

**Supplemental Figure 1.** Amount of SLR1 and GID1 protein in rice cells. Identical amount of crude protein extract from Taichung 65 rice was subject to immunoblot analyses using an anti-SLR1 antibody (top panel, leftmost lane) or anti-GID1 antibody (bottom panel, leftmost lane), respectively. Immunoblot analyses of recombinant SLR1 or GID1 proteins expressed in *E. coli* were used to estimate the amount of endogenous SLR1 and GID1 protein level. Note that amount of SLR1 protein is more abundant (> 15 ng) than GID1 (< 5 ng) in rice cells.



Supplemental Figure 2. Comparison of Amino Acid Sequences of Vascular Plant GID2 Proteins.

Amino acids that were included in alanine scanning are shown in colored boxes at the bottom of the alignment. Box colors indicate the number of amino acids replaced within each mutant protein. Green, 1 amino acid change; pink, 2 changes; blue, 3 changes. Black and grey indicate identical and similar amino acids, respectively. At, *Arabidopsis thaliana*; Sm, *Selaginella moellendorffii*.



**Supplemental Figure 3.** Mutation in the F-box Domain of GID2 Abolishes the GA-, GID1-, and GID2-dependent Degradation of SLR1.

Accumulation of AD-HA-SLR1, HA-GID2<sup>L76A</sup>, and HA-GID1 protein in yeast cells. Crude protein extracts from yeast grown in the absence or presence of 10<sup>-4</sup> M GA<sub>4</sub> were subject to immunoblot analysis and detected using HA antibody for HA-SLR1 and HA-GID2<sup>L76A</sup>, and anti-GID1 antibody for HA-GID1. The loading control of Coomassie Brilliant Blue (CBB) staining is shown in the bottom panels.



**Supplemental Figure 4.** Effect of GID1 Amino Acid Substitutions on SLR1-GID2 Interaction in Yeast.

Y3H assay using GID2<sup>L76A</sup> as bait, SLR1 as prey, and alanine-mutated GID1 proteins (mGID1s) as third clones with  $10^{-4}$  M GA<sub>4</sub>. mGID1s previously shown to interact with SLR1 in the Y2H liquid assay (Ueguchi-Tanaka et al., 2007) were used as third clones (means  $\pm$  SD; n = 3). GID1 and *gid1-1* mutant protein used as a positive and negative control, respectively. Interacting activities are shown as relative rates, with activity of SLR1-GID2 in the presence of wild-type GID1 set 1.

