
Supplemental Materials S1

1 Implementation

1.1 Hash Functions

Because the difference between the naive First-n approach and the others dwarfs the
difference between any of the other differences, we look at only the 3 high-performing
algorithms in Figure S1. We note that our adaptive hash algorithm starts to diverge only
slightly when the key size increases above 25, and even then remains within 0.05% of the
same number of keys as the cryptographic hashers, whereas the naive First-n approach is
32% behind any of the others.

We find that as more hash keys are used, fewer collisions require less work to invert
the hash table, resulting in faster extraction times. Figure S2. We also measured the
computational time required to hash the input sequences under each hash function, as
shown in Figure S3.

The extraction times when using MD5 versus adaptive hash functions start to diverge
slightly as pattern size increases. This divergence is a direct consequence of the divergence
in hash key space utilization between the adaptive hasher and MD5 for very large patterns,
as shown in Figure S4. The extent to which this divergence occurs and where it starts is
in fact tunable via a parameter in the hash function generator genetic algorithm; however,
for such long patterns we consider this divergence reasonable, as it has a minimal impact
on the extraction time but a great savings on the hash time.

1.2 Implementation Details

Due to the wide variety of applications to which Murasaki is applied, we have built in a
wide variety of user-tunable parameters to optimize Murasaki for various special purposes
(such as hashing only every k bases as in BLAT [1] and PASH [2], defining alternative
scoring/filtering parameters, or changing resource allocation when run in parallel). Most
of the user-tunable parameters are determined automatically based on the input data
and/or the user’s computer environment. The main user-tunable parameter determining
run time is the size of hash keys to use (which directly determines the hash table size),
which we will call the “hashbits” parameter.

When storing hash keys, because K is the product of the location L and the “spaced
seed pattern” parameter, K is determined implicitly by L and thus is never actually
stored, but simply calculated as needed based on L.

1.3 Data structures

There are two important data structures within Murasaki.

1. The hash table structure
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2. The anchor data structure

First, the hash table itself can be structured to use either chaining or open addressing.
Under chaining, each entry of the hash table can contain values corresponding to multiple
keys. When a collision occurs, whereKi 6= Kj∧H(Ki) = H(Kj), then both corresponding
Li and Lj are stored at the same entry within the hash table, and disambiguated by
some other means specific to the table entry structure. Under open addressing, the hash
generated byH(Ki) indicates the first place to probe forKi. If some (Kj, Lj) pair is already
stored there such that Ki 6= Kj (i.e., a collision has occurred), then subsequent addresses
are probed until either a matching K is found, or an empty address is found. There are
many variations on how to probe, and Murasaki implements two (linear and quadratic
probing [3]), but the idea remains the same. Open Addressing offers the advantage that
there is no sort required to disambiguate non-matching seeds from within a single hash
table entry. However a limitation of this design is that it is impossible to store more
seeds than there are entries in the hash table. Murasaki automatically chooses whether
to use chaining or open addressing based on the size of the input sequences (and thus the
number of potential seeds) and the hash table size available.

The second key data structure is that for storing anchors themselves. Anchors are
stored as a set of intervals indicating the beginning and end of the region anchored on
each input sequence. These intervals are stored in Interval Trees [4]. Interval Trees provide
a simple O(logA) method (where A is the number of anchors) to find overlapping regions,
thereby facilitating the merging of anchors.

1.4 Hash function fitness

Determining the exact entropy content of a given hash function is a difficult problem with
limited rewards compared with a good approximation; therefore, Murasaki employs an
ad hoc method to estimate the entropy of the hash function. A bipartite graph is created
consisting of entropy source nodes (the unmasked bases in the spaced seed pattern) and
entropy sink nodes (each pair of bits in the hash key) where an edge is drawn if that base
in the seed affects that bit in the hash. Each source node is allocated one unit of entropy
(approximating the optimal 2 bits per base measure) that is then divided equally to weight
the exiting edges. The entropy at each sink is then estimated as the summed weight of
incoming edges, optionally modified by a “correlation penalty” in the range (0, .2]. The
correlation penalty decreases inversely with the mean distance between source node pairs,
with a maximum value of 0.2 assigned for adjacent bases. A correlation penalty like this
is appropriate where input sequences are expected to conform to a Markov process (as is
the case for DNA), but this may not be the case for all sequences. Finally, the estimated
entropy is balanced against the computational cost of the function to determine the final
fitness score.
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2 Results

2.1 Pattern selection

We used a relatively arbitrary method for selecting the 24 base pattern (101111110101110111110011)
used for tests comparing Murasaki to BLASTZ. We compared human and mouse X chro-
mosomes using random patterns with lengths from 16 to 128. Patterns with lengths near
24 had sensitivity and specificity characteristics near that of BLASTZ while maintain-
ing fast computational speed. We arbitrarily chose the highest scoring of our randomly
generated length 24 patterns. We recognize that pattern choice is a complicated and im-
portant factor in the performance of ours and any other pattern-based homology search
algorithm, and don’t claim to have offered any better solutions to the problem of pattern
choice, however our algorithm does provide a means run accurate searches using patterns
selected by any method. We hope this provides a useful tool for experimenting with
different pattern selection methods, and will look at ways to refine pattern selection in
future work.

2.2 Murasaki Runtime Parameters

We also used the options “–mergefilter=100 and –scorefilter=6000” which is roughly
equivalent to BLASTZ’s “M=100 K=6000” options. “Mergefilter” limits the number of
anchors that can be derived from any one seed to the number specified; any seeds which
exceed this limit are tagged “repeats” and their locations are output separately. “Score-
filter” requires that all anchors have a minimum ungapped pairwise alignment score of at
least the given threshold. For the exact meaning and usage of “mergefilter” and “score-
filter” see Murasaki’s documentation. Furthermore, because the default TBA behavior is
to pass its BLASTZ output through a program that removes all but the highest scoring
regions among overlapping regions in a pair-wise comparison (similar to AxtBest in [5]),
to provide a fair comparison, we filtered Murasaki’s anchors the same way using the
align-best tool provided in the Murasaki distribution.

The “mergefilter” filter alone can prevent the combinatorially explosive consequences
of repeats, however in our mammalian sequence tests we use repeat masked sequences
to reduce the amount of sequence hashed and stored in memory. We used the Repeat-
Masker [6] masked sequences in release 53 of the Ensembl genome database [7]. The
genome sizes and fraction masked by RepeatMasker is shown in Table S1.

2.3 Pairwise Multiz with Roast

We also tested another alternative from the TBA package called Roast which appears to
implement the method described in [8] which builds a multiple alignment based on pairwise
comparisons between a reference sequence and all other sequences, thus in theory requiring
time linear with respect to the number of sequences, similar to Murasaki. However due
to an apparent bug in the implementation, Roast actually is actually worse than TBA in
some cases. The bug causes comparisons of each sequence to itself to be included in the set
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of pairwise comparisons performed for each alignment (for example “human-human” in a
comparison of “human and mouse”). This is entirely unnecessary for the Multiz portion
of the computation, but generally takes more than any other pair because of the large
number of matches. This bug is fairly simple to fix, however may be beyond the reach
of biologists without some programming ability, therefore we tested both versions. The
results are shown in Figure S5. Because BLASTZ cannot handle whole genomes in a single
pass, input has to be broken up into chromosome sized fragments. This means that what
was a comparison of “human x mouse” in Murasaki, becomes a comparison of “human-1
x mouse-1 + human-1 x mouse-2 + ... human-1 x mouse-M + human-2 x mouse-1 +
human2 x mouse-2 + ... human-M x mouse-M.” Each comparison is shorter (N/M in
size), however we now do M2 times as many, requiring O(NM) time. However, because
M is forced by the constraints of the system to be N/S where S is the maximum size
the computer system can handle, O(M) = O(N/S) = O(N) and therefore the asymtotic
time requirements of Roast must be O(N2). The behavior of Roast on small sequences,
on the other hand, is nearly identical to Murasaki, and is shown in Figure S6.
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3 Figures

4 Tables

Table S1 - Genome Sizes

This table shows the sequence sizes used in the mammalian whole genome and comparisons
and the respective fractions masked by RepeatMasker [6].

Species Total Bases (MB) Masked Bases (MB) Fraction masked
Human 2855.344 1434.406 0.502
Chimp 2752.356 1402.532 0.510
Rhesus 2646.263 1375.097 0.520

Orangutan 2722.968 1348.973 0.495
Mouse 2558.509 1443.026 0.564

Rat 2477.054 1386.647 0.560
Dog 2309.875 1367.003 0.592
Cow 2466.956 1319.883 0.535
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Figure S1. Hash keys used in comparison by SHA-1/MD5 hash algorithms in comparison
to adaptive hashing at different hashbit values.
This graph doesn’t include First-N in order to examine, and adaptive hash results to examine the minute
difference between Adaptive, SHA-1, and MD5. Only for large hash keys (high values of hashbits) does
adaptive diverge significantly from SHA-1 and MD5, and even then the difference is minuscule.
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Figure S2. Extract time required by each hash algorithm compared to the adaptive hash
algorithm.
This graph shows the relative time required to extract matching seed sets from the hash table under
different hash functions compared to the median time required our adaptive hash function. The solid line
shows the median of all trials while the dashed lines show the first and third quartiles.
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Figure S3. Time required to hash human and mouse X chromosomes using different hash
functions at various hashbits settings compared to Adaptive.
Here we examine the difference in time required to compute hashes store each (K,V ) pair at different
hashbits settings, again compared to our adaptive hash method. It’s interesting to note that the naive
First-n approach performs more poorly than even the slowest cryptographic hasher.
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Figure S4. Comparing Keyspace Usage of Adaptive and MD5 Hash Functions For Very
Long Patterns.
This graph shows the percent of possible hash keys produced by Adaptive and MD5 hash functions when
hashing Human and Mouse X chromosomes. The number of hash keys possible increases with pattern
length because the number of observed unique seeds increases. Our adaptive hash algorithm keeps up
with MD5 even for extremely long patterns.
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Figure S5. Computational time required to anchor multiple mammalian whole genomes.
This graph shows the median CPU time in days required to anchor different numbers of mammalian
whole genomes using TBA, Murasaki, and the patched and unpatched versions of Roast. The times for
TBA and Roast include only the time spent on pairwise BLASTZ comparisons. The solid line represents
the median of all tests for that number of species, while the dashed lines represent the first and third
quartiles.
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Figure S6. Computation Time for Multiple Mammalian X Chromosomes.
This graph compares the computational time required to compare multiple X mammalian X chromosomes
using Murasaki and the BLASTZ components of TBA, Roast, and our patched version of Roast. Because
TBA requires all pairwise comparisons of the genomes under alignment, the time required for TBA grows
quadratically, while Murasaki’s time is near linear. The solid line represents the median of all tests for
that number of species, while the dashed lines represent the first and third quartiles.
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