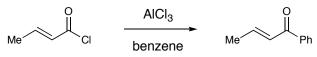
N-Heterocyclic Carbene-Catalyzed Conjugate Additions of Alcohols

Eric M. Phillips, Matthias Riedrich, and Karl A. Scheidt*

Department of Chemistry, Center for Molecular Innovation and Drug Discovery, Chemistry of Life Processes Institute, Northwestern University, Silverman Hall, 2145 Sheridan Road, Evanston, Illinois 60208


Supporting Information

General Information	S2
Procedure for the Synthesis of 1	S2
General Procedure for the NHC-Catalyzed Conjugate Addition of Alcohols	S3
Selected NMR Spectra	<i>S10</i>

General Information

All reactions were carried out under a nitrogen atmosphere in flame-dried glassware with magnetic stirring. Toluene, dichloromethane, and benzene were purified by passage through a bed of activated alumina.¹ Reagents were purified prior to use unless otherwise stated following the guidelines of Perrin and Armarego.² Purification of reaction products was carried out by flash chromatography using EM Reagent silica gel 60 (230-400 mesh). Analytical thin layer chromatography was performed on EM Reagent 0.25 mm silica gel 60-F plates. Visualization was accomplished with UV light and *p*-anisaldehyde stain or potassium permangenate stain followed by heating. Infrared spectra were recorded on a Bruker Tensor 37 FT-IR spectrometer. ¹H-NMR spectra were recorded on a Varian Inova 500 (500 MHz) spectrometer and are reported in ppm using solvent as an internal standard (CDCl₃ at 7.26 ppm). Data are reported as (ap = apparent, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, b = broad; coupling constant(s) in Hz; integration. Proton-decoupled ¹³C-NMR spectra were recorded on a Varian Inova 500 (125 MHz) spectrometer and are reported in ppm using solvent as an internal standard (CDCl₃ at 77.0 ppm). Mass spectra data were obtained on a Hewlett-Packard/Agilent 5972-A GC-MSD system with electron impact (EI) ionization source and Agilent 6210 TOF LC/MS (ESI).

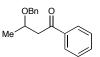
Procedure for the Synthesis of 1

To a flame-dried, one-neck, 100-mL round bottom flask equipped with magnetic stirring bar, rubber septum, and N₂ inlet was added AlCl₃ (5.5 g, 41.1 mmol). Benzene (20 mL, 1.6 M) was added to the solid through a syringe and stirred vigorously. Crotonyl chloride³ (3.1 mL, 32.1 mmol) was added to the solution through a syringe in a dropwise fashion over 10 min. The reaction stirred under a N₂ atmosphere. After 20 min, the solution was poured into an 500-mL Erlenmeyer flask, equipped with magnetic stirring bar, containing a solution of 100 mL ice and 50 mL 2 M HCl. The resulting mixture was poured into a separatory funnel and extracted with two 50-mL portions of Et₂O. The organic phase was washed with one 30-mL portion of 4 M NaOH. The organic phase was dried over MgSO₄, filtered and concentrated by rotary evaporator. The unpurified mixture was purified by distillation (84 °C, 0.7 mmHg) to afford the resulting enone (2.53 g, 54% yield) as a clear, colorless oil.

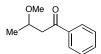
Me

(*E*)-1-phenylbut-2-en-1-one: Analytical data for 1: IR (film) 3060, 3031, 2972, 2939, 1670, 1624, 1296, 1220 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.93-7.92 (m, 2H), 7.57-7.54 (m, 1H),

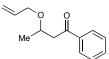
^{1.} Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometal. **1996**, *15*, 1518-1520.


Perrin, D. D. and Armarego, W. L. Purification of Laboratory Chemicals; 3rd Ed., Pergamon Press, Oxford. 1988.

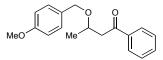
^{3.} Freshly distilled over CaH₂.

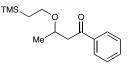

7.48-7.45 (m, 2H), 7.08 (dq, J = 15.3, 6.9 Hz, 1H), 6.91 (dq, J = 15.3, 1.6 Hz, 1H), 2.00 (dd, J = 6.9, 1.6 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 190.9, 145.1, 137.9, 132.6, 128.5 (2x), 127.5, 18.6; LRMS (EI): Mass calcd for C₁₀H₁₀O [M]⁺, 146. Found [M]⁺, 146.

General Procedure for the NHC-Catalyzed Conjugate Addition of Alcohols

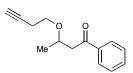

To an oven-dried 2-dram vial equipped with magnetic stirring bar was added azolium salt A (7 mg, 0.02 mmol) and LiCl (17 mg, 0.4 mmol) under inert atmosphere in a dry-box. The vial was sealed with a screw cap which was equipped with a teflon septum. Under N₂ atmosphere, THF (0.40 mL, 1 M) was added. The reaction was cooled to -78 °C in a CO₂/acetone bath and *n*-BuLi (8 μ L, 0.02 mmol, 2.49 M in hexanes) was added through a syringe. The reaction was allowed to warm to 20 °C by removing the vial from the dry ice/acetone bath. After 5 min, the solvent was removed under vacuum and the vial was back-filled with N₂. A mixture of ketone (0.4 mmol), alcohol, and toluene (0.40 mL, 1 M) was added to the vial through a cannula. The reaction stirred under N₂ atmosphere at 20 °C until the consumption of the ketone was observed. Upon completion of the reaction, the mixture was diluted with EtOAc and filtered through a small pad of SiO₂. The material was concentrated and the residue was purified by flash column chromatography with 10% EtOAc in Hexanes unless stated otherwise to afford the corresponding β -alkoxy ketone.