| SLR1<br>SLN1<br>RHT1<br>ZmD8<br>AtGAI<br>AtRGA<br>AtRGL1<br>AtRGL2<br>SmDELLA1                 | 150<br>143<br>145<br>152<br>97<br>131<br>102<br>121<br>133  | S/T/<br>S<br>S<br>F<br>-<br>Q                     | V<br>S S S<br>S S<br>P /<br>D F<br>Q ()                             |                                                      | T<br>T<br>T<br>E<br>E<br>H           | Y<br>Y<br>Y<br>Y<br>Y<br>Y<br>Y<br>L  | A<br>A<br>A<br>D<br>D<br>D<br>D<br>D                                                        |                                      | RRKKR                                 | P<br>P<br>P<br>A<br>V<br>A<br>G                      | P<br>P<br>P<br>P<br>P                  | L S S G G G P         | P P P P D N S L P          | V P A V A A A S P     | -<br>G -<br>-<br>P                   |                                       | Q                                    | -<br>-<br>-<br>-<br>Q                        | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>0 | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>Y                     | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-      | -<br><br>                               | V - A A                                                                                     | A<br>V<br>T<br>A<br>I<br>V<br>A<br>F                        | T<br>A<br>A<br>P<br>L<br>Y<br>F<br>N | A<br>P<br>S<br>N<br>Q<br>P<br>P                                                             | D A A Q F R K N                         | P<br>D<br>D<br>F<br>P<br>-<br>V           | SLLPAL                               | A .<br>S .<br>S .<br>I .<br>I .<br>Y .  |                                               |   | S A S S A S S H V                                                  | R<br>R<br>R<br>S<br>S<br>T<br>F<br>D | D D E S S - D L                         | T P P P N N - E S                                     | ккккол – шк                     | R R R G Q I I N  | M<br>M<br>M<br>- N<br>- E | R 7<br>R 7<br>K 1<br>K 1                | G<br>G<br>G<br>K<br>V<br>V                | G<br>S<br>G<br>-<br>S<br>-<br>A           | S S S I C I I S       | T T T G S - H                                                                               | 0 0 0 0 0 I I 0                      | S<br>S<br>S<br>G<br>P<br>-<br>Q | S S S<br>S S S<br>D T<br>D S<br><br>1 A                                                                         | δ S<br>δ S<br>δ S<br>δ M<br><br><br>Α Α                                                       | S<br>S<br>S<br>T<br>V<br>R<br>A<br>S    | S S S T T R S T                      | S S S S N S S S T                         | SL<br>SSL<br>SN<br>KF<br>KF<br>F                            | - G<br>- G<br>- G<br>- G<br>- D<br>- C<br>- G<br>- D<br>- C<br>- C<br>- C<br>- C<br>- C<br>- C<br>- C<br>- C<br>- C<br>- C |
|------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------|------------------------------------------------------|----------------------------------------|-----------------------|----------------------------|-----------------------|--------------------------------------|---------------------------------------|--------------------------------------|----------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------|-------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------|--------------------------------------|-----------------------------------------|-----------------------------------------------|---|--------------------------------------------------------------------|--------------------------------------|-----------------------------------------|-------------------------------------------------------|---------------------------------|------------------|---------------------------|-----------------------------------------|-------------------------------------------|-------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------|-------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| SLR1<br>SLN1<br>RHT1<br>Zm D8<br>At GAI<br>At RGA<br>At RGL1<br>At RGL2<br>Sm DELLA1           | 201<br>193<br>197<br>203<br>137<br>181<br>129<br>153<br>193 | S/T/<br>G<br>G<br>G<br>K<br>G<br>R<br>R<br>R<br>A | G /<br>G /<br>G F<br>C S<br>T (<br>S (                              | A S<br>A A<br>R T<br>6 M<br>D I<br><br>G S<br>G S    | R<br>R<br>G<br>G<br>W<br>S           | G<br>S<br>S<br>-<br>G<br>-<br>S       | S<br>S<br>S<br>- V<br>S                                                                     | V 7<br>V 7<br>                       | V  <br>V  <br>G  <br>S                |                                                      |                                        | Р<br>Р<br>Р<br>Т<br>Т | P<br>P<br>P<br>- T<br>     | A<br>A<br>V<br>T<br>P | T<br>-<br>T<br>T<br>-<br>H           | Q<br>V<br>Q<br>E<br>T<br>- A          | G<br>A<br>A<br>T<br>T<br>-<br>A      | A<br>A<br>S<br>T<br>C<br>G                   | A<br>A<br>A<br>A<br>T<br>T<br>E<br>E<br>G                                    | A A A A A S S M                           | A<br>- N<br>A<br>T<br>A<br>E<br>S<br>T         | N<br>A<br>A<br>N<br>A<br>A<br>L<br>D<br>S | A<br>T<br>G<br>E<br>E<br>S<br>E<br>A    | P<br>P<br>P<br>S<br>S<br>S<br>S<br>A                                                        | A<br>A<br>A<br>T<br>T<br>T<br>T<br>A                        | V L L V R R R M                      | P P P H S S S P                                                                             | > > > > > > = = = = = = = = = = = = = = | V<br>V<br>V<br>V<br>I<br>V<br>I           | V V V L L V L Q                      |                                         |                                               |   |                                                                    | A<br>A<br>A<br>A<br>N<br>T<br>T<br>S | <u> </u>                                | RI<br>I<br>I<br>V<br>V<br>V<br>V<br>V                 | <b>R R R R R R R R</b>          |                  | ~ ~ ~ ~ ~ ~ ~ ~           | H                                       |                                           |                                           | 000000000             | A A A A A A A A                                                                             |                                      |                                 |                                                                                                                 |                                                                                               |                                         |                                      | F / L 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | A A<br>S A<br>S A<br>T U<br>K L<br>N L<br>A A               |                                                                                                                            |
| SLR1<br>SLN1<br>RHT1<br>Zm D8<br>At GAI<br>At RGA<br>At RGA<br>At RGL1<br>At RGL2<br>Sm DELLA1 | 261<br>250<br>254<br>263<br>188<br>241<br>172<br>200<br>253 | LHR<br>E<br>E<br>D<br>G                           | A I<br>A I<br>A I<br>A I<br>A I<br>A I<br>A I<br>A I<br>A I         |                                                      |                                      | G G G G H R G                         | I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I | P I<br>P I<br>G I<br>G I<br>G I<br>R | T<br>L<br>M<br>F<br>C<br>L<br>T<br>I  | L / / / / / / / / / / / / / / / / / / /              |                                        | 5 5 5 5 5 5 5 H       | 0 0 0 0 0 0 P              | G G G I A A A S       | 0 0 0 0 0 0 0 0 0 0                  |                                       |                                      | S                                            | A A A A A A A A                                                              | M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M | R R R R R G A                                  | <mark>и</mark> х х х х х х х х            | >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> | ~ ~ ~ ~ ~ ~ ~ ~                                                                             | <b>A A A T</b> T T T T                                      | Y<br>Y<br>Y<br>Y<br>Y<br>Y<br>Y<br>Q | FFFFF                                                                                       | G G G A A A V                           |                                           | A<br>A<br>A<br>A<br>G<br>A           | L .<br>L .<br>L .<br>L .<br>L .         |                                               | R | R V<br>R V<br>R V<br>R V<br>R V<br>R I<br>R I<br>R I<br>R I<br>R I | F<br>F<br>Y<br>Y<br>Y<br>Y<br>Q      | RRRRRRRR                                | F F F L L I D S                                       | R R R S S Y Y C                 | -<br>PPPPP<br>TY | P Q Q P S P R A N         | A I<br>P I<br>Q ·<br>Q ·<br>G (         |                                           | -<br>-<br>-<br>R                          | Q                     | -<br>-<br>-<br>-<br>Y                                                                       |                                      | -<br>-<br>-<br>-<br>H           | <br><br><br>                                                                                                    | <br><br><br><br>                                                                              | -<br>-<br>-<br>-<br>Q                   | -<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                                           | <br><br><br><br>                                            | <br><br><br><br>2 R                                                                                                        |
| SLR1<br>SLN1<br>RHT1<br>Zm D8<br>At GAI<br>At RGA<br>At RGA<br>At RGL1<br>At RGL2<br>Sm DELLA1 | 302<br>292<br>296<br>305<br>228<br>281<br>212<br>243<br>313 | -<br>-<br>-<br>-<br>Q                             |                                                                     | <br><br><br><br>                                     | -<br>-<br>-<br>-<br>K                | -<br>-<br>-<br>E                      | -<br>-<br>-<br>-<br>E                                                                       |                                      |                                       |                                                      |                                        | T S S S N D A N       | L L P Q V A T              | L L L I I A V N       |                                      | A A A A H H S P G                     | A<br>A<br>A<br>S<br>C<br>S<br>S<br>A | F<br>F<br>L<br>L<br>M                        | A<br>A<br>A<br>S<br>S<br>S<br>E<br>D                                         |                                           |                                                |                                           | нннооен                                 | A<br>A<br>A<br>M<br>I<br>M<br>F                                                             | нннннн                                                      |                                      | $\begin{array}{c} Y \\ Y $                          | E<br>E<br>E<br>E<br>E<br>E<br>E         | S<br>S<br>S<br>S<br>T<br>T<br>S<br>S<br>T | 000000000                            | P<br>P<br>P<br>P<br>P<br>P<br>P         | Y I<br>Y I<br>Y I<br>Y I<br>Y I<br>Y I<br>Y I |   | < F F F F F F F F F F F F F F F F F F F                            | A A A A A A A A A                    |                                         | FFFFF                                                 | T                               | A                | z z z z z z z z           | 000000000000000000000000000000000000000 |                                           | E<br>E<br>E<br>E<br>E<br>E<br>E           |                       | F<br>F<br>F<br>F<br>F<br>F<br>F<br>L                                                        | A<br>A<br>A<br>Q<br>E<br>A<br>T<br>E | G G G G G T T G                 | C F<br>C F<br>C F<br>K K<br>A F<br>H                                                                            | H R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R | > > > > > > > > > > > > > > > > > > > > |                                      |                                           |                                                             |                                                                                                                            |
| SLR1<br>SLN1<br>RHT1<br>Zm D8<br>At GAI<br>At RGA<br>At RGA<br>At RGL1<br>At RGL2<br>Sm DELLA1 | 350<br>340<br>344<br>353<br>276<br>329<br>260<br>292<br>373 | VHIII<br>G<br>G<br>G<br>G<br>G<br>G<br>D          |                                                                     | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                | 0000000000                           |                                       | 000000000                                                                                   |                                      | P P P P P P P P P P P P P P P P P P P | A L<br>A L<br>A L<br>A L<br>A L<br>A L               | L<br>L<br>M<br>M<br>I<br>I             | 00000000              | A A A A A A A A            |                       | A                                    |                                       | <b></b>                              | <b>P</b> P P P P P P P P P P P P P P P P P P | G G G G G Z G G                                                              | 6 6 6 6 6 6 6 6                           | • • • • • • •                                  | P P P P P P                               | S S S V T D S T                         | н<br>н<br>н<br>н<br>н<br>н<br>н<br>н<br>н<br>н<br>н<br>н<br>н<br>н<br>н<br>н<br>н<br>н<br>н | <b></b>                                                     |                                      | T T T T T T T T                                                                             | 000000000                               | <pre></pre>                               | 000000000                            | P  <br>P  <br>P  <br>P  <br>Y  <br>P    |                                               |   |                                                                    | E E E N N - N R                      | T<br>T<br>T<br>F<br>S<br>-<br>S<br>H    |                                                       | A<br>A<br>A<br>Y<br>H<br>S<br>L |                  | I O O O O H H O O H       |                                         |                                           | *******                                   |                       | A A A A A G A A                                                                             | 0000 = 0000                          | FFLL                            | A H H H A H H A H H A H H A H H A H H A H H A H H A H H A H H A H H A H H A H H A H A H A H A H A H A H A H A H |                                                                                               | I<br>I<br>I<br>I<br>M<br>V              | R R R H H G G N                      |                                           | D F<br>D F<br>E F<br>F<br>E F<br>F<br>E F                   |                                                                                                                            |
| SLR1<br>SLN1<br>RHT1<br>Zm D8<br>At GAI<br>At RGA<br>At RGA<br>At RGL1<br>At RGL2<br>Sm DELLA1 | 410<br>400<br>404<br>413<br>336<br>389<br>316<br>352<br>433 | LHR<br>Y<br>Y<br>Y<br>Y<br>F<br>F                 |                                                                     | G L<br>G L<br>G L<br>G F<br>G F<br>G L<br>G V        |                                      | A A A A A A A A A A A A A A A A A A A | A<br>A<br>A<br>N<br>N<br>E<br>A                                                             | T T T T S N S R                      |                                       | A C<br>A C<br>A C<br>A C<br>A C<br>S C<br>S C<br>N C | ) L<br>) L<br>) L<br>) L<br>) L<br>) L | E E E D D K E Q       | <u>р</u> р р р 2 4 4 р р   | F F F S S E E W       | MMMMMM                               |                                       | Q Q Q                                | P<br>P<br>                                   | E<br>E<br>-<br>-<br>-                                                        | G<br>G<br>G<br>                           | E<br>-<br>-<br>-                               | A<br>E<br>D<br>E<br>D<br>E<br>D<br>E      | D<br>D<br>D<br>L<br>L<br>I<br>T<br>-    | A P P T R R R T                                                                             | NNNDPPPV                                                    | E<br>E<br>D<br>S<br>S<br><br>R       | E<br>E<br>E<br>E<br>E<br>E<br>E<br>E<br>E<br>E<br>E<br>E<br>E<br>E<br>E<br>E<br>E<br>E<br>E | P P P I T L S G                         | PFYF<br>E<br>E<br>E<br>E<br>E<br>E        | V V V S A S T A                      |                                         |                                               |   |                                                                    | > > > > > > > > > > > >              | н <u>н</u> н н н н<br>н                 |                                                       |                                 |                  | R R R K K R K             |                                         | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>E                          | -<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>D                | -<br>-<br>-<br>-<br>-<br>-      | <br><br><br>G N                                                                                                 | <br><br><br>                                                                                  | -<br>-<br>-<br>-<br>-<br>-              | -<br>-<br>-<br>-<br>-<br>A           | G 0                                       | <br><br><br>G M                                             | <br><br><br>                                                                                                               |
| SLR1<br>SLN1<br>RHT1<br>Zm D8<br>At GAI<br>At GGA<br>At RGA<br>At RGL1<br>At RGL2<br>Sm DELLA1 | 455<br>445<br>449<br>457<br>376<br>429<br>355<br>391<br>486 | PFYF<br>-<br>-<br>-<br>-<br>G                     | E<br><br><br><br>G (                                                | <br><br><br>                                         | Q<br>Q<br>Q<br>R<br>R<br>H<br>R<br>R | <b>P P P P P P P S</b> S              | G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>S                                                   | A I<br>A I<br>A G<br>S<br>S<br>P     |                                       |                                                      |                                        |                       | 0 0 0 0 0 0 N R            | T T T V V T T L       | > > > > > = > >                      | HRRRNKKR                              | A<br>A<br>A<br>Q<br>Q<br>S<br>A<br>N | V<br>V<br>V<br>I<br>I<br>I<br>L              | R R R R K K R K K                                                            | <b>•</b> • • • • • •                      | R R R R U V D S K                              |                                           | V V V F F M V V                         | T T T T T T T T T                                                                           | <pre>&gt; &gt; &gt; &gt; &gt; &gt; &gt; &gt; &gt;&lt;</pre> | > > > > > > > > >                    | E<br>E<br>E<br>E<br>E<br>E<br>E<br>E                                                        |                                         |                                           | A<br>A<br>A<br>S<br>S<br>A<br>A<br>A |                                         |                                               |   | 6 G<br>6 G<br>6 G<br>7 P<br>3 T<br>3 I<br>8 P                      | S T T I V V V V                      |                                         |                                                       |                                 | <b></b>          | F F F F F F F             |                                         |                                           |                                           | Y Y Y Y Y Y Y         | Y<br>Y<br>Y<br>Y<br>Y<br>Y<br>Y<br>Y                                                        | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~                  | T<br>T<br>T<br>T<br>S<br>S<br>T | M F F F F                                                                                                       |                                                                                               | ***                                     |                                      |                                           | G G G G G G G G G G G G G G G G G G G                       | 3 S<br>3 S<br>3 S<br>4 G<br><br><br><br>2 N                                                                                |
| SLR1<br>SLN1<br>RHT1<br>Zm D8<br>At GAI<br>At RGA<br>At RGA<br>At RGL1<br>At RGL2<br>Sm DELLA1 | 511<br>505<br>513<br>430<br>483<br>409<br>445<br>546        | PFYF<br>S<br>S<br>A<br>-<br>-<br>L                | E<br>G (<br>G (<br>G (<br><br><br>                                  | 0 -<br>3 -<br>3 -<br><br><br><br>                    | P<br>                                | A<br>S<br>G<br>-<br>-<br>-            | E<br>E<br>Q<br>-<br>-<br>-                                                                  | L :<br>V :<br>S :<br>-               | S I<br>S I<br>T I<br>                 | P -<br>S (<br>D -<br><br>                            | <br><br>                               | P A A                 | A A S                      | A P A P V V P S -     | G<br>A<br>P<br>A<br>P<br>-<br>Y<br>- | G<br>A<br>A<br>-<br>-<br>S<br>A       | G<br>A<br>A<br>-<br>-<br>L<br>P      | G A A G S N P P G                            | 6 G G G G S S S S                                                            | T T T Q Q Q Q V                           | D<br>D<br>D<br>D<br>D<br>D<br>D<br>E           | O O O O X X R R O                         | > > > > > > M                           | M M M M M >                                                                                 | >                                                           |                                      | V<br>V<br>V<br>V<br>V<br>L<br>V<br>T                                                        | Y<br>Y<br>Y<br>Y<br>Y<br>F<br>Y         |                                           | 00000000                             |                                         |                                               |   |                                                                    | V<br>V<br>V<br>V<br>L<br>L<br>V<br>I | >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> | SAV<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A | C C C C C A C                   |                  | 000000000                 | A I<br>A I<br>P I<br>E I<br>S I         |                                           | E<br>E<br>E<br>E<br>E<br>E<br>E<br>E      | <b></b>               |                                                                                             |                                      | T<br>T<br>T<br>T<br>T<br>T      | L G<br>L G<br>L S<br>L S<br>L S<br>L S<br>L S<br>L T                                                            |                                                                                               | ****                                    | ~ ~ ~ ~ ~ <del>0</del> ~ ~ ~ ~       |                                           | RL<br>RL<br>RL<br>R<br>R<br>F<br>R<br>R<br>R<br>R<br>R<br>R | G<br>G<br>G<br>F<br>G<br>G<br>F<br>G<br>K<br>A<br>A                                                                        |
| SLR1<br>SLN1<br>RHT1<br>Zm D8<br>At GAI<br>At RGA<br>At RGL1<br>At RGL2<br>Sm DELLA1           | 567<br>560<br>565<br>569<br>474<br>527<br>452<br>491<br>591 | SAW<br>R<br>N<br>G<br>S<br>S<br>L<br>S<br>R       | A C<br>A C<br>S C<br>G C<br>S C<br>S C                              | G F<br>G F<br>G F<br>G F<br>G F<br>G F<br>G F<br>G F | E E A A K D Q                        | P<br>T<br>T<br>P<br>A<br>P<br>P<br>P  | V<br>V<br>V<br>A<br>A<br>V<br>I<br>L                                                        | H<br>H<br>H<br>S<br>H<br>Y           |                                       |                                                      |                                        |                       | Y<br>Y<br>F<br>F<br>F<br>F | * * * * * * * *       | 000000000                            | A A A A A A A A A A A A A A A A A A A | 2 0 0 0 0 0 0 Z                      | T<br>T<br>T<br>M<br>M<br>M                   |                                                                              |                                           | A<br>A<br>A<br>A<br>A<br>A<br>S<br>A<br>S<br>T |                                           | F F F F F F Y Y F                       | A A A N N A A S                                                                             | G G G G G S G F -                                           | G G G G G A G G                      |                                                                                             | 000000000                               | Y<br>Y<br>Y<br>Y<br>Y<br>Y<br>Y           | х х х х х х х х х х                  | >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> |                                               |   |                                                                    | 000000000                            | 000000000                               |                                                       |                                 |                  |                           |                                         |                                           | P<br>P<br>P<br>P<br>P<br>P<br>P<br>P<br>P |                       | I<br>I<br>I<br>I<br>I<br>V                                                                  | A<br>A<br>A<br>A<br>T<br>A<br>T      | T<br>T<br>T<br>T<br>A           | S A<br>S A<br>S A<br>S A<br>S A<br>S A<br>S A<br>S A<br>S A<br>S A                                              | A WA                                                      | R R R K K R K E                         | V<br>L<br>L<br>L<br>L<br>L<br>C      | A A A A A A A A A A A A A A A A A A A     | A F<br>G F<br>A A<br>T A<br>R V                             | (                                                                                                                          |
| SLR1<br>SLN1<br>RHT1<br>Zm D8<br>At GAI<br>At GAI<br>At RGA<br>At RGL1<br>At RGL2<br>Sm DELLA1 |                                                             | -<br>-<br>H<br>-                                  | - 61<br>- 6<br>- 6<br>- 5<br>- 5<br>- 5<br>- 5<br>- 5<br>- 5<br>- 5 | 25<br>18<br>23<br>30<br>32<br>87<br>11<br>47<br>46   |                                      |                                       |                                                                                             |                                      |                                       |                                                      |                                        |                       |                            |                       |                                      |                                       |                                      |                                              |                                                                              |                                           |                                                |                                           |                                         |                                                                                             |                                                             |                                      |                                                                                             |                                         |                                           |                                      |                                         |                                               |   |                                                                    |                                      |                                         |                                                       |                                 |                  |                           |                                         |                                           |                                           |                       |                                                                                             |                                      |                                 |                                                                                                                 |                                                                                               |                                         |                                      |                                           |                                                             |                                                                                                                            |

**Supplemental Figure 5.** Comparison of amino acid sequences of vascular plant DELLA proteins. Sequences have been aligned from the poly S/T/V domain to the end of each protein. Amino acids that were subject to alanine scanning are shown in blue boxes at the bottom of the alignment. Red boxes indicate sites that could not be expressed in yeast when mutated and were not studied further. Black and grey indicate identical and similar amino acids, respectively. Zm, *Zea mays*; At, *Arabidopsis thaliana*; Sm, *Selaginella moellendorffii*.



**Supplemental Figure 6.** Comparison of second leaf sheath length of transgenic seedlings grown under GA-deficient conditions. Seedlings were grown in the presence of  $10^{-6}$  M uniconazole. Wild-type and mSLR1s fused with FLAG tag were overproduced in wild-type T65 rice. vec, T65 transformed with *proAct*-FLAG/pCAMBIA control vector. The measurements are the means ± SE (n = 10 to 17).

## Supplemental Table 1. Primers used in this study

| Primer                                                 | Sequence (5' to 3')                          | Note                                                                     |
|--------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------|
|                                                        |                                              |                                                                          |
| Y2H & Y3H experiment/ amplifying DN                    | A fragments for cloning into pGADT7 vector   |                                                                          |
| pGADT7.slr1-d4.F                                       | GGAATTCCATATGAAGCGCGAGTACCAAGA               | 5' primer amplifying <i>slr1-d4</i> with <i>Nde</i> I site               |
| pGADT7.slr1-d4.R                                       | GCAAGCTTGAATTCCTAGTAGTAGAGGTTAG              | 3' primer amplifying <i>slr1-d4</i> with <i>Eco</i> RI site              |
| pGADT7. SLR1 (E4-R125).F                               | GGAATTCGAGTACCAAGAAGCCGGCGG                  | 5' primer amplifying SLR1 (E4-R125) with Eco RI site                     |
| pGADT7. SLR1 (E4-R125).R                               | TCCCCCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG      | 3' primer amplifying SLR1 (E4-R125) with SmaI site                       |
| pGADT7.GID1.F                                          | GGAATTCATGGCCGGCAGCGACGAGGT                  | 5' primer amplifying <i>GID1</i> with <i>Eco</i> RI site                 |
| pGADT7.GID1.R                                          | GGAATTCCTAGTAGTAGAGGTTAGCGT                  | 3' primer amplifying GID1 with Eco RI site                               |
|                                                        |                                              |                                                                          |
| Y2H & Y3H experiments/ amplifying DI                   | NA fragments for cloning into pBRIDGE vector |                                                                          |
| pBr BD-GID2.F                                          | GGAATTCATGAAGTTCCGCTCTGATTC                  | 5' primer amplifying GID2 with Eco RI site                               |
| pBr BD-GID2.R                                          | CGGGATCCCTACCCGCATTGGCCCCCTC                 | 3' primer amplifying GID2 with Bam HI site                               |
| pBr BD-GID2 3 <sup>rd</sup> -GID1.F                    | GGAATTCATGGCCGGCAGCGACGAGGT                  | 5' primer amplifying GID1 with Bg/II site                                |
| pBr BD-GID2 3 <sup>rd</sup> -GID1.R                    | CGGGATCCCTAGTAGTAGAGGTTAGCGT                 | 3' primer amplifying GID1 with Bg/II site                                |
| pBr BD-GID1.F                                          | GGAATTCATGGCCGGCAGCGACGAG                    | 5' primer amplifying GID1 with Eco RI site                               |
| pBr BD-GID1.R                                          | CGGGATCCCTAGTAGTAGAGGTTAGC                   | 3' primer amplifying GID1 with Bam HI site                               |
| pBr BD-GID1 3 <sup>rd</sup> -GID2.F                    | GAAGATCTATGAAGTTCCGCTCTGAT                   | 5' primer amplifying GID2 or GID2 <sup>L76A</sup> with Bg/II site        |
| pBr BD-GID1 3 <sup>rd</sup> -GID2.R                    | GAAGATCTCTACCCGCATTGGCCCCC                   | 3' primer amplifying GID2 or GID2 <sup>L76A</sup> with Bg/II site        |
| pBr BD-GID2 <sup>L76A</sup> .F                         | GGAATTCATGAAGTTCCGCTCTGATTC                  | 3' primer amplifying GID2 <sup>L76A</sup> with Eco RI site               |
| pBr BD-GID2 <sup>L76A</sup> .R                         | TCCCCCGGGCTACCCGCATTGGCCCCCTC                | 3' primer amplifying GID2 <sup>L76A</sup> with SmaI site                 |
| pBr BD-GID2 (E114-P193) 3rd-GID1.F                     | GGAATTCGAGGCCGCGTGCGTGCGGGA                  | 3' primer amplifying GID2 (E114-P193) with Eco RI site                   |
| pBr BD-GID2 (E123-P193) 3rd-GID1.F                     | GGAATTCAACCTCGGCTTCTCCGAGCG                  | 3' primer amplifying PpGID1L2 with <i>Eco</i> RI site                    |
| pBr BD-GID2 (E114-P193) 3rd-GID1.R                     | TCCCCCGGGAGGCATATTCTGAAAGAACC                | 3' primer amplifying GID2 (E114-P193) or GID2 (E123-P193) with SmaI site |
| pBr BD- GID2 <sup>L76A</sup> 3 <sup>rd</sup> -mGID1s.F | TCCCCCGGGAATGGCCGGCAGCGACGAGGT               | 3' primer amplifying mGID1s with SmaI site                               |
| pBr BD- GID2 <sup>L76A</sup> 3 <sup>rd</sup> -mGID1s.R | TCCCCCGGGCTAGTAGTAGAGGTTAGCGT                | 3' primer amplifying mGID1s with SmaI site                               |

### Production of GST-SLR1, its mutant proteins (GST-mSLR1s), and GST-SLR1 (E4-R125)/amplifying various forms of SLR1

| or cloning into pGEX-6P-1 vector, and amplifying various forms of GST-SLR1s for cloning into pEU101 vector |                                  |                                                                                |  |  |  |  |
|------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------|--|--|--|--|
| pGEX6P. SLR1.F                                                                                             | GGAATTCATGAAGCGCGAGTACCAAGA      | 5' primer amplifying SLR1 or mSLR1s with Eco RI site                           |  |  |  |  |
| pGEX6P. SLR1.R                                                                                             | TCCCCCGGGTCACGCCGCGGCGACGCGCC    | 3' primer amplifying SLR1 or mSLR1s with SmaI site                             |  |  |  |  |
| pGEX6P. SLR1 (E4-R125).F                                                                                   | GGAATTCGAGTACCAAGAAGCCGGCGG      | 5' primer amplifying SLR1 (E4-R125) with Eco RI site                           |  |  |  |  |
| pGEX6P. SLR1 (E4-R125).R                                                                                   | TCCCCCGGGGCGGGGGGGGCGGCGGCGCGCGG | 3' primer amplifying SLR1 (E4-R125) with SmaI site                             |  |  |  |  |
| pEU101.GST-SLR1.F                                                                                          | GCCGATATCATGTCCCCTATACTAGGTT     | 5' primer amplifying GST-SLR1 or GST-mSLR1s, and GST-SLR1 (E4-R125) with       |  |  |  |  |
| pEU101.GST-SLR1.R                                                                                          | TCCCCCGGGTCACGCCGCGGCGACGCGCC    | 3' primer amplifying GST-SLR1 or GST-HYY497AAA SLR1 with SmaI site             |  |  |  |  |
| pEU101.GST-mSLR1.R                                                                                         | GGGGTACCTCACGCCGCGGCGACGCGCC     | 3' primer amplifying GST-mSLR1s (except for GST-HYY497AAA SLR1) with KpnI site |  |  |  |  |
| pEU101.GST-SLR1 (4E-R125).R                                                                                | TCCCCCGGGTCACGCCGCGGCGACGCGCC    | 3' primer amplifying SLR1 (4E-R125) with SmaI site                             |  |  |  |  |

#### Transgenic experiment/ amplifying SLR1 and mSLR1s for cloning into pAct3XFLAG/pCAMBIA vector

 pCAMBLpAct-3XFLAG-SLR1.F
 TCCCCCGGGATGAAGCGCGAGTACCAAGA
 5' primer amplifying SLR1 or mSLR1s with SmaI site

 pCAMBLpAct-3XFLAG-SLR1.R
 GACTAGTTCACGCCGCGGCGACGCGCC
 3' primer amplifying SLR1 or mSLR1s with SpeI site

#### Production of recombinant SLR1, GID1, GID2, and OsSkp15 protein for in vitro pull down experiments

| pGEX4T.SLR1.FGGAATTCATGAAGCGCGAGTACCAAGA5' primer amplifying <i>SLR1</i> with <i>Eco</i> RI sitepGEX4T.SLR1.RGGAATTCTCACGCCGCGCGCGCGCGCGCGCGCGCGCGCGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                               |                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------|--------------------------------------------------------------|
| pGEX4T.SLR1.RGGAATTCTCACGCCGCGGCGACGCGCC3' primer amplifying <i>SLR1</i> with <i>Eco</i> RI sitepET52b.cMyc-GID1.FGGGGTACCAAATGGAGGAGGAGCAGAAGCTG5' primer amplifying <i>cMyc-GID1</i> with <i>Kpn</i> I sitepET52b.cMyc-GID1.RCGGGATCCTTGTAGTAGGAGGAGCAGAAGCTG5' primer amplifying <i>cMyc-GID1</i> with <i>Bam</i> HI sitepGEX SLR1·rbs+cMyc-GID1.RGCCGATATCCCCCTCTAGAAATAATTTT5' primer amplifying <i>rbs+cMyc-GID1</i> with <i>Eco</i> RV sitepGEX SLR1·rbs+cMyc-GID1.RGGCGATATCTTAGTGGTGGTGGATGGTGA3' primer amplifying <i>rbs+cMyc-GID1</i> with <i>Eco</i> RV sitepET3d-OsSkp15.FCGGGATCCTTAGTGGCGGCTGAGGGAGAGAA5' primer amplifying <i>rbs+cMyc-GID1</i> with <i>Bam</i> HI sitepGEX rbs-OsSkp15.RCGGGATCCCTACTCAAAAGCCCACTGGT3' primer amplifying <i>rbs+cMyc-GID1</i> with <i>Bam</i> HI sitepGEX rbs-OsSkp15.RCCGCTCGAGCGGTTTCCCTCTAGAAATAA5' primer amplifying <i>rbs+OsSkp15</i> with <i>XboI</i> sitepGEX 3HA-GID2+rbs-OsSkp15.FGGAATTCATGAAGTTCCGCGCTGAGTCT3' primer amplifying <i>rbs+OsSkp15</i> with <i>XboI</i> sitepGEX 3HA-GID2+rbs-OsSkp15.FGGAATTCATGAAGTTCCGCGCTTGGATTC5' primer amplifying <i>shA-GID2</i> with <i>Eco</i> RI sitepGEX 3HA-GID2+rbs-OsSkp15.FGGCATATCTATGAAGTTCCGCACTTGGCCCCCTC3' primer amplifying <i>3HA-GID2</i> with <i>ScoRI</i> sitepGEX 3HA-GID2+rbs-OsSkp15.FGCCCGATATCGAAGTTCCGACTGGCCCCCTC3' primer amplifying <i>3HA-GID2</i> with <i>ScoRI</i> sitepGEX 3HA-GID2+rbs-OsSkp15.FGCAATTCATGAAGTTCCACCGCATTGGCCCCCTC3' primer amplifying <i>3HA-GID2</i> with <i>ScoRI</i> sitepET35 3HA-GID2+rbs-OsSkp15.FGCCCGATATCGAAGTTCCACCCGCATT3' primer amplifying <i>3HA-GID2</i> with <i>ScoRI</i> sitepET15b 3HA-GID2+rbs-OsSkp15.RGCCCCCCCGGGGATCCCTACTCAA3' primer amp | pGEX4T.SLR1.F                 | GGAATTCATGAAGCGCGAGTACCAAGA   | 5' primer amplifying SLR1 with Eco RI site                   |
| pET52b.cMyc-GID1.FGGGGTACCAAATGGAGGAGCAGAAGCTG5' primer amplifying cMyc-GID1 with KpnI sitepET52b.cMyc-GID1.RCGGGATCCTTGTAGTAGAGGTTAGCGTT3' primer amplifying cMyc-GID1 with Bam HI sitepGEX SLR1- rbs+cMyc-GID1.FGCCGATATCCCCCTCTAGAAATAATTTT5' primer amplifying rbs+cMyc-GID1 with EcoRV sitepGEX SLR1- rbs+cMyc-GID1.RGGCGATATCCTAGTGGTGGTGGTGATGGTGA3' primer amplifying rbs+cMyc-GID1 with EcoRV sitepET3d-OsSkp15.FCGGGATCCCATGGCGGCTGAGGGGAGGAGA5' primer amplifying rbs+cMyc-GID1 with EcoRV sitepGEX rbs-OsSkp15.RCCGCTCGAGCGGTTTCCCTCAAAAGCCCACTGGT3' primer amplifying rbs+cMyc-GID1 with Bam HI sitepGEX rbs-OsSkp15.RCCGCTCGAGCGGTTTCCCTCTAGAAATAA5' primer amplifying rbs+OSSkp15 with XhoI sitepGEX shA-GID2+rbs-OsSkp15.FGGAATTCATGAAGTTCCGCTCTGAGTC5' primer amplifying rbs+OSSkp15 with XhoI sitepGEX 3HA-GID2+rbs-OsSkp15.FGCCGATATCCAAAAGCCCACTGGT3' primer amplifying 3HA-GID2 with EcoRI sitepET15b 3HA-GID2+rbs-OsSkp15.RGCCGATATCCAAATGGAGGTACCCCACT3' primer amplifying 3HA-GID2+rbs-OsSkp15 with KmaI sitepET15b 3HA-GID2+rbs-OsSkp15.RGCCGATATCCTCGAGGGATCCCTACTCAA3' primer amplifying 3HA-GID2+rbs-OsSkp15 with EcoRV sitepET15b 3HA-GID2+rbs-OsSkp15.RGCCGATATCCTCGAGGGATCCCTACTCAA3' primer amplifying 3HA-GID2+rbs-OsSkp15 with EcoRV site                                                                                                                                                                                                                                                                                                                                                                                                                                          | pGEX4T.SLR1.R                 | GGAATTCTCACGCCGCGGCGACGCGCC   | 3' primer amplifying SLR1 with Eco RI site                   |
| pET52b.cMyc-GID1.RCGGGATCCTTGTAGTAGAGGTTAGCGTT3' primer amplifying cMyc-GID1 with Bam HI sitepGEX SLR1- rbs+cMyc-GID1.FGCCGATATCCCCCTCTAGAAATAATTTT5' primer amplifying rbs+cMyc-GID1 with EcoRV sitepET3d-OsSkp15.FCGGGATCCATGGCGGCTGAGGGGAGAGAA5' primer amplifying rbs+cMyc-GID1 with EcoRV sitepGEX rbs-OsSkp15.FCGGGATCCCTCTAGAAGCCCACTGGT3' primer amplifying osSkp15 with Bam HI sitepGEX rbs-OsSkp15.RCGGGATCCCTACTCAAAAGCCCACTGGT3' primer amplifying rbs+cMyc-GID1 with EcoRV sitepGEX rbs-OsSkp15.RCCGCTCGAGCGGTTCCCTCTAGAAAGCCCACTGGT3' primer amplifying osSkp15 with Bam HI sitepGEX rbs-OsSkp15.RCCGCTCGAGCGGTTCCCCTCTAGAAAGCCCACTGGT3' primer amplifying rbs+0Skp15 with XhoI sitepGEX 3HA-GID2+rbs-OsSkp15.FGGAATTCATGAAGTTCCGCTCTGATCC5' primer amplifying sHA-GID2 with EcoRV sitepET15b 3HA-GID2+rbs-OsSkp15.RGCCGATATCGAATTCATGGAGTACCCAAT5' primer amplifying sHA-GID2 with SmaI sitepET15b 3HA-GID2+rbs-OsSkp15.RGCCGATATCCTCGAGGGATCCCTACTCAACAG3' primer amplifying sHA-GID2+rbs-OsSkp15 with EcoRV sitepET15b 3HA-GID2+rbs-OsSkp15.RGCCGATATCCTCGAGGGATCCCTACTCAA3' primer amplifying sHA-GID2+rbs-OsSkp15 with EcoRV sitepET15b 3HA-GID2+rbs-OsSkp15.RGCCGATATCCTCGAGGGATCCCTACTCAA3' primer amplifying sHA-GID2+rbs-OsSkp15 with EcoRV site                                                                                                                                                                                                                                                                                                                                                                                                                                              | pET52b.cMyc-GID1.F            | GGGGTACCAAATGGAGGAGCAGAAGCTG  | 5' primer amplifying <i>cMyc-GID1</i> with <i>Kpn</i> I site |
| pGEX SLR1· rbs+cMyc-GID1.FGCCGATATCCCCCTCTAGAAATAATTTT5' primer amplifying rbs+cMyc-GID1 with EcoRV sitepGEX SLR1· rbs+cMyc-GID1.RGGCGATATCTTAGTGGTGGTGATGGTGA3' primer amplifying rbs+cMyc-GID1 with EcoRV sitepET3d-OsSkp15.FCGGGATCCATGGCGGCTGAGGGGAGAGAA5' primer amplifying OsSkp15 with Bam HI sitepGEX rbs-OsSkp15.RCGGGATCCCTACTCAAAAGCCCACTGGT3' primer amplifying OsSkp15 with Bam HI sitepGEX rbs-OsSkp15.RCCGCTCGAGCGGTTTCCCTCTAGAAATAA5' primer amplifying rbs+OsSkp15 with Xhol sitepGEX rbs-OsSkp15.RCCGCTCGAGCTACTCAAAAGCCCACTGGT3' primer amplifying rbs+OsSkp15 with Xhol sitepGEX 3HA-GID2+rbs-OsSkp15.FGGAATTCATGAAGTTCCGCTCTGATTC5' primer amplifying 3HA-GID2 with EcoRI sitepET15b 3HA-GID2+rbs-OsSkp15.RGCCGATATCGAATTCATGGAGTACCCAAT3' primer amplifying 3HA-GID2+rbs-OsSkp15 with EcoRV sitepET15b 3HA-GID2+rbs-OsSkp15.RGGCGATATCCTCGAGGGATCCCTACTCAA3' primer amplifying 3HA-GID2+rbs-OsSkp15 with EcoRV sitepET15b 3HA-GID2+rbs-OsSkp15.RGGCGATATCCTCGAGGGATCCCTACTCAA3' primer amplifying 3HA-GID2+rbs-OsSkp15 with EcoRV site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | pET52b.cMyc-GID1.R            | CGGGATCCTTGTAGTAGAGGTTAGCGTT  | 3' primer amplifying cMyc-GID1 with Bam HI site              |
| pGEX SLR1· rbs+cMyc-GID1.RGGCGATATCTTAGTGGTGGTGATGGTGA3' primer amplifying rbs+cMyc-GID1 with EcoRV sitepET3d-OsSkp15.FCGGGATCCATGGCGGCTGAGGGGAGAGAA5' primer amplifying OsSkp15 with Bam HI sitepET3d-OsSkp15.RCGGGATCCCTACTCAAAAGCCCACTGGT3' primer amplifying OsSkp15 with Bam HI sitepGEX rbs-OsSkp15.FCCGCTCGAGCGGTTTCCCTCTAGAAATAA5' primer amplifying rbs+OsSkp15 with XhoI sitepGEX sh4-GID2+rbs-OsSkp15.FCCGCTCGAGCTACTCAAAAGCCCACTGGT3' primer amplifying rbs+OsSkp15 with XhoI sitepGEX 3HA-GID2+rbs-OsSkp15.FGGAATTCATGAAGTTCCGCTCTGATTC5' primer amplifying rbs+OsSkp15 with ZhoI sitepET15b 3HA-GID2+rbs-OsSkp15.FGCCGATATCGAATTCATGGAGTACCCAT3' primer amplifying rbs+OsSkp15 with SmaI sitepET15b 3HA-GID2+rbs-OsSkp15.RGCCGATATCCAAATCATGGAGTACCCAT3' primer amplifying rbs+OsSkp15 with SmaI sitepET15b 3HA-GID2+rbs-OsSkp15.RGCCGATATCCTCGAGGGATCCCTACTCAA3' primer amplifying rbs+OsSkp15 with EcoRV sitepET15b 3HA-GID2+rbs-OsSkp15.RGCCGATATCCTCGAGGGATCCCTACTCAA3' primer amplifying rbs+OsSkp15 with EcoRV site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | pGEX SLR1- rbs+cMyc-GID1.F    | GCCGATATCCCCCTCTAGAAATAATTTT  | 5' primer amplifying rbs+cMyc-GID1 with EcoRV site           |
| pET3d-OsSkp15.FCGGGATCCATGGCGGCTGAGGGAGAGAA5' primer amplifying OsSkp15 with Bam HI sitepET3d-OsSkp15.RCGGGATCCCTACTCAAAAGCCCACTGGT3' primer amplifying OsSkp15 with Bam HI sitepGEX rbs-OsSkp15.FCCGCTCGAGCGATTCCCACAAGGCCACTGGT5' primer amplifying rbs+OsSkp15 with XhoI sitepGEX rbs-OsSkp15.RCCGCTCGAGCTACTCAAAAGCCCACTGGT3' primer amplifying rbs+OsSkp15 with XhoI sitepGEX 3HA-GID2+rbs-OsSkp15.FGGAATTCATGAAGTTCCGCACTGGATTC5' primer amplifying rbs+OsSkp15 with ZhoI sitepGEX 3HA-GID2+rbs-OsSkp15.FGCAATTCATGAAGTTCCGCCCCCCC3' primer amplifying rbs+OsSkp15 with ZhoI sitepET15b 3HA-GID2+rbs-OsSkp15.FGCCGATATCGAAGTTCCACAGGGATCCCCACT3' primer amplifying rbs+OsSkp15 with SmaI sitepET15b 3HA-GID2+rbs-OsSkp15.RGCCGATATCCAAGGGGATCCCTACTCACA3' primer amplifying rbs+OsSkp15 with EcoRV sitepET15b 3HA-GID2+rbs-OsSkp15.RGGCGATATCCTCGAGGGATCCCTACTCAA3' primer amplifying rbs+OsSkp15 with EcoRV site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | pGEX SLR1- rbs+cMyc-GID1.R    | GGCGATATCTTAGTGGTGGTGATGGTGA  | 3' primer amplifying rbs+cMyc-GID1 with EcoRV site           |
| pET3d-OsSkp15.RCGGGATCCCTACTCAAAAGCCCACTGGT3' primer amplifying OsSkp15 with Bam HI sitepGEX rbs-OsSkp15.FCCGCTCGAGCGGTTTCCCTCTAGAAATAA5' primer amplifying rbs+OsSkp15 with Xho1 sitepGEX rbs-OsSkp15.RCCGCTCGAGCGGTTCCCTCTAGAAAGCCCACTGGT3' primer amplifying rbs+OsSkp15 with Xho1 sitepGEX 3HA-GID2+rbs-OsSkp15.FGGAATTCATGAAGTTCCGCTCTGATTC5' primer amplifying 3HA-GID2 with EcoRI sitepGEX 3HA-GID2+rbs-OsSkp15.FGCCGATATCGAAGTTCCGAGTACCCCACT3' primer amplifying 3HA-GID2 with Sma1 sitepET15b 3HA-GID2+rbs-OsSkp15.RGCCGATATCCATGAGGGATCCCTACTCAA3' primer amplifying 3HA-GID2+rbs-OsSkp15 with EcoRV sitepET15b 3HA-GID2+rbs-OsSkp15.RGGCGATATCCTCGAGGGATCCCTACTCAA3' primer amplifying 3HA-GID2+rbs-OsSkp15 with EcoRV site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | pET3d-OsSkp15.F               | CGGGATCCATGGCGGCTGAGGGAGAGAA  | 5' primer amplifying OsSkp15 with Bam HI site                |
| pGEX rbs·OsSkp15.FCCGCTCGAGCGGTTTCCCTCTAGAAATAA5' primer amplifying rbs+OsSkp15 with XhoI sitepGEX rbs·OsSkp15.RCCGCTCGAGCTACTCAAAAGCCCACTGGT3' primer amplifying rbs+OsSkp15 with XhoI sitepGEX 3HA-GID2+rbs·OsSkp15.FGGAATTCATGAAGTTCCGCTCTGATTC5' primer amplifying 3HA-GID2 with EcoRI sitepET15b 3HA-GID2+rbs·OsSkp15.FGCCGATATCGAATTCATGGAGTACCCAAT3' primer amplifying 3HA-GID2 with SmaI sitepET15b 3HA-GID2+rbs·OsSkp15.RGCCGATATCGAATTCATGGAGTACCCCAAT3' primer amplifying 3HA-GID2+rbs·OsSkp15 with EcoRV sitepET15b 3HA-GID2+rbs·OsSkp15.RGGCGATATCCTCGAGGGATCCCTACTCAA3' primer amplifying 3HA-GID2+rbs·OsSkp15 with EcoRV site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | pET3d-OsSkp15.R               | CGGGATCCCTACTCAAAAGCCCACTGGT  | 3' primer amplifying OsSkp15 with BamHI site                 |
| pGEX rbs·OsSkp15.RCCGCTCGAGCTACTCAAAAGCCCACTGGT3' primer amplifying rbs+OsSkp15 with XhoI sitepGEX 3HA-GID2+rbs·OsSkp15.FGGAATTCATGAAGTTCCGCTCTGATTC5' primer amplifying 3HA-GID2 with EcoRI sitepGEX 3HA-GID2+rbs·OsSkp15.RTCCCCCGGGCTACCCGCATTGGCCCCCCC3' primer amplifying 3HA-GID2 with SmaI sitepET15b 3HA-GID2+rbs·OsSkp15.RGCCGATATCGAATTCATGGAGTACCCCAT3' primer amplifying 3HA-GID2+rbs-OsSkp15 with EcoRV sitepET15b 3HA-GID2+rbs·OsSkp15.RGGCGATATCCTCGAGGGATCCCTACTCAA3' primer amplifying 3HA-GID2+rbs-OsSkp15 with EcoRV site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | pGEX rbs-OsSkp15.F            | CCGCTCGAGCGGTTTCCCTCTAGAAATAA | 5' primer amplifying rbs+OsSkp15 with XhoI site              |
| pGEX 3HA-GID2+rbs·OsSkp15.F       GGAATTCATGAAGTTCCGCTCTGATTC       5' primer amplifying 3HA-GID2 with EcoRI site         pGEX 3HA-GID2+rbs·OsSkp15.R       TCCCCCGGGCTACCCGCATTGGCCCCCCC       3' primer amplifying 3HA-GID2 with SmaI site         pET15b 3HA-GID2+rbs·OsSkp15.R       GCCGATATCGAATTCATGGAGTACCCCAT       3' primer amplifying 3HA-GID2+rbs·OsSkp15 with EcoRV site         pET15b 3HA-GID2+rbs·OsSkp15.R       GGCGATATCCTCGAGGGATCCCTACTCAA       3' primer amplifying 3HA-GID2+rbs·OsSkp15 with EcoRV site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | pGEX rbs-OsSkp15.R            | CCGCTCGAGCTACTCAAAAGCCCACTGGT | 3' primer amplifying rbs+OsSkp15 with XhoI site              |
| pGEX 3HA-GID2+rbs·OsSkp15.R       TCCCCCGGGCTACCCGCATTGGCCCCCTC       3' primer amplifying 3HA-GID2 with Sma I site         pET15b 3HA-GID2+rbs·OsSkp15.F       GCCGATATCGAATTCATGGAGTACCCAT       3' primer amplifying 3HA-GID2+rbs·OsSkp15 with EcoRV site         pET15b 3HA-GID2+rbs·OsSkp15.R       GGCGATATCCTCGAGGGATCCCTACTCAA       3' primer amplifying 3HA-GID2+rbs·OsSkp15 with EcoRV site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | pGEX 3HA-GID2+rbs-OsSkp15.F   | GGAATTCATGAAGTTCCGCTCTGATTC   | 5' primer amplifying 3HA-GID2 with Eco RI site               |
| pET15b 3HA-GID2+rbs·OsSkp15.F       GCCGATATCGAATTCATGGAGTACCCAT       3' primer amplifying 3HA-GID2+rbs·OsSkp15 with EcoRV site         pET15b 3HA-GID2+rbs·OsSkp15.R       GGCGATATCCTCGAGGGATCCCTACTCAA       3' primer amplifying 3HA-GID2+rbs·OsSkp15 with EcoRV site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | pGEX 3HA-GID2+rbs-OsSkp15.R   | TCCCCCGGGCTACCCGCATTGGCCCCCTC | 3' primer amplifying 3HA-GID2 with SmaI site                 |
| pET15b 3HA-GID2+rbs-OsSkp15.R GGCGATATCCTCGAGGGATCCCTACTCAA 3' primer amplifying 3HA-GID2+rbs-OsSkp15 with EcoRV site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | pET15b 3HA-GID2+rbs-OsSkp15.F | GCCGATATCGAATTCATGGAGTACCCAT  | 3' primer amplifying 3HA-GID2+rbs-OsSkp15 with EcoRV site    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | pET15b 3HA-GID2+rbs-OsSkp15.R | GGCGATATCCTCGAGGGATCCCTACTCAA | 3' primer amplifying 3HA-GID2+rbs-OsSkp15 with EcoRV site    |

### Construction for BiFc

| pBI101.GID1.F | TCCCCCGGGATGGCCGGCAGCGACGAGGT | 5' primer amplifying GID1 with SmaI site  |
|---------------|-------------------------------|-------------------------------------------|
| pBI101.GID1.R | CGAGCTCCTAGTAGTAGAGGTTAGCGT   | 3' primer amplifying GID1 with Sac I site |

#### Constructions for GID2 alanine scanning

| KFR2AAAGID2.F   | CCGAATTCATGGCAGCAGCATCTGATTCGT  |
|-----------------|---------------------------------|
| KFR2AAAGID2.R   | ACGAATCAGATGCTGCTGCCATGAATTCGG  |
| KR30AA.GID2.F   | GACGAGCCGGCCGCCGCCCAGCGGACCGAT  |
| KR30AA.GID2.R   | ATCGGTCCGCTGGGCGGCGGCCGGCTCGTC  |
| SSS39AAA.GID2.F | ATCCGTCCTCCGCCGCCGCCAGGGCGAGG   |
| SSS39AAA.GID2.R | CCTCGCCCTGGGCGGCGGCGGAGGACGGAT  |
| SSQ48AAA.GID2.F | AGGCCTCCTCTGCCGCAGCCCCGCCACCGC  |
| SSQ48AAA.GID2.R | GCGGTGGCGGGGGCTGCGGCAGAGGAGGCCT |
| EEQ58AAA.GID2.F | AGCAGCAGCAGGCCGCAGCCCCTCCGGAGG  |
| EEQ58AAA.GID2.R | CCTCCGGAGGGGCTGCGGCCTGCTGCTGCT  |
| EQP69AAA.GID2.F | CGGGAGAGGGGCGCCGCAGCCAGGGTTCCGG |
| EQP69AAA.GID2.R | CCGGAACCCTGGCTGCGGCGCCCTCTCCCG  |
| L76A.GID2.F     | CGAGGGTTCCGGATGCCGGGGAGGACCTGG  |
| L76A.GID2.R     | CCAGGTCCTCCCCGGCATCCGGAACCCTCG  |
| L80A.GID2.F     | ATCTCGGGGGAGGACGCCGTGTTCGAGGTGC |
| L80A.GID2.R     | GCACCTCGAACACGGCGTCCTCCCCGAGAT  |
| V81A.GID2.F     | TCGGGGAGGACCTGGCCTTCGAGGTGCTGC  |
| V81A.GID2.R     | GCAGCACCTCGAAGGCCAGGTCCTCCCCGA  |
| L85A.GID2.F     | TGGTGTTCGAGGTGGCCCGGCGAGCGGAGG  |

| LOTA CIDO D      |                                         |
|------------------|-----------------------------------------|
| L85A.GID2.R      | CUTCCGUTCGCCGGGCCACUTCGAACACCA          |
| R87A.GID2.F      |                                         |
| R87A.GID2.R      | TCCGCGCCTCCGCTGCCCGCAGCACCTCGA          |
| R91A.GID2.F      | GGCGAGCGGAGGCGGCCACGCTGGCGGCCG          |
| R91A.GID2.R      | CGGCCGCCAGCGTGGCCGCCTCCGCTCGCC          |
| L93A.GID2.F      | CGGAGGCGCGGACGGCCGCGGCCGCGCGT           |
| L93A.GID2.R      | ACGCCGCGGCCGCGGCCGTCCGCGCCTCCG          |
| C98A.GID2.F      | TGGCGGCCGCGGCGGCCGTGAGCAGGGGGT          |
| C98A.GID2.R      | ACCCCCTGCTCACGGCCGCCGCGGCCGCCA          |
| V99A GID2 F      | CGGCCGCGGCGTGCGCCAGCAGGGGGGGGGGGG       |
| VOOA CID2 R      | CCACCCCTCCTCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
| V99A.GID2.R      | GCCACCCCTGCTGGCGCGCGCCGGCCGGCCG         |
| R101A.GID2.F     |                                         |
| R101A.GID2.R     | GCTGCCGCCACCCGGCGCTCACGCACGCCG          |
| W103A.GID2.F     | GCGTGAGCAGGGGGGGCCCGGCAGCTCGCGG         |
| W103A.GID2.R     | CCGCGAGCTGCCGGGCCCCCCTGCTCACGC          |
| L106A.GID2.F     | GGGGGTGGCGGCAGGCCGCGGAGGACGAGC          |
| L106A.GID2.R     | GCTCGTCCTCCGCGGCCTGCCGCCACCCCC          |
| D109A.GID2.F     | GGCAGCTCGCGGAGGCCGAGCGGCTCTGGG          |
| D109A.GID2.R     | CCCAGAGCCGCTCGGCCTCCGCGAGCTGCC          |
| F110A CID2 F     |                                         |
| E110A CID2 P     |                                         |
| ETIOA.GID2.R     |                                         |
| W113A.GID2.F     | AGGACGAGCGGCTCGCCGAGGCCGCGTGCG          |
| W113A.GID2.R     | CGCACGCGGCCTCGGCGAGCCGCTCGTCCT          |
| E114A.GID2.F     | ACGAGCGGCTCTGGGCCGCCGCGTGCGTGC          |
| E114A.GID2.R     | GCACGCACGCGGCGGCCCAGAGCCGCTCGT          |
| C117A.GID2.F     | TCTGGGAGGCCGCGGGCCGTGCGGGAGTGGG         |
| C117A.GID2.R     | CCCACTCCCGCACGGCCGCGGCCTCCCAGA          |
| W121A.GID2.F     | CGTGCGTGCGGGAGGCCGCGAACCTCGGCT          |
| W121A GID2 B     | AGCCGAGGTTCGCGGCCTCCCCCACGCACC          |
| M121A.GID2.R     |                                         |
| N125A.GID2.F     |                                         |
| N123A.GID2.R     | CGGAGAAGCCGAGGGCCGCCCACTCCCGCA          |
| E128A.GID2.F     | ACCTCGGCTTCTCCGCCCGGCAGCTCCGGG          |
| E128A.GID2.R     | CCCGGAGCTGCCGGGCGGAGAAGCCGAGGT          |
| L131A.GID2.F     | TCTCCGAGCGGCAGGCCCGGGCCGTGGTGC          |
| L131A.GID2.R     | GCACCACGGCCCGGGCCTGCCGCTCGGAGA          |
| R132A.GID2.F     | CCGAGCGGCAGCTCGCCGCCGTGGTGCTCT          |
| R132A GID2 R     | AGAGCACCACGGCGGCGAGCTGCCGCTCGG          |
| V134A CID2 F     | CCACCTCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
| V194A.CID2.F     |                                         |
| V134A.GID2.R     |                                         |
| V135A.GID2.F     | AGCTCCGGGCCGTGGCCCTCTCCCTCGGTG          |
| V135A.GID2.R     | CACCGAGGGAGAGGGGCCACGGCCCGGAGCT         |
| L136A.GID2.F     | TCCGGGCCGTGGTGGCCTCCCTCGGTGGAT          |
| L136A.GID2.R     | ATCCACCGAGGGAGGCCACCACGGCCCGGA          |
| L138A.GID2.F     | CCGTGGTGCTCTCCGCCGGTGGATTCCGCC          |
| L138A.GID2.R     | GGCGGAATCCACCGGCGGAGAGCACCACGG          |
| G139A GID2 F     | TGGTGCTCTCCCTCGCCGGATTCCGCCGGC          |
| G139A GID2 B     | GCCGGCGGAATCCGGCGAGGGAGAGCACCA          |
| C140A CID2 F     |                                         |
| G140A.GID2.F     |                                         |
| G140A.GID2.R     | GGAGUUGGUGGAAGGUAUUGAGGGAGAGAGAG        |
| F141A.GID2.F     | TCTCCCTCGGTGGAGCCCGCCGGCTCCACG          |
| F141A.GID2.R     | CGTGGAGCCGGCGGGGCTCCACCGAGGGAGA         |
| R143A.GID2.F     | TCGGTGGATTCCGCGCCCTCCACGCTGTCT          |
| R143A.GID2.R     | AGACAGCGTGGAGGGGGCGCGGAATCCACCGA        |
| L144A.GID2.F     | GTGGATTCCGCCGGGCCCACGCTGTCTACA          |
| L144A.GID2.R     | TGTAGACAGCGTGGGCCCGGCGGAATCCAC          |
| H145A.GID2.F     | GATTCCGCCGGCTCGCCGCTGTCTACATCC          |
| H145A GID2 B     | GGATGTAGACAGCGGCGAGCCGGCGGAATC          |
| V147A CID2 F     |                                         |
| V147A.CID2.F     |                                         |
| VI4/A.GID2.R     |                                         |
| 1149A.GID2.F     | TUCAUGUIGIUIAUGUUUGUUUUIGUAGI           |
| 1149A.GID2.R     | ACTGCAGGGGGGGGGGGGGGGGAGACAGCGTGGA      |
| P151A.GID2.F     | CTGTCTACATCCGCGCCCTGCAGTGGCGTG          |
| P151A.GID2.R     | CACGCCACTGCAGGGCGCGGATGTAGACAG          |
| L152A.GID2.F     | TCTACATCCGCCCCGCCCAGTGGCGTGGCG          |
| L152A.GID2.R     | CGCCACGCCACTGGGCGGGGGGGGGGATGTAGA       |
| QWR153AAA.GID2.F | ATCCGCCCCTGGCCGCCGCCGCGCGCGCG           |
| OWR153AAA GID2 R | CGCCGGCGCCGCCGGCGGCCAGGGGGGGGGGAT       |
| CAC156AAA CID2 F | TGCAGTGGCGTGCCGCAGCCGTGCCCAGGC          |
| CACIECAAA CID2 P |                                         |
| UDD150AAA.GID2.R | OTOGOGOGOGOGOGOGOGOGOGOGOGOGOGOGOGOGOGO |
| VERIDSAAA.GID2.F |                                         |
| VPK159AAA.GID2.R | TUUCUTGTTGGGCGGCGCGGCGCGCCAC            |
| QQG162AAA.GID2.F | GCGTGCCCAGGGCAGCCGCCAGGCGGCAGC          |
| QQG162AAA.GID2.R | GCTGCCGCCTGGCGGCGCCCCCTGGGCACGC         |
| R165A.GID2.F     | CCAGGCAACAGGGGGGCCCGGCAGCCGCCGG         |
| R165A.GID2.R     | CCGGCGGCTGCCGGGCCCCCTGTTGCCTGG          |
| RQP166AAA.GID2.F | AACAGGGGAGGGCCGCAGCCCCGGTGAGGT          |
| ROP166AAA GID2 R | ACCTCACCGGGGCTGCGCGCCCCCCCCCCC          |
| R174A CID2 F     |                                         |
| N174A.GID2.F     |                                         |
| n1/4A.GID2.K     | GUIGAAUUIGUIUGUGUGUUUAAUUTUACUG         |
| D175A.GID2.F     | TGAGGTTGGGCCGGGCCCAGGTTCAGCTCT          |
| D175A.GID2.R     | AGAGCTGAACCTGGGCCCGGCCCAACCTCA          |
| V177A.GID2.F     | TGGGCCGGGACCAGGCCCAGCTCTCGCTGT          |
| V177A.GID2.R     | ACAGCGAGAGCTGGGCCTGGTCCCGGCCCA          |
|                  |                                         |

| L179A.GID2.F     | GGGACCAGGTTCAGGCCTCGCTGTCACTGT    |
|------------------|-----------------------------------|
| L179A.GID2.R     | ACAGTGACAGCGAGGCCTGAACCTGGTCCC    |
| S180A.GID2.F     | ACCAGGTTCAGCTCGCCCTGTCACTGTTCT    |
| S180A.GID2.R     | AGAACAGTGACAGGGCGAGCTGAACCTGGT    |
| L181A.GID2.F     | AGGTTCAGCTCTCGGCCTCACTGTTCTCCA    |
| L181A.GID2.R     | TGGAGAACAGTGAGGCCGAGAGCTGAACCT    |
| S182A.GID2.F     | TTCAGCTCTCGCTGGCACTGTTCTCCATTG    |
| S182A.GID2.R     | CAATGGAGAACAGTGCCAGCGAGAGCTGAA    |
| L183A.GID2.F     | AGCTCTCGCTGTCAGCCTTCTCCATTGGGT    |
| L183A.GID2.R     | ACCCAATGGAGAAGGCTGACAGCGAGAGCT    |
| S185A.GID2.F     | CGCTGTCACTGTTCGCCATTGGGTTCTTTC    |
| S185A.GID2.R     | GAAAGAACCCAATGGCGAACAGTGACAGCG    |
| I186A.GID2.F     | TGTCACTGTTCTCCGCCGGGTTCTTTCAGA    |
| I186A.GID2.R     | TCTGAAAGAACCCGGCGGAGAACAGTGACA    |
| F189A.GID2.F     | TCTCCATTGGGTTCGCCCAGAATATGCCTT    |
| F189A.GID2.R     | AAGGCATATTCTGGGCGAACCCAATGGAGA    |
| QN190AA.GID2.F   | ATTGGGTTCTTTGCCGCCATGCCTTGTCCT    |
| QN190AA.GID2.R   | AGGACAAGGCATGGCGGCAAAGAACCCAAT    |
| 192MA.GID2.F     | GGTTCTTTCAGAATGCCCCTTGTCCTAAGA    |
| 192MA.GID2.R     | TCTTAGGACAAGGGGGCATTCTGAAAGAACC   |
| PCP193AAA.GID2.F | TTCAGAATATGGCCGCAGCCAAGAAAGACA    |
| PCP193AAA.GID2.R | TGTCTTTCTTGGCTGCGGCCATATTCTGAA    |
| DKG198AAA.GID2.F | GTCCTAAGAAAGCCGCCGCAAATGACAGTG    |
| DKG198AAA.GID2.R | CACTGTCATTTGCGGCGGCTTTCTTAGGAC    |
| SDK203AAA.GID2.F | AGGGAAATGACGCCGCAGCCAATGGAGGGG    |
| SDK203AAA.GID2.R | CCCCTCCATTGGCTGCGGCGTCATTTCCCT    |
| GGG207AAA.GID2.F | GTGATAAGAATGCAGCCGCCCAATGCGGGT    |
| GGG207AAA.GID2.R | ACCCGCATTGGGCGGCTGCATTCTTATCAC    |
| QCG210AAA.GID2.F | ATGGAGGGGGGGGCGCAGCCGCCTAGCCCGGGA |
| QCG210AAA.GID2.R | TCCCGGGCTAGGCGGCTGCGCCCCCTCCAT    |
|                  |                                   |

### Constructions for SLR1 alanine scanning

| STY153AAA.SLR1.F  | ACTCGTCGAGTGCCGCAGCCGCCCTCAGGC          |
|-------------------|-----------------------------------------|
| STY153AAA.SLR1.R  | GCCTGAGGGCGGCTGCGGCACTCGACGAGT          |
| SSS190AAA.SLR1.F  | GCGGCAGCACGGCCGCAGCCTCATCGTCGT          |
| SSS190AAA.SLR1.R  | ACGACGATGAGGCTGCGGCCGTGCTGCCGC          |
| VVV229AAA.SLR1.F  | CCGCCGTGCCGGCCGCAGCCGTTGACACGC          |
| VVV229AAA.SLR1.R  | GCGTGTCAACGGCTGCGGCCGGCACGGCGG          |
| GIR238AAA.SLR1.F  | CGCAGGAGGCTGCCGCAGCCCTGGTGCACG          |
| GIR238AAA.SLR1.R  | CGTGCACCAGGGCTGCGGCAGCCTCCTGCG          |
| VQQ252AAA.SLR1.F  | GCGCGGAGGCCGCCGCAGCCGAGAACTTCG          |
| VQQ252AAA.SLR1.R  | CGAAGTTCTCGGCTGCGGCGGCCTCCGCGC          |
| VKQ264AAA.SLR1.F  | CGGAGGCGCTGGCCGCAGCCATCCCCACGC          |
| VKQ264AAA.SLR1.R  | GCGTGGGGATGGCTGCGGCCAGCGCCTCCG          |
| QGG274AAA.SLR1.F  | TGGCCGCGTCCGCCGCAGCCGCCATGCGCA          |
| QGG274AAA.SLR1.R  | TGCGCATGGCGGCTGCGGCGGACGCGGCCA          |
| YFG284AAA.SLR1.F  | AGGTCGCTGCCGCCGCAGCCGAGGCCCTCG          |
| YFG284AAA.SLR1.R  | CGAGGGCCTCGGCTGCGGCGGCAGCGACCT          |
| RRV291AAA.SLR1.F  | AGGCCCTCGCCGCCGCAGCCTACCGCTTCC          |
| RRV291AAA.SLR1.R  | GGAAGCGGTAGGCTGCGGCGGCGAGGGCCT          |
| HFY315AAA.SLR1.F  | TTCTGCACGCCGCCGCAGCCGAGTCCTGCC          |
| HFY315AAA.SLR1.R  | GGCAGGACTCGGCTGCGGCGGCGTGCAGAA          |
| PYL321AAA.SLR1.F  | ACGAGTCCTGCGCCGCAGCCAAGTTCGCCC          |
| PYL321AAA.SLR1.R  | GGGCGAACTTGGCTGCGGCGCAGGACTCGT          |
| HFT327AAA.SLR1.F  | TCAAGTTCGCCGCCGCCGCCGCAAATCAAG          |
| HFT327AAA.SLR1.R  | CTTGATTTGCGGCGGCGGCGGCGAACTTGA          |
| ILE334AAA.SLR1.F  | CAAATCAAGCCGCCGCAGCCGCTTTCGCCG          |
| ILE334AAA.SLR1.R  | CGGCGAAAGCGGCTGCGGCGGCTTGATTTG          |
| RVH343AAA.SLR1.F  | CCGGCTGCCACGCCGCAGCCGTCGTCGACT          |
| RVH343AAA.SLR1.R  | AGTCGACGACGGCTGCGGCGTGGCAGCCGG          |
| QWP356AAA.SLR1.F  | AGCAGGGGATGGCCGCCGCCGCTCTCCTCC          |
| QWP356AAA.SLR1.R  | GGAGGAGAGCGGCGGCGGCCATCCCCTGCT          |
| LQ361AAA.SLR1.F   | GGCCAGCTCTCGCCGCAGCCCTCGCCCTTC          |
| LQ361AAA.SLR1.R   | GAAGGGCGAGGGCTGCGGCGAGAGCTGGCC          |
| GPP370AAA.SLR1.F  | TTCGTCCCGGCGCCGCAGCCTCGTTCCGCC          |
| GPP370AAA.SLR1.R  | GGCGGAACGAGGCTGCGGCGCCGGGACGAA          |
| RLT375AAA.F       | CCCCATCGTTCGCCGCCGCCGGCGTCGGCC          |
| RLT375AAA.R       | GGCCGACGCCGGCGGCGGCGAACGATGGGG          |
| LQQ390AAA SLR1 F  | AGACCGACGCCGCCGCAGCCGTGGGTTGGA          |
| LQQ390AAA SLR1 R  | TCCAACCCACGGCTGCGGCGGCGTCGGTCT          |
| WKL395AAA.SLR1.F  | AGCAGGTGGGTGCCGCAGCCGCCCAGTTCG          |
| WKL395AAA SLR1 R  | CGAACTGGGCGGCTGCGGCACCCACCTGCT          |
| QYR409AAA SLR1 F  | GCGTCGACTTCGCCGCAGCCGGACTCGTCG          |
| QYR409AAA SLR1 R  | CGACGAGTCCGGCTGCGGCGAAGTCGACGC          |
| DLE420AAA SLR1 F  | CCACTCTCGCGGCCGCAGCCCCGTTCATGC          |
| DLE420AAA SLR1 R  | GCATGAACGGGGCTGCGGCCGCGAGAGTGG          |
| VNS443AAA SLR1 F  | GGTGATCGCCGCCGCAGCCGTGTTCGAGCT          |
| VNS443AAA SLR1 R  | AGCTCGAACACGGCTGCGGCGGCGATCACC          |
| HRL450AAA SLR1 F  | GTTCGAGCTGGCCGCAGCCCTCGCGCAGCC          |
| HRL450AAA SLR1 R  | GGCTGCGCGAGGGCTGCGGCCACCTCGAAC          |
| FKV460444 SLR1 F  | CCGCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
| FKV460AAA SI B1 B |                                         |
| EAV400AAA.SLALA   |                                         |
| EQE4/0AAA.SLA1.F  | TUAUUUIUUIAUUUUUUUUUUUAUUUUUAAUUAUA     |

| EQE478AAA.SLR1.R | TGTGGTTGGCGGCTGCGGCTACCACGGTGA  |
|------------------|---------------------------------|
| NHN482AAA.SLR1.F | AGCAGGAGGCCGCCGCAGCCTCCGGCTCAT  |
| NHN482AAA.SLR1.R | ATGAGCCGGAGGCTGCGGCGGCCTCCTGCT  |
| DRF490AAA.SLR1.F | GCTCATTCCTCGCCGCAGCCACCGAGTCGC  |
| DRF490AAA.SLR1.R | GCGACTCGGTGGCTGCGGCGAGGAATGAGC  |
| HYY497AAA.SLR1.F | CCGAGTCGCTGGCCGCAGCCTCCACCATGT  |
| HYY497AAA.SLR1.R | ACATGGTGGAGGCTGCGGCCAGCGACTCGG  |
| EVY533AAA.SLR1.F | AGGTCATGTCCGCCGCAGCCCTCGGCCGGC  |
| EVY533AAA.SLR1.R | GCCGGCCGAGGGCTGCGGCGGACATGACCT  |
| QIC539AAA.SLR1.F | CCTCGGCCGGGCCGCAGCCAACGTCGTGGC  |
| QIC539AAA.SLR1.R | GCCACGACGTTGGCTGCGGCCCGGCCGAGG  |
| RH554AA.SLR1.F   | GAGCGCACGGAGGCCGCCGAGACGCTGGGG  |
| RH554AA.SLR1.R   | CCCCAGCGTCTCGGCGGCCTCCGTGCGCTC  |
| RN562AA.SLR1.F   | CTGGGGCAGTGGGCCGCCCGCCTCGGCCGC  |
| RN562AA.SLR1.R   | GCGGCCGAGGCGGGCGGCCCACTGCCCCAG  |
| GF569AA.SLR1.F   | CTCGGCCGCCGCCGCCGAGCCCGTGCAC    |
| GF569AA.SLR1.R   | GTGCACGGGCTCGGCGGCGGCGGCGGCCGAG |
| LF589AA.SLR1.F   | ACGCTCCTCGCGGCCGCCGCCGGCGGCGAC  |
| LF589AA.SLR1.R   | GTCGCCGCCGGCGGCGGCCGCGAGGAGCGT  |
| GW608AA.SLR1.F   | TGCCTCACGCTGGCCGCCCACACGCGCCCG  |
| GW608AA.SLR1.R   | CGGGCGCGTGTGGGGCGGCCAGCGTGAGGCA |
| RP612AA.SLR1.F   | GGCTGGCACACGGCCGCCCTCATCGCCACC  |
| RP612AA.SLR1.R   | GGTGGCGATGAGGGCGGCCGTGTGCCAGCC  |
| S618A.SLR1.F     | CGCTCATCGCCACCGCCGCATGGCGCGTCG  |
| S618A.SLR1.R     | CGACGCGCCATGCGGCGGTGGCGATGAGCG  |
| W620A.SLR1.F     | TCGCCACCTCGGCAGCCCGCGTCGCCGCGG  |
| W620A.SLR1.R     | CCGCGGCGACGCGGGCTGCCGAGGTGGCGA  |
| R621A.SLR1.F     | CCACCTCGGCATGGGCCGTCGCCGCGGCGT  |
| R621A.SLR1.R     | ACGCCGCGGCGACGGCCCATGCCGAGGTGG  |
|                  |                                 |