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SI Text 1: Advantageous Properties of Cortical Thickness as
an Anatomical Metric
Cortical thickness is an informative metric of cortical anatomy
that has shown sex differences in existing postmortem and cross-
sectional neuroimaging studies of humans (1) and is known to be
a sensitive in vivo index of both typical (2, 3) and atypical cortical
development (4). Furthermore, unlike the principal alternative
spatially nonbiased measure of cortical anatomy—voxel-based
measures of “gray matter density”—vertex-based measures of
cortical thickness do not conflate cortical thickness and cortical
surface area. This property is an important advantage, because
cortical thickness and surface area capture very different sets
of biological processes, as evidenced by their differing evolu-
tionary histories (5), developmental trajectories (6, 7), and ge-
netic determinants (8, 9).

SI Text 2: Methodological Details
Genotyping. For each participant, DNA was extracted from pre-
viously prepared lymphoblastoid cell lines using standard meth-
ods (Qiagen). Lymphoblastoid cell lines were grown in culture for
approximately 2 mo before DNA extraction. Genotyping of AR-
CAG length was performed by Prevention Genetics, using a

slightly modifiedMarshfield set (13) (http://research.marshfieldclinic.
org/genetics/GeneticResearch/sets/Set%2013.xls). This screening
set is comprised of 405 STRPs that cover the autosomal, X, and
Y chromosomes at a density of ∼10 cM. PCR was performed in
96-well plates in 6-μL reactions containing ∼45 ng DNA, 0.075
μM forward (5’-ACCGAGGAGCTTTCCAGAAT-3’) and re-
verse (5’-AGAACCATCCTCACCCTGCT-3’) primers, 0.03 U
Platinum Taq, 100 μM each dNTP, and 1.5 mM MgCl2. All
markers were multiplexed at the PCR stage. Multiplexes were
put together based on nonoverlapping marker size ranges and/or
unique fluorescent dyes. PCR reactions were incubated for 2 min
at 95 °C, followed by 27 cycles of denaturation (95 °C for 40 s),
annealing (55 °C for 75 s), and elongation (72 °C for 40 s). A final
extension (72 °C for 6 min) completed the PCR profile. PCR
products were run on a polyacrylamide gel, and product length
was determined in comparison to a standard DNA ladder. DNA
sequencing of positive controls and correlation analyses of CAG
length call for duplicate samples were conducted to ensure re-
liability and accuracy of genotype assignment. The distribution of
CAG repeats was similar to that reported by available reference
data (13), with 90% of AR alleles having between 19 and 28
CAG repeats.
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Table S1. Basis for nomination of cortical regions where distinct patterns of sexually dimorphic cortical maturation were hypothesized
to exist

Domain of
cognitive-behavioral
sex difference

Evidence
for sex

difference

Cortical regions
sub-serving

cognitive-behavioral
domain

Evidence
for nomination

of cortical
regions

Evidence for regional
structural and

functional cortical
sex differences

Language Refs. 1, 2 TempPole, STS, transverse temporal sulcus, IFG, SMG Refs. 3, 4 Refs. 5, 6
Visuospatial Refs. 7, 8 SFG, MFG, IFG, PostCG, PreCG, SPL, IPS, IPL, ITG Ref. 9 Refs. 10, 11
Social cognition Refs. 12, 13 SFG, MFG, MedFG, OFC, AntCC, IFG, STS, vlPFC, vmPFC Refs. 14 Refs. 15–18
Sensation seeking Refs. 19, 20 MedFG, AntCC, IFG, insula Refs. 21, 22 Ref. 23
Hyperactivity/impulsivity Ref. 24 AntCC, DLPFC, vmPFC, OFC Refs. 25–29 Ref. 30
Reward-related behaviors Ref. 31 avPFC, vlPFC Ref. 32 Ref. 33
Aggression Ref. 34 FPC, vmPFC, dmPFC, AntCC Refs. 27, 35, 36 –

avPFC, anterioventral prefrontal cortex; dmPFC, dorsomedial prefrontal cortex; FPC, frontopolar cortex; ITG, inferior temporal gyrus; MedFG, medial frontal
gyrus; PostCG, post central gyrus; PreCG, pre central gyrus; SPL, superior parietal lobule; TempPole, temporal pole. For each principle domain of cognitive-
behavioral sex difference (first column), references providing details of how male and female subjects differ at the cognitive behavioral level. Then, the set of
cortical regions most consistently linked to each cognitive behavioral domain is listed, alongside references justifying the composition of each list.

Fig. S1. Maps of difference in absolute (Left) and proportional (Right) rate of cortical thickness loss between ages 9 and 22 y in male and female subjects.
(Left) Map of absolute difference between estimated mean rate of cortical thickness change in male subjects and estimated mean rate of cortical thickness
change in female subjects (ie, coefficient magnitude for the age-by-sex interaction term in predicting cortical thickness). Colored vertices are those where
cortical thickness loss is faster in male than female subjects. “Warmer” colors denote a greater acceleration of cortical thinning in males relative to females. The
red “isobar” encompasses regions where the t statistic associated with this age-by-sex interaction term was statistically significant (P < 0.05). (Right) Map of
percentage difference between rate of cortical thickness loss between ages 9 and 22 y in male compared with female subjects, where rate of cortical thickness
loss in each sex is expressed as a proportion of initial cortical thickness at age 9 y. The equivalence of absolute and proportional maps indicates that sex
differences in the rate of cortical thickness loss during adolescence are not explained by the fact that males have thicker cortices to begin with. Therefore, our
findings regarding sex differences in the rate of cortical thickness loss hold regardless of any effect sex differences in overall brain size may have on sex
differences in cortical thickness.
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Table S2. Participant characteristics

Group

Characteristic Male Female Difference

No. of individuals 153 131
Handedness, no. NS

L 21 18
R 132 113

Race, no. NS
White 138 107
Black 7 12
Asian 4 3
Hispanic 2 7
Other 2 2

IQ, mean (SD) 113 (10.8) 111 (11.6) NS
SES 42 (19.5) 43 (18.9) NS
Total no. of scans 363 278
Number of people by number of scans

1 scan 47 40
2 scans 36 50
≥3 scans 70 41

Mean age at each scan, y (SD)
First scan 12.4 (2.7) 12.5 (3.0) NS
Second scan 15.0 (2.5) 14.8 (2.8) NS
Third scan 17.3 (2.5) 17.0 (2.5) NS
Fourth scan 18.7 (2.0) 18.3 (1.8) NS

Age distribution of scans, y
Mean (SD) 14.6 (3.5) 14.3 (3.5)
Range 9.0–22.8 9.0–22.8

Genotype, no. individuals (no. of scans)
AR-H 83 (192) 31 (66)
AR-M — 69 (152)
AR-L 70 (171) 31 (60)

Test for difference between genotype groups
Handedness NS NS
Race NS NS
IQ NS NS
SES NS NS

Age at each scan
First scan NS NS
Second scan NS NS
Third scan NS NS

NS, not statistically significant; SES, