the two orientations of the heme molecules in Ncb5or-b₅ associated with subunit A (left) and subunit B (right).

Supplemental Figure 4. Thermostability of wild-type Ncb5or-b₅ and its two mutants, b₅W114A and b₅R113A. The percent of heme loss (Y axis) was monitored by the decrease in A413 and plotted as a function of temperature. Thermal denaturation experiments were performed on a Varian Carey 100 Bio UV/Visible spectrophotometer equipped with a Peltier-thermostated multiple cell holder and a dedicated temperature probe accessory (\pm 0.1 °C). Solutions were buffered to pH 7.0 using 50 mM potassium phosphate. Experiments were performed in quartz cuvettes of 1 cm path length and 1 mL sample volume, equipped with tight-fitting PTFE lids. The temperature was increased in increments of 2 °C, and samples were equilibrated for 5 min after reaching each desired temperature. Thermal denaturation midpoints (T_m values) were obtained by fitting plots of absorbance at the Soret band λ_{max} (412 nm) vs. temperature to a previously described equation describing a two-state equilibrium (1). Tm (mid-point temperature) = 72.0 (Ncb5or-b₅), 73.4 (Ncb5or-b₅R113A), 71.5 (Ncb5or-b₅W114A), 73.5 (human Cyb5A).

Supplemental Figure 5. Circular dichroism (CD) spectra of human Ncb5or-b₅. (A) Far UV (190 – 250 nm) and (B) visible (350 – 500 nm) spectra of wild-type Ncb5or-b₅ and its two mutants, b₅W114A and b₅R113A, monitored at a concentration of 17.4, 14.5, and 15.3 μ M heme, respectively. CD spectra were recorded on a JASCO-815 spectropolarimeter equipped with a Peltier thermostated cell holder.(2) Solutions were buffered to pH 7.0 using 10 mM sodium phosphate. All spectra were obtained at 0.1 nm with a response time of 4 sec and a scan rate of 50 nm/min at room temperature. Final spectra represent the average of at least five scans. Background correction was accomplished by subtraction of a spectrum recorded at the same temperature and containing only buffer. Far-UV spectra are reported in terms of mean residue ellipticity ([θ], in deg·cm²·dmol⁻¹), calculated as [θ] = [θ]_{obs}[MRW/(10*lc*)] where [θ]_{obs} is the ellipticity measured in millidegrees, MRW is the polypeptide mean residue molecular weight (molecular weight divided by the number of amino acids), *c* = sample concentration in mg/mL, and *l* = optical path length of the cell in cm. Near-UV and visible region spectra are reported in terms of molar ellipticity ([θ], in deg·cm²·dmol⁻¹), calculated as [θ] = [θ]_{obs}[MW/(10*lc*)] where MW is the molecular weight of the polypeptide.

Data Collection	
Unit-cell parameters (Å, °)	$a = 38.48, b = 56.37, c = 42.56, \beta = 100.67$
Space group	<i>P</i> 2 ₁
Resolution $(Å)^1$	30.0-1.25 (1.28-1.25)
Wavelength (Å)	1.0000
Temperature (K)	100
Observed reflections	185,062
Unique reflections	49,981
$\langle I/\sigma(I) \rangle^1$	13.0 (1.9)
Completeness $(\%)^1$	99.0 (93.6)
Redundancy ¹	3.8 (3.1)
$R_{\rm sym}(\%)^{1,2}$	5.8 (72.4)
Refinement	
Resolution (Å)	30.0-1.25
Reflections (working/test)	46,492 / 2,489
$R_{\text{factor}} / R_{\text{free}} (\%)^3$	14.7 / 17.3
No. of atoms (protein (A:B) / Heme /	742:743 / 172 / 10 / 145
sulfate /water)	
Model Quality	
R.m.s deviations	
Bond lengths (Å)	0.013
Bond angles (°)	1.477
Average <i>B</i> factor $(Å^2)$	
All Atoms	15.9
Protein (chain A/B)	15.2 / 15.3
Heme	11.0
Sulfate	27.7
Water	28.0
Coordinate error based on R_{free} (Å)	0.043
Ramachandran Plot (chain A/B)	
Most favored (%)	97.1
Additionally allowed (%)	2.9

Supplemental Table 1. Crystallographic data for human Ncb5or-b₅ refined to 1.25Å resolution.

1) Values in parenthesis are for the highest resolution shell.

2) $R_{\text{sym}} = \sum_{hkl} \sum_i |I_i(hkl) - \langle I(hkl) \rangle| / \sum_{hkl} \sum_i I_i(hkl)$, where $I_i(hkl)$ is the intensity measured for the *i*th reflection and $\langle I(hkl) \rangle$ is the average intensity of all reflections with indices hkl.

3) $R_{\text{factor}} = \sum_{hkl} ||F_{\text{obs}}(hkl)| - |F_{\text{calc}}(hkl)|| / \sum_{hkl} |F_{\text{obs}}(hkl)|$; Rfree is calculated in an identical manner using 5% of randomly selected reflections that were not included in the refinement.

Supplemental Table 2. Summary of interplanar dihedral angles and EPR signals of Ncb5or and other members of the cytochrome b₅ superfamily. Interplanar dihedral angles of bis-histidine ligands were calculated with Mercury (http://www.ccdc.cam.ac.uk/products/mercury/). N/A: not available.

Protein Name (source)	PDB #	g_{max} or g_z	Interplanar dihedral angles	Reference
Ncb5or (human)	3LF5	3.56	83.2° / 81.3° (His ⁸⁹ ,His ¹¹²)	This study
Ncb5or (rat)	N/A	3.54	N/A	(3)
Cyb5A (human)	N/A	3.09	N/A	This study
Cyb5A (bovine)	1CYO	3.1	21.2° (His ⁴⁴ ,His ⁶⁸)	(4,5)
Cyb5A (rat)	N/A	3.05	N/A	(3)
Cyb5B (rat)	1B5M	3.03	11.9° (His ⁴² ,His ⁶⁶)	(6,7)
Cytochrome b ₅ (M. domestica)	2IBJ	3.07	23.8° (His ³⁹ ,His ⁶³)	(2,8)
Cytochrome b ₅ (A. suum)	1X3X	N/A	46.1° (His ³⁸ ,His ⁶²)	(9)
Cytochrome b558 (E. vacuolata)	1CXY	N/A	43.9° (His ⁴² ,His ⁷⁰)	(10)
Sulfite oxidase (chicken)	1SOX	2.93	9.6° (His ⁴⁰ ,His ⁶⁵)	(11,12)
Cytochrome b ₂ (yeast)	1LTD	2.99	42.3° (His ⁴³ ,His ⁶⁶)	(13,14)
Nitrate reductase (spinach)	N/A	2.98	N/A	(15)

Supplemental Table 3. Kinetic properties of Cyb5A mutants tested for electrostatic interaction with Cyb5R3. Heme ligands are His⁴⁴ and His⁶⁸ in Cyb5A, corresponding to His⁸⁹ and His¹¹² in Ncb5or, respectively. ^a Both k_{cat} and K_M values are the ratio against that of wild-type Cyb5A. ^b N116 is displaced relative to D71 given the difference in local secondary structure, but it is the closest residue spatially and is pointed generally in the same direction.

Cyb5A	k _{cat} ^a	$K_M{}^a$	Helix	Residue in Ncb5or	Ref.
E42A	1.0	1.2	α2	E87	(16)
E43A	1.0	3.1	α2	Y88	(16)
E48A	1.3	1.7	α3	E93	(17)
E49A	0.8	0.6	α3	D94	(17)
E48A/E49A	1.3	1.1	α3	-	(17)
E53A	1.2	1.2	α3	R98	(17)
E61A	1.3	1.4	α4	E106	(17)
E64A	1.0	1.0	α4	D109	(16)
D65A	1.0	1.5	α4	Q110	(17)
D71A	0.7	6.4	α5	N116 ^b	(16)
E74A	1.1	1.8	α5	S119	(16)
E48/E49/E53/E61/D65→A	0.9	1.4	α3,4	_	(17)
E42/E43/E48/E49/E53/D58/E61/E64/D65→A	0.9	6.1	α2,3,4	_	(17)

Supplemental Figure 1.

	α1	α2	α3	α4	α5	α6	
Human	6 DEAVKYYTLEEIQKHNHSKSTWL	ILHHKVYDLTKFLEEHPO	GGEEVLREQAGG	DATENFEDVGH	STDAREMSKTFI	IGELHPDDRPKL	92
Chimpanzee	DEAVKYYTLEEILKHNHSKSTWL	ILHHKVYDLTKFLEEHP(GGEEVLREQAGG	DATENFEDVGHS	STDAREMSKTFI	IGELHPDDRPKL	
Monkey	DEAVKYYTLEEIQKHNHSKSTWL	ILHHKVYDLTKFLEEHPO	GGEEVLREQAGG	DATENFEDVGHS	STDAREMSKTYI:	IGELHPDDRPKL	
Orangutan	DEAVKYYTLEEIQKHNHNKSTWL	ILHHKVYDLTKFLEEHPO	GGEEVLREQAGG	DATENFEDVGH	STDAREMSKTFI	IGELHPDDRPKL	
Guinea pig	EQAVKYYTLEEIEKHKDSKSTWV	ILHHKVYDLTRFLEEHP(GGEEVLREQAGG	DATENFEDVGHS	STDARELSKTFI	IGEVHPDDRPKL	
Mouse	DKDVKYYTLEEIQKHKDSKSTWV	ILHHKVYDLTKFLEEHPO	GEEVLREQAGG	DATENFEDVGHS	STDARELSKTYI	IGELHPDDRSKI	
Rat	DKDVKYYTLEEIQKHKDSKSTWV	ILHHKVYDLTKFLEEHPO	GEEVLREQAGG	DATENFEDVGHS	STDARELSKTYI	IGELHPDDRSKI	
Bovine	SKAVKYYTLEEIQKHNNSKSTWL	ILHYKVYDLTKFLEEHPO	GEEVLREQAGG	DATENFEDVGHS	STDARELSKTFI	IGELHPDDRSKI	
Horse	DKAVKYYTLEEIKKHNHSKSTWL	ILHHKVYDLTKFLDEHPO	GGEEVLREQAGG	DATENFEDIGHS	STDARELSKTFI	IGELHPDDRSKI	
Pig	DKAVKYYTLEEIQKHNNSKSTWL	ILHHKVYDLTKFLEEHPO	GEEVLREQAGG	DATENFEDVGHS	STDARELSKTFI	IGELHPDDRSKI	
Goat	SKPVKYYTLEEIQKHNHSKSTWL	ILHYKVYDLTKFLEEHPO	GEEVLREQAGG	DATENFEDVGHS	STDARELSKTFI	IGELHPDDRSKI	
Dog	DQTVKYYTLEEIQKHNHSKSTWL	ILHHKVYDLTKFLEEHPO	GEEVLREQAGG	DATENFEDVGHS	STDARELSKTFI	IGELHPDDRAKI	
Rabbit	DKDVKYYTLEEIKKHNHSKSTWL	ILHHKVYDLTKFLEEHPO	GEEVLREQAGG	DATENFEDVGHS	STDARELSKTFI	IGELHPDDRSKL	
Opossum	GEKVKYYTLEEIQKIINIISKSTWL	ILHIQVYDLTKFLEEHPO	GEEVLREQAGG	DATENFEDVGH	JTDARELSKTYI	IGELHPDDRDKI	
Conserved in mammals (14)	******* ** ****	*** ***********	******	*******	*****	***_**** *_	
Zebrafinch	PWRGRYYRLEEVQKHNNSQSTWI	IIHNRIYDVTKFLDEHPO	GEEVLREQAGG	DATENFEDVGH:	STDARTLSESFI'	VGELHPDDRSKL	
Chicken	AWRGRYYRLEEVQKHNNSQSTWI	IVHHRIYDITKFLDEHP	GEEVLREQAGG	DATENFEDVGH:	STDARALSETFI	IGELHPDDRPKL	
Xenopus laevis	QKEVKYYTLEEIKQHNHSKSTWI	LLHNKVYDVTKFLEEHPO	GEEVLREQAGG	DATETFEDIGH:	STDARNMSKEFV	IGELHPDDLSKI	
Xenopus tropicalis	QKEVKYYTLEEIKQHNHSKSTWI	LIHNKVYDVTKFLEEHPO	GEEVLREQAGG	DATETFEDIGH:	STDARNMSKEFI	IGELHPDDRSKI	
Rice fish	PEGVKYYRLSEIEAQNSFKSTWI	IIHHKVYDVTKFLDEHPO	GEEVLREQAGG	DATES FEDVGH:	STDAREMASGMV	IGELHPDDRHKI	
Zebrafish	GNGVKYYRLSEVEERNSFKSTWI	IIHNKVYDVTKFLEEHPO	GEEVLREQAGG	DATES FEDVGH:	STDAREMASSML	IGEVHPDDRDKI	
Salmon	GQAVKYYRLSEIEEQNTFKSTWI	IINFNVYDVTKFLEEHPO	GEEVLREQAGG	DATES FEDVGHS	SSDAKEMAANMI	IGELHPDDRPKM	
pufferfish	SDGVKYYRLSEIEEHKTVKSTWI	IINFKVYDVTKFLEEHPO	GEEVLREQAGG	DGTESFEDVGH:	STDAREMAAEMM	IGELHPEDRHKI	
Fuqu	PSGVKYFRLSEIEEQKSIKSTWI	IINYKVYDVTKFLEEHPO	GEEVLREHAGG	DATESFEDVGH:	STDAREMAGGLL	MGELHPDDRHKI	
Stickleback	PAGVKYFRLSEIEQQNTFKSTWI	IIHHKVYDVTKFLEEHPO	GEEVLREQAGG	DATESFEDVGH:	SSDAREMSVAMV	IGELHPDDRHKI	
C. Armatus	KDAVKYYRLSEVEKQNTFKSTWI	IINNKVYDVTQFLEEHPO	GEEVLREQAGG	DATESFEDVGH:	SRDAREMAAEML'	IGEVHPEDRPKL	
Rainbow smelt	GHPVKYYRLSEIEERNTFKCTWI	IIHHNIYDVTÄFLEEHPO	GEEVLREQGGG	DATESFEDVGH	SSDAREMAASMV	IGELHPDDRPKI	
Conserved in vertebrates (26	5) -*- * *- **-	**-* **-***	*******	*=** ***=**	* **	-**-**-* *-	

Supplemental Figure 2.

		α1	α2	α.3	α4	α.5	
Human	51	KGRLIEVTEEELKKHNKKDDCWICIRGFVYNVS	PYMEYH	PGGEDELMRAAG	SDGTELFDQV h R	WVNYESMLKECLVGRMAIKPAVLK	137
Chimpanzee		KGRLIEVTEEELKKHNKKDDCWICIRGFVYNVS	SPYMEY H	PGGEDELMRAAG	SDGTELFDQV H R	WVNYESMLKECLVGRMAIKPAVLK	
Monkey		KGRLIEVTEEELKKHNKKDDCWICIRGFVYNVS	SPYMEY H	PGGEDELMRAAG	SDGTELFDQV H R	WVNYESMLKECLVGRMAIKPAVLK	
Guinea pig		KGRLIEVTEEELKKHNKKDDCWICIRGFVYNVS	SPYMEY h	PGGEDELMRAAG	SDGTDLFNQV H R	WVNYESMLKECLVGRMAVKPAVPK	
Mouse		KGGLIEVTEEELKKHNKKEDCWICIRGFVYNVS	SPYMEY h	PGGEDELMRAAR	ADGTDLFNEV H R	WVNYESMLKECLVGRMAVKPAVPK	
Rat		KGGLIEVTEEELKKHNKKDDCWICIRGFVYNVS	SPYMEY h	PGGEDELMRAAG	ADGTDLFNEV H R	WVNYESMLKECLVGRMAVKPAVPK	
Bovine		KGRLIEVTEEELKKHNKKDDCWICIRGFVYNVS	SPYMEY h	PGGEDELMRAAG	SDGTDLFDQV H R	WVNYESMLKECLVGRMAMKPALPK	
Horse		KGRLIEVTEEELKKHDKKDDCWICIRGFVYNVS	SPYMEY h	PGGEDELMRAAG	SDGTDLFDQV H R	WVNYESMLKECLVGRMAVKPAAPK	
Sheep		KGRLIEVTEEELKKHNKKDDCWICIRGFVYNVS	SPYMEY h	PGGEDELMRAAG	SDGTDLFDQV H R	WVNYESMLKECLVGRMAMKPALPK	
Dog		KGRLIEVTEEELKRHNTKDDCWICIRGFVYNVS	SPYMEY h	PGGEDELMRAAG	SDGTDLFDQV H R	WVNYESMLKECLVGRMAIKPTIPK	
Squirrel		KGRLIDVTEEELKKHNKKEDCWICIRGFVYNVS	SYMEFH	PGGEDELMRAAG	SDGTDLFDQV H R	WVNYESMLKECLVGRMAVKPAIPK	
Platypus		RGRLIEVTEEELAKHNKKDDCWVCIRGLVYNVS	SPYMEY h	PGGEDELMRAAG	TDGTDLFDQV H R	WVNYESMLKECLIGRMAAKPVAAA	
Opossum		KGRLIEVTEEELIRHNKKDDCWVCIRGLVYNVS	SPYMEY h	PGGEDELMRAAG	SDGTDLFDQV H R	WVNYESMLKECLVGRMAVKPVAVA	
Conserved in mammals (13)		_* **_***** _* **_***	***-*	* * * * * * * * * * * *	***_** ***	**********	
Zebrafinch		KGRLIEVTEDELSKHNRKEDCWICIRGFVYNVI	PYMEYH	PGGEDE LMKAAG	TDGTDLFDQV H R	WVNYESMLKECLVGRMAVKPVAIS	
Chicken		KGRLIEVTEDELAKHNKKEDCWICIRGLVYNVI	PYMEYH	PGGEDE LMKAAG.	ADGTDLFDQV H R	WVNYESMLKECLVGRMAFKPIAAP	
Xenopus laevis		KGRLIDVTEEELAQHNKKEDCWICIRGMVYNII	PYMEYH	PGGEEELMKAAG	RDGTDLFDQV H R	WVNYESMLKECLIGRMAIKHVSIS	
Little skate		KGKLLRVTPEELAKHKEKTDCWICIRGMVYNVI	PYLEYH	PGGEDELMRGAG.	ADATELFDQI H S	WVNYDSILKECLVGRMTSKPFPVA	
Rice fish		RGRLIDVTPEELEKHNRRDDCWTCIRGMVYNVI	PYIDY H	PGGEDELMKAAG	IDGTDLFDQV H R	WVNYESMLKECLVGRMALKTPAAV	
Zebrafish		RGRLIEVSQEELRKHNNRDDCWTCIRGLVYNLS	SAYMDFH	PGGEEELMRAAG	IDSTDLFDEV H R	WVNYESMLKECLVGRMAVKPSPAL	
Salmon		RGRLIDVTEEELQKHNTRHDCWTCIRGMVYNVS	SPYMDF H	PGGEEELMKAAG	IDGTDLFDQV H R	WVNYESMLKECLVGRMAVKASTA	
Stickleback		RGRLIEVTQEELQRHNTRNDCWTCIRGMVYNVI	'PYMDY h	PGGEEELMKAAG	IDGTDLFDQV H R	WVNYESMLKECLVGRMATAVIKAA	
Pimephales		RGKLIEVTEDELKKHNTRNDCWTCIRGMVYNVS	SAYMDF H	PGGEAELMRAAG	IDGTDLFDQV H R	WVNYESMLKECLVGRMAVKLASAP	
Conserved in vertebrates (2	22)	_* **_*** * _ *** ****	**	**** ****	*_*** _*	*******	
Pea aphid		GGKMLSISKSELAKHNKRTDAWLAIRGTVYNVI	'QYMDF h	PGGVDELVRGIG	TDATKLFSEI h A	WVNYESILQKCVVGRLVNEELFKL	
Beetle		QAGNLSVTPSELALHNKETDAWLCIRGRVYNVI	'AYLPF h	PGGPEQLMKGAG	KDATRLFEEV H P	WVNFDQILTKCYVGKLKKNAPPPP	
Honeybee		GGVPRIVTLSELASHNKQNDAWIAIRGIVFNVI	RYMDFH	PGGISELMRGVG	kdatklfesv h a	WVNYQSILQKCVVGRLSRGSITGS	
Jewel wasp		GGKLLSVTPAELAKHNTENDAWIAIRGIVFNVS	SRYMSF H	PGGVPELMKGAG	KDATKLFDDV H A	WVNYQSILQKCVVGRLERSAGAEL	
Drosophila		GGRLVPVSRTELARHNKIDDAWMAIRGRVFNVI	RYMDFH	PGGVDELMRGVG	rdatklfdev h a	WVNYPQLLGKCYVGPLKDNETKPA	
Louse		GGVLKDVPLDELAEHNSKENAWISLRGKVYNVS	HYMNF H	PGGVPELMKGVG	KDATKLFTEI H P	WVNYESILQKCLVGRLVKNNPTAT	
Deer tick		GGKVLDVNPEELARHSRRDDAWICLKGRVYNVI	'PYMEF H	PGGEEELMRGVG	KDATDLFIQV H K	WVNFESMLEKCLVGRLVGPPANSI	
Mosquito		GGRIVPVSHAELAKHDRAEDAWMAIRGKVYNVI	'RYMNF H	PGGADELMRGAG	KDATRLFEEV H A	WVNYESLLAKCYIGPLRNTDTTDT	
Tunicate		GPRPLKISMEELAKHNTRDDAWMAIRGYVFNVI	'RYMEY H	PGGESELMRGVG	KDATSLFEEV H R	WVNFESMLKACFIGTLIPDFTIPK	
Lancelet		GGRLQNVTPEELAKHDKEGNVWTAIRGKVYNVI	'AYAEY H	PGGAEELMRAAG	KDGTDLFNEV H R	WVNYESMLESCLVGRLQEASSKND	
C.elegans		KRVSGGVDHVELMKHNTKDDCWVHLFGIVYDVI	'KYLDF h	PGGIPELLRGAG	rdatplfnqy h a	WVNYESMLKACVVGPFIGDLTKLP	
Teladorsagia		AKKRMSVDHEELMKHNQRDDCWVHIFGQVYDV1	SYLEFH	PGGIPELMRAAG	TDATDLFNQF H A	WVNYENMLKSCLVGRFTGDLSKLP	
Trichuris		GGRILKVTAKDLREHSTADNLWILLDGRVYNVI	HYLPFH	PGGRDALLIFIG	QDGAPAY-QY H P	WVNCHSVLERCLVGYFVDQRSVDE	
Sea urchin		QGQKMDVSEEELAKHNKIDDGWLAIRGQVYNVI	PYMEYH	PGGAEELMKGLG	IDATDLFNEV H R	WVNVESMLEKCHIGPLQKGDPLAF	
Coral		GGIVRPITEEELSQHNTQSDAWICIRGRVYNII	PYLEYH	PGGIPEIMRGVG	kdgtdlfdet h k	WVNAESMLEKCFIGPLKRDIAKVK	
Sea anemone		NGQHRPVTFEELDKHTSEEDCWIAIRGKVYNLI	PYLEYH	PGGIPEIMKGAG	KDGTQLFDEV H K	WVNAESMMEKCFIGPLVGVPQMGP	
Trichoplax		GGIIRKITNDELARHNTETDAWTCIRGKVYNII	PYMKF H	PGGIDELMRSVG	CDGTDLFDEI H R	WVNVESMLAKCLVGYIIADGVDGK	
Hydra		EGRNGSITLEELANHNTVKDCWTAIRGKVYNII	PYLEFH	PGGIEELMKSAG	IDATTIFDQV H R	WVNIESMLAKCYLGPLKVNIEKYL	
Conserved in all (40)		* * * _ * *	**	****	* *	*** * _* _	