3-(benzyloxy)-1-phenylbutan-1-one (2): Prepared according to general procedure using (*E*)-1-phenylbut-2-en-1-one (58 mg, 0.4 mmol) and benzyl alcohol (124μ L, 1.2 mmol) to afford 91 mg (89%) of **2** as a yellow oil after 12 h. Analytical data for **2**: IR (film) 3086, 3030, 2971, 2871, 1685, 1450, 1371, 1211 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.97-7.95 (m, 2H), 7.58-7.55 (m, 1H), 7.48-7.45 (m, 2H), 7.30-7.25 (m, 5H), 4.59 (d, *J* = 11.5, Hz, 1H), 4.50 (d, *J* = 11.5 Hz, 1H), 4.23 (ddq, *J* = 6.2, 6.2, 6.2 Hz, 1H), 3.42 (dd, *J* = 16.1, 6.5 Hz, 1H), 3.00 (dd, *J* = 16.1, 6.1 Hz, 1H), 1.33 (d, *J* = 6.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 198.7, 138.5, 137.2, 133.1, 128.6, 128.3, 128.2, 127.7, 127.5, 72.0, 71.0, 45.9, 20.2; LRMS (ESI): Mass calcd for C₁₇H₁₈O₂ [M+Na]⁺, 277. Found [M+Na]⁺, 277.

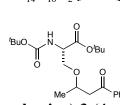

3-methoxy-1-phenylbutan-1-one (3): Prepared according to general procedure using (*E*)-1-phenylbut-2-en-1-one (58 mg, 0.4 mmol) and methanol (81 μ L, 2.0 mmol) to afford 56 mg (79%) of **3** as a yellow oil after 12 hr. Analytical data for **3**: IR (film) 3062, 2974, 2932, 2823, 1685, 1449, 1217 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.97-7.95 (m, 2H), 7.58-7.55 (m, 1H), 7.48-7.45 (m, 2H), 4.00 (ddq, *J* = 6.2, 6.2, 6.2 Hz, 1H), 3.35 (s, 3H), 2.34 (dd, *J* = 16.2, 6.5 Hz, 1H), 2.92 (d, *J* = 16.2, 6.1 Hz, 1H), 1.26 (d, *J* = 6.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 198.7, 137.2, 133.1, 128.6, 128.1, 73.5, 56.5, 45.4, 19.8; LRMS (ESI): Mass calcd for C₁₁H₁₄O₂ [M+H]⁺, 179. Found [M+H]⁺, 179.


3-(allyloxy)-1-phenylbutan-1-one (4): Prepared according to general using (*E*)-1-phenylbut-2en-1-one (58 mg, 0.4 mmol) and allyl alcohol (136 μ L, 2.0 mmol) to afford 64 mg (78%) of **4** as a light yellow oil after 12 hr. Analytical data for **4**: IR (film) 3064, 2973, 2931, 2870, 1742, 1686, 1449, 1212 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.97-7.96 (m, 2H), 7.58-7.55 (m, 1H), 7.48-7.45 (m, 2H), 5.88 (dddd, *J* = 17.2, 10.5, 5.6, 5.6 Hz, 1H), 5.23 (dddd, *J* = 17.2, 1.7, 1.7, 1.7 Hz, 1H), 5.13 (dddd, *J* = 10.4, 1.4, 1.4, 1.4 Hz, 1H), 4.15 (ddq, *J* = 6.2, 6.2, 6.2 Hz, 1H), 4.06 (dddd, *J* = 12.6, 5.6, 1.4, 1.4 Hz, 1H), 3.96 (dddd, *J* = 12.6, 5.6, 1.4, 1.4 Hz, 1H), 3.37 (dd, *J* = 16.2, 6.3 Hz, 1H), 2.95 (dd, *J* = 16.2, 6.2 Hz, 1H), 1.28 (d, *J* = 6.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 198.7, 137.2, 135.0, 133.1, 128.5, 128.2, 116.7, 71.7, 69.9, 45.8, 20.2; LRMS (ESI): Mass calcd for C₁₃H₁₆O₂ [M+H]⁺, 205. Found [M+H]⁺, 205.

1-phenyl-3-(prop-2-ynyloxy)butan-1-one (5): Prepared according to general using (*E*)-1-phenylbut-2-en-1-one (58 mg, 0.4 mmol) and propargyl alcohol (115 μ L, 2.0 mmol) to afford 69 mg (85%) of **5** as a clear oil after 12 hr. Analytical data for **5**: IR (film) 3293, 3062, 2973, 2932, 2906, 2858, 2115, 1684, 1597, 1449, 1083 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.97-7.95 (m, 2H), 7.58-7.55 (m, 1H), 7.48-7.45 (m, 2H), 4.31 (ddq, *J* = 6.2, 6.2, 6.2 Hz, 1H), 4.23 (dd, *J* = 15.7, 2.4 Hz, 1H), 4.17 (dd, *J* = 15.7, 2.4 Hz, 1H), 3.40 (dd, *J* = 16.5, 6.2 Hz, 1H), 2.98 (dd, *J* = 16.5, 6.3 Hz, 1H), 2.39 (dd, *J* = 2.4, 2.4 Hz, 1H), 1.31 (d, *J* = 6.2 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 198.2, 137.0, 133.2, 128.6, 128.2, 80.1, 74.0, 71.6, 56.2, 45.7, 20.0; LRMS (ESI): Mass calcd for C₁₃H₁₄O₂ [M+Na]⁺, 225. Found [M+Na]⁺, 225.

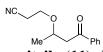


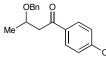
3-(4-methoxybenzyloxy)-1-phenylbutan-1-one (6): Prepared according to general procedure using (*E*)-1-phenylbut-2-en-1-one (58 mg, 0.4 mmol) and *p*-methoxybenzyl alcohol (166 mg, 1.2 mmol) to afford 92 mg (81%) of **6** as a yellow oil after 6 hr. Analytical data for **6**: IR (film) 3062, 3033, 2969, 2933, 2869, 1684, 1514, 1248 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.97-7.95 (m, 2H), 7.58-7.55 (m, 1H), 7.47-7.44 (m, 2H), 7.22-7.20 (m, 2H), 6.85-6.83 (m, 2H), 4.53 (d, *J* = 11.1 Hz, 1H), 4.44 (d, *J* = 11.1 Hz, 1H), 4.23 (ddq, *J* = 6.2, 6.2, 6.2 Hz, 1H), 3.78 (s, 3H), 3.40 (dd, *J* = 16.1, 6.5 Hz, 1H), 2.97 (dd, *J* = 16.1, 6.1 Hz, 1H), 1.31 (d, *J* = 6.1 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 198.8, 159.1, 137.1, 133.1, 130.7, 129.3, 128.6, 113.8, 71.7, 70.7, 55.3, 46.0, 20.3; LRMS (ESI): Mass calcd for C₁₈H₂₀O₃ [M+Na]⁺, 307. Found [M+Na]⁺, 307.



1-phenyl-3-(2-(trimethylsilyl)ethoxy)butan-1-one (7): Prepared according to general procedure using (*E*)-1-phenylbut-2-en-1-one (58 mg, 0.4 mmol) and 2-(trimethylsilyl)ethanol (287 μ L, 2.0 mmol) to afford 84 mg (80%) of 7 as a yellow oil after 20 hr. Analytical data for 7: IR (film)

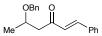

3063, 2954, 2894, 1687, 1449, 1248, 836 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.97-7.95 (m, 2H), 7.58-7.55 (m, 1H), 7.48-7.45 (m, 2H), 4.07 (ddq, J = 6.2, 6.2, 6.2 Hz, 1H), 3.61-3.56 (m, 1H), 3.49-3.43 (m, 1H), 3.33 (dd, J = 16.1, 6.2 Hz, 1H), 2.92 (dd, J = 16.1, 6.2 Hz, 1H), 1.25 (d, J = 6.1 Hz, 3H), 0.87 (d, J = 8.2 Hz, 1H), 0.86 (d, J = 8.2 Hz, 1H), -0.02 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 198.9, 137.7, 133.0, 128.5, 128.2, 71.6, 65.9, 45.8, 20.4, 18.4, -1.4; LRMS (ESI): Mass calcd for C₁₅H₂₄O₂Si [M+Na]⁺, 287. Found [M+Na]⁺, 287.


3-(but-3-ynyloxy)-1-phenylbutan-1-one (8): Prepared according to general procedure using (*E*)-1-phenylbut-2-en-1-one (58 mg, 0.4 mmol) and 3-butyn-1-ol (151 μ L, 2.0 mmol) to afford 65 mg (75%) of **8** as a yellow oil after 20 h. Analytical data for **8**: IR (film) 3297, 3062, 2972, 2930, 2873, 2120, 1685, 1598, 1273, 1102 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) & 7.97-7.95 (m, 2H), 7.58-7.55 (m, 1H), 7.48-7.45 (m, 2H), 4.16 (ddq, *J* = 6.2, 6.2, 6.2 Hz, 1H), 3.66 (ddd, *J* = 9.1, 7.1, 7.1 Hz, 1H), 3.54 (ddd, *J* = 9.1, 7.0, 7.0 Hz, 1H), 3.36 (dd, *J* = 16.3, 6.5 Hz, 1H), 2.93 (dd, *J* = 16.3, 6.0 Hz, 1H), 2.42-2.38 (m, 2H), 1.93 (t, *J* = 2.7 Hz, 1H), 1.28 (d, *J* = 6.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) & 198.6, 137.2, 133.1, 128.5, 128.2, 81.4, 72.4, 69.4, 67.0, 45.7, 20.2, 20.1; LRMS (ESI): Mass calcd for C₁₄H₁₆O₂ [M+H]⁺, 217. Found [M+H]⁺, 217.