Supplemental Figure 3.

Supplemental Figure 4.

Supplemental Figure 5.

A.

В.

REFERENCES

- 1. Constans, A. J., Mayer, M. R., Sukits, S. F., and Lecomte, J. T. (1998) *Protein Sci* 7(9), 1983-1993
- 2. Wang, L., Cowley, A. B., Terzyan, S., Zhang, X., and Benson, D. R. (2007) *Proteins* **67**(2), 293-304
- 3. Davis, C. A., Dhawan, I. K., Johnson, M. K., and Barber, M. J. (2002) Arch Biochem Biophys 400(1), 63-75
- 4. Durley, R. C., and Mathews, F. S. (1996) Acta Crystallogr D Biol Crystallogr 52(Pt 1), 65-76
- 5. Davydov, R., and Hoffman, B. M. (2008) *J Biol Inorg Chem* **13**(3), 357-369
- 6. Rivera, M., Barillas-Mury, C., Christensen, K. A., Little, J. W., Wells, M. A., and Walker, F. A. (1992) *Biochemistry* **31**(48), 12233-12240.
- Rodriguez-Maranon, M. J., Qiu, F., Stark, R. E., White, S. P., Zhang, X., Foundling, S. I., Rodriguez, V., Schilling, C. L., 3rd, Bunce, R. A., and Rivera, M. (1996) *Biochemistry* 35(50), 16378-16390
- 8. Guzov, V. M., Houston, H. L., Murataliev, M. B., Walker, F. A., and Feyereisen, R. (1996) *J Biol Chem* **271**(43), 26637-26645.
- 9. Yokota, T., Nakajima, Y., Yamakura, F., Sugio, S., Hashimoto, M., and Takamiya, S. (2006) *Biochem J* **394**(Pt 2), 437-447
- 10. Kostanjevecki, V., Leys, D., Van Driessche, G., Meyer, T. E., Cusanovich, M. A., Fischer, U., Guisez, Y., and Van Beeumen, J. (1999) *J Biol Chem* **274**(50), 35614-35620
- 11. Kessler, D. L., and Rajagopalan, K. V. (1972) *J Biol Chem* **247**(20), 6566-6573
- 12. Kisker, C., Schindelin, H., Pacheco, A., Wehbi, W. A., Garrett, R. M., Rajagopalan, K. V., Enemark, J. H., and Rees, D. C. (1997) *Cell* **91**(7), 973-983
- 13. Mowat, C. G., Miles, C. S., Munro, A. W., Cheesman, M. R., Quaroni, L. G., Reid, G. A., and Chapman, S. K. (2000) *J Biol Inorg Chem* **5**(5), 584-592.
- 14. Tegoni, M., and Cambillau, C. (1994) Protein Sci 3(2), 303-313
- 15. Barber, M. J., Desai, S. K., Marohnic, C. C., Hernandez, H. H., and Pollock, V. V. (2002) Arch Biochem Biophys 402(1), 38-50
- 16. Kawano, M., Shirabe, K., Nagai, T., and Takeshita, M. (1998) *Biochem Biophys Res Commun* **245**(3), 666-669
- 17. Shirabe, K., Nagai, T., Yubisui, T., and Takeshita, M. (1998) *Biochim Biophys Acta* **1384**(1), 16-22