2-(tert-butoxycarbonylamino)-3-(4-oxo-4-phenylbutan-2-yloxy)propanoate (2S)-*tert*-butyl (9): Prepared according to general procedure using (E)-1-phenylbut-2-en-1-one (58 mg, 0.4 mmol) and (S)-N-Boc serine t-butyl ester (526 mg, 2.0 mmol) and 1 mL CH₂Cl₂ to afford 132 mg (81%) of **9** as a light yellow oil containing a diastereomeric mixture in the ration of 1.1:1 after 48 hr. Methylene chloride was used in place of toluene due to insolubility of the amino acid in toluene. Analytical data for 9: IR (film) 3445, 3365, 3062, 2977, 2932, 2877, 1717, 1687, 1598, 1499, 1450, 1368 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.96-7.92 (m, 4H), 7.59-7.55 (m, 2H), 7.49-7.44 (m, 4H), 5.29 (d, J = 8.3 Hz, 1H), 5.23 (d, J = 8.8 Hz, 1H), 5.0 (bs), 4.25-4.21 (m, 2H), 4.11-4.06 (m, 1H), 4.07-4.03 (m, 1H), 3.95 (dd, *J* = 9.0, 2.7 Hz, 1H), 3.90 (bs), 3.82 (dd, *J* = 9.3, 3.1 Hz, 1H), 3.55 (dd, J = 9.0, 2.8 Hz, 1H), 3.32 (dd, J = 16.5, 6.8 Hz, 1H), 3.28 (dd, J = 16.6, 6.5 Hz, 1H), 2.90 (dd, J = 13.3, 5.6 Hz, 1H), 2.87 (dd, J = 12.9, 5.6 Hz, 1H), 1.44 (s, 9H), 1.44 (s, 9H), 1.43 (s, 9H), 1.39 (s, 9H), 1.24 (d, J = 6.0 Hz, 3H), 1.23 (d, J = 5.9 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) d 198.7, 198.1, 169.7, 169.6, 155.6, 155.5, 137.2, 137.1, 133.18, 133.15, 128.59, 128.56, 128.2, 129.1, 81.8, 81.6, 79.6, 79.5, 72.9, 72.4, 69.2, 68.9, 54.6, 54.5, 45.51, 45.48, 28.3 (2x), 28.0, 27.9, 19.8, 19.7; LRMS (ESI): Mass calcd for C₂₂H₃₃NO₆ [M+Na]⁺, 430. Found [M+Na]⁺, 430.

3-(1-(naphthalen-1-yl)ethoxy)-1-phenylbutan-1-one (10): To an oven-dried 1-dram vial equipped with magnetic stirring bar was added azolium salt A (7 mg, 0.02 mmol), LiCl (17 mg, 0.4 mmol), and 50 mg 4 Å MS. The vial was sealed with a screw cap equipped with a teflon septum and a N₂ inlet. The vial was cooled to -78 °C in a CO₂/acetone bath. *n*-BuLi (8 μ L, 0.02 mmol, 2.49 M in hexanes) was added through a syringe. After 5 min, the reaction was warmed to 20 °C and solvent removed under reduced pressure. A mixture of (E)-1-phenylbut-2-en-1-one (59 mg, 0.4 mmol) and 1-(naphthalen-1-yl)ethanol (344, 2.0 mmol) in toluene (400 μ L, 1 M) was added to the carbene through a cannula. After 48 h, the reaction was filtered through a pad of SiO₂ with EtOAc as an eluent. The mixture was purified by flash column chromatography with a mixture of cold 10% EtOAc in Hex to afford 95 mg (75%) of 10 as a mixture of diastereomers in the ratio of 1.2:1. Analytical data for 10: IR (film) 3059, 2974, 2929, 2903, 1717, 1683, 1653, 1596, 1448, 1372 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 8.17-8.15 (m, 2H), 7.97-7.96 (m, 2H), 7.87-7.84 (m, 2H), 7.78-7.72 (m, 4H), 7.58-7.55 (m, 2H), 7.50-7.43 (m, 9H), 7.40-7.33 (m, 3H), 5.32 (q, J = 6.5 Hz, 1H, minor), 5.28 (q, J = 6.5 Hz, 1H, major), 4.16 (ddq, J= 6.2, 6.2, 6.2 Hz, 1H, major), 4.04 (ddq, J = 6.3, 6.3, 6.3 Hz, 1H, minor), 3.48 (dd, J = 15.6, 6.3Hz, 1H, major), 3.32 (dd, J = 15.5, 5.5 Hz, 1H, minor), 2.98 (dd, J = 15.3, 6.8 Hz, 1H, major), 2.97 (dd, J = 15.4, 8.3 Hz, 1H, minor), 1.59 (d, J = 6.6 Hz, 3H, minor), 1.51 (d, J = 6.5 Hz, 3H, major), 1.32 (d, J = 6.0 Hz, 3H, minor), 1.16 (d, J = 6.2 Hz, 3H, major); ¹³C NMR (125 MHz, $CDCl_3$ δ 199.1, 198.5, 140.1, 139.5, 137.3, 137.0, 133.9, 133.1, 132.9, 130.6, 130.5, 128.9, 128.8, 128.560, 128.4, 128.3 (2x), 128.2, 127.8, 127.7, 125.8, 125.7, 125.43, 125.37, 125.36, 123.9, 123.8, 123.5, 123.3, 74.2, 72.8, 71.0, 69.8, 46.7, 45.9, 24.1, 23.6, 21.6, 20.0; LRMS (ESI): Mass calcd for $C_{22}H_{22}O_2$ [M+Na]⁺, 341. Found [M+Na]⁺, 341.

3-(4-oxo-4-phenylbutan-2-yloxy)propanenitrile (11): Prepared according to general procedure using (*E*)-1-phenylbut-2-en-1-one (59 mg, 0.4 mmol) and 2-cyanoethanol (82 μ L, 1.2 mmol) to afford 77 mg (89 %) of **11** as a colorless oil after 18 h. Analytical data for **11**: IR (film) 3062, 2972, 2931, 2880, 2251, 1685, 1597, 1449, 1375, 1343, 1299, 1213, 1136, 1104, 1001 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.96 (dt, *J* = 8.2, 1.5 Hz, 2H), 7.59-7.56 (m, 1H), 7.49-7.46 (m, 2H), 4.17 (dq, *J* = 12.3, 6.2 Hz, 1H), 3.76 (dt, *J* = 9.4, 6.6 Hz, 1H), 3.64 (dt, *J* = 9.4, 6.2 Hz, 1H), 3.37 (dd, *J* = 16.6, 7.1 Hz, 1H), 2.93 (dd, *J* = 16.6, 5.2 Hz, 1H), 2.55-2.52 (m, 2H), 1.30 (d, *J* = 6.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 198.4, 137.2, 133.4, 128.8, 128.3, 118.1, 72.7, 63.7, 45.7, 20.1, 19.3; LRMS (ESI): Mass calcd for C₁₃H₁₅NO₂ [M+H]⁺, 218. Found [M+H]⁺, 218.

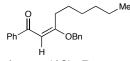

3-(benzyloxy)-1-(4-chlorophenyl)butan-1-one (12): Prepared according to general procedure using (*E*)-1-(4-chlorophenyl)but-2-en-1-one (90 mg, 0.5 mmol) and benzyl alcohol (258 μ L, 2.5 mmol) to afford 105 mg (73 %) of **12** as a colorless oil after 16 h. Analytical data for **12**: IR (film) 3064, 3031, 2972, 2930, 2901, 2870, 1685, 1589, 1400, 1209, 1103, 1053 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.89 (d, J = 8.7 Hz, 2H), 7.42 (d, J = 8.7 Hz, 2H), 7.31-7.25 (m, 5H), 4.59 (d, J = 11.5 Hz, 1H), 4.48 (d, J = 11.5 Hz, 1H), 4.20 (ddq, J = 6.2 Hz, 1H), 3.38 (dd, J = 16.0, 6.8 Hz, 1H), 2.93 (dd, J = 16.0, 5.8 Hz, 1H), 1.32 (d, J = 6.1 Hz, 3H); ¹³C NMR (125 MHz,

CDCl₃) δ 197.7, 139.6, 138.5, 135.7, 129.8, 129.0, 128.5, 127.8, 127.7, 72.1, 71.2, 46.0, 20.3; LRMS (ESI): Mass calcd for C₁₇H₁₇ClO₂ [M+H]⁺, 289. Found [M+H]⁺, 289.

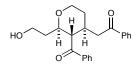
Me

5-(benzyloxy)hexan-3-one (13): Prepared according to general procedure using (*E*)-hex-4-en-3-one (46 μ L, 0.4 mmol) and benzyl alcohol (124 μ L, 1.2 mmol) to afford 68 mg (82 %) of **13** as a colorless oil after 16 h. Analytical data for **13**: IR (film) 2973, 2934, 2878, 1714, 1454, 1375, 1131, 1095, 1063, 1028 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.34-7.25 (m, 5H), 4.56 (d, *J* = 11.5 Hz, 1H), 4.44 (d, *J* = 11.5 Hz, 1H), 4.08-4.02 (m, 1H), 2.78 (dd, *J* = 15.7, 7.4 Hz, 1H), 2.48-2.42 (m, 3H), 1.23 (d, *J* = 6.2 Hz, 3H), 1.04 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 210.3, 138.6, 128.5, 127.7, 71.9, 71.0, 49.7, 37.3, 20.1, 7.7; LRMS (ESI): Mass calcd for C₁₃H₁₈O₂ [M+H]⁺, 207. Found [M+H]⁺, 207.

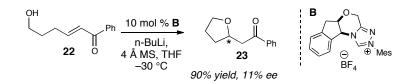
4-(benzyloxy)butan-2-one (14): Prepared according to general procedure using but-3-en-2-one (33 μ L, 0.4 mmol) and benzyl alcohol (41 μ L, 0.4 mmol) to afford 35 mg (50 %) of **14** as a colorless oil after 16 h. Analytical data for **14**: IR (film) 3088, 3064, 3031, 3005, 2903, 2867, 1715, 1454, 1365, 1170, 1084, 1028 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.36-7.28 (m, 5H), 4.51 (s, 2H), 3.74 (t, *J* = 6.3 Hz, 2H), 2.72 (t, *J* = 6.3 Hz, 2H), 2.19 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 207.4, 138.2, 128.6, 127.9, 127.8, 73.4, 65.4, 43.9, 30.7; LRMS (ESI): Mass calcd for C₁₁H₁₄O₂ [M+H]⁺, 179. Found [M+H]⁺, 179.


(*E*)-5-(benzyloxy)-1-phenylhex-1-en-3-one (17): Prepared according to general procedure using (1*E*,4*E*)-1-phenylhexa-1,4-dien-3-one (17 mg, 0.1 mmol) and benzyl alcohol (52 μ L, 0.5 mmol) to afford 23 mg (82 %) of 17 as a colorless oil after 18 h. Analytical data for 17: IR (film) 3062, 3030, 2970, 2928, 2871, 1718, 1688, 1660, 1629, 1606, 1451, 1375, 1339, 1312, 1276, 1201, 1182, 1129,1090, 1070, 978 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.55-7.49 (m, 3H), 7.37-7.35 (m, 3H), 7.29-7.21 (m, 5H), 6.74 (d, *J* = 16.2 Hz, 1H), 4.56 (d, *J* = 11.5 Hz, 1H), 4.46 (d, *J* = 11.5 Hz, 1H), 4.11 (ddq, *J* = 6.3 Hz, 1H), 3.05 (dd, *J* = 15.4, 6.9 Hz, 1H), 2.93 (dd, *J* = 15.4, 5.7 Hz, 1H), 1.27 (d, *J* = 6.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 198.9, 143.2, 138.6, 134.6, 130.6, 129.1, 128.5, 127.8, 127.7, 126.9, 72.2, 71.1, 48.2, 20.3; LRMS (ESI): Mass calcd for C₁₉H₂₀O₂ [M+H]⁺, 281. Found [M+H]⁺, 281.

3-(benzyloxy)-1-phenyloctan-1-one (16): Prepared according to general procedure using (*E*)-1-phenyloct-2-en-1-one (81 mg, 0.4 mmol) and benzyl alcohol (0.4 mL) as solvent to afford 87 mg (70 %) of **16** as a colorless oil after 28 h. Analytical data for **16**: IR (film) 3087, 3063, 3032, 2956, 2930, 2859, 1679, 1620, 1598, 1449, 1376, 1353, 1305, 1282, 1214, 1180, 1093, 1068, 1027, 1001 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.96 (dd, *J* = 8.2, 1.0 Hz, 2H), 7.58-7.55 (m, 1H), 7.47-7.44 (m, 2H), 7.30-7.24 (m, 5H), 4.53 (s, 2H), 4.15-4.10 (m, 1H), 3.37 (dd, *J* = 16.1, 6.9 Hz, 1H), 3.00 (dd, *J* = 16.1, 5.4 Hz, 1H), 1.69-1.56 (m, 2H), 1.50-1.36 (m, 2H), 1.33-1.26 (m, 4H), 0.88 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 199.3, 138.7, 137.5, 133.2, 128.7,

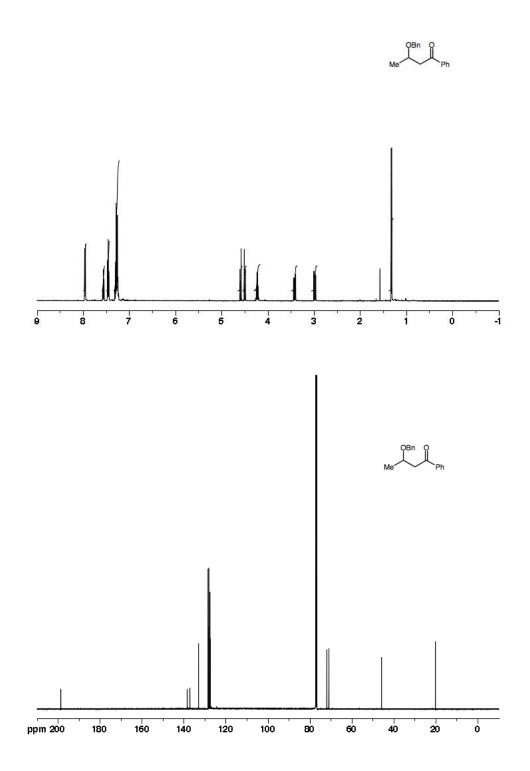

OBn O

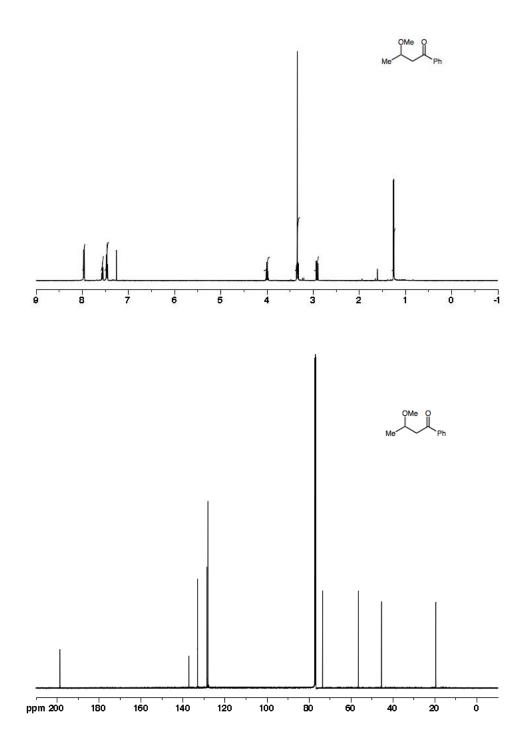
128.4, 128.4, 128.0, 127.6, 76.2, 72.0, 44.0, 35.0, 32.0, 25.1, 22.8; LRMS (ESI): Mass calcd for $C_{21}H_{26}O_2$ [M+H]⁺, 311. Found [M+H]⁺, 311.

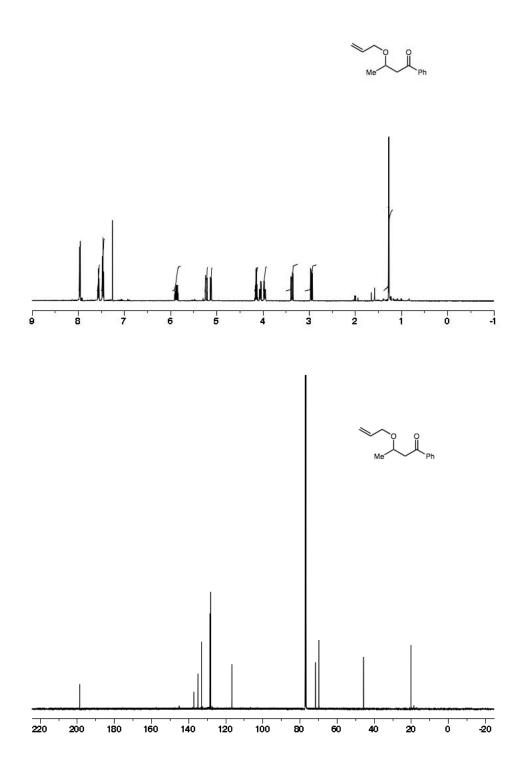

benzyl 3-(benzyloxy)butanoate (15): Prepared according to general procedure using (*E*)-benzyl but-2-enoate (71 mg, 0.4 mmol) and benzyl alcohol (0.4 mL) as solvent to afford 67 mg (60 %) of **15** as a colorless oil after 28 h. Analytical data for **15**: IR (film) 3089, 3065, 3033, 2973, 2932, 2874, 1735, 1497, 1455, 1379, 1360, 1343, 1298, 1259, 1175, 1136, 1087, 1054, 1001 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) & 7.35-7.26 (m, 10H), 5.16-5.10 (m, 2H), 4.56 (d, *J* = 11.5 Hz, 1H), 4.48 (d, *J* = 11.5 Hz, 1H), 4.07-4.01 (m, 1H), 2.71 (dd, *J* = 15.1, 7.5 Hz, 1H), 2.50 (dd, *J* = 15.1, 5.5 Hz, 1H), 1.27 (d, *J* = 6.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) & 171.5, 138.6, 136.0, 128.7, 128.5, 128.4, 128.3, 127.8, 127.7, 72.1, 71.0, 66.4, 42.2, 20.0; LRMS (ESI): Mass calcd for $C_{18}H_{20}O_3$ [M+H]⁺, 285. Found [M+H]⁺, 285.

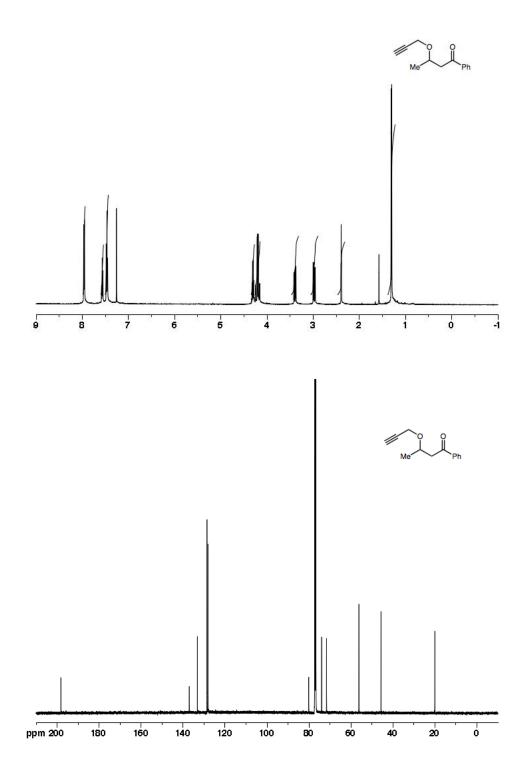
(*E*)-3-(benzyloxy)-1-phenylnon-2-en-1-one (19): Prepared according to general procedure using 1-phenylnon-2-yn-1-one (86 mg, 0.4 mmol) benzyl alcohol (201 μ L, 2.0 mmol) to afford 100 mg (78%) of 19 as a colorless oil after 8 h. Analytical data for 19: IR (film) 3064, 3032, 2955, 2929, 2858, 1656, 1598, 1454, 1280, 1195 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.85-7.84 (m, 2H), 7.52-7.49 (m, 1H), 7.45-7.36 (m, 7H), 6.20 (m, 1H), 5.00 (s, 2H), 2.90 (dd, *J* = 7.8, 7.8 Hz, 2H), 1.70-1.64 (m, 2H), 1.43-1.37 (m, 2H), 1.32-1.26 (m, 4H), 0.89-0.86 (m, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 190.0, 177.3, 140.4, 135.6, 131.7, 128.7, 128.33, 128.31, 127.7, 127.5, 97.1, 70.2, 33.1, 31.7, 29.3, 27.6, 22.6, 14.1; LRMS (ESI): Mass calcd for C₂₂H₂₆O₂ [M+H]⁺, 323.

2-(3-benzoyl-2-(2-hydroxyethyl)tetrahydro-2*H***-pyran-4-yl)-1-phenylethanone (21): Prepared according to general procedure using (***E***)-5-hydroxy-1-phenylpent-2-en-1-one (71 mg, 0.4 mmol) to afford 59 mg (83 %) of 21** as a colorless oil after 72 h. Analytical data for **21**: IR (film) 3442, 2945, 2853, 1671, 1580, 1365, 1290, 1214, 1129, 1105, 1075, 1049, 1001, 976 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 8.03-8.02 (m, 2H), 7.79-7.77 (m, 2H), 7.63-7.60 (m, 1H), 7.54-7.50 (m, 3H), 7.42-7.39 (m, 2H), 4.05 (ddd, *J* = 11.5, 4.6, 1.5 Hz, 1H), 3.80 (ddd, *J* = 9.6, 2.5, 2.5 Hz, 1H), 3.72-3.50 (m, 3H), 3.55 (dd, *J* = 10.5, 9.6 Hz, 1H), 2.87 (dd, *J* = 15.3, 3.1 Hz, 1H), 2.82-2.74 (m, 1H), 2.66-2.61 (m, 2H), 1.81 (dddd, *J* = 13.5, 3.7, 3.7, 1.9 Hz, 1H), 1.71-1.64 (m, 1H), 1.59-1.44 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 202.6, 198.2, 138.2, 136.6, 133.9, 133.3, 129.1, 128.7, 128.4, 128.1, 81.0, 67.8, 61.5, 53.6, 43.1, 36.5, 36.0, 30.8; LRMS (ESI): Mass calcd for C₂₂H₂₄O₄ [M+Na]⁺, 375. Found [M+Na]⁺, 375.




2-(3-benzoyl-2-(2-hydroxyethyl)tetrahydro-2H-pyran-4-yl)-1-phenylethanone (23): To an oven-dried 1-dram vial equipped with magnetic stirring bar, screw cap, teflon septum, and N₂ inlet was added azolium salt \mathbf{B}^4 (6 mg, 0.015 mmol) and 4 Å molecular sieves (50 mg). THF (300 μ L) was added through a syringe and the vial was cooled to -78 °C in a CO₂/acetone bath. After 5 min, *n*-BuLi (2.5 M hexanes, 4 μ L, 0.01 mmol) was added through a syringe. The solution was allowed to stir for 5 min and then removed from the CO_2 /acetone bath. After 10 min, vial cooled to -78 °C in a CO₂/acetone bath. A solution of (*E*)-6-hydroxy-1-phenylhex-2en-1-one (22, 30 mg, 0.15 mmol) in THF (300 μ L) was added to the vial through a cannula. The flask was then warmed to -30 °C for 12 h. The material was filtered through a small pad of SiO, with Et₂O as an eluent. The mixture was concentrated and purified by column chromatography with 5% EtOAc in Hexanes as an eluent to afford 27 mg (90%) of 23 as a colorless oil with 11% enantiomeric excess. Analytical data for 23: IR (film) 3061, 3028, 2973, 2872, 1684, 1596, 1448, 1382, 1210 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.98-7.96 (m, 2H), 7.58-7.50 (m, 1H), 7.48-7.45 (m, 2H), 4.41 (dddd, J = 6.8, 6.8, 6.8, 6.8 Hz, 1H), 3.90 (ddd, J = 7.5, 7.5, 7.5 Hz, 1H),3.76 (ddd, J = 7.5, 7.5, 7.5 Hz, 1H), 3.40 (dd, J = 16.3, 6.1 Hz, 1H), 3.06 (dd, J = 16.3, 6.7 Hz, 1H)1H), 2.20 (dddd, J = 19.8, 6.2, 6.2, 6.2 Hz, 1H), 1.96 -1.90 (m, 2H), 1.57 (dddd, J = 20.1, 7.9, 7.9, 7.9 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 198.4, 137.0, 133.1, 128.6, 128.2, 75.4, 67.8, 44.6, 31.6, 25.6; LRMS (ESI): Mass calcd for C₁₂H₁₄O₂ [M+Na]⁺, 213. Found [M+Na]⁺, 213. Enantiomeric ratio was measured by HPLC ((S,S) Whelk-O1, 5% IPA/Hexanes, 1 mL/min, Rt₁ = $20.2, Rt_2 = 24.8).$


⁴ He, M.; Struble, J. R.; Bode, J. W. J. Am. Chem. Soc. **2006**, 128, 8418-8420.


Selected NMR Spectra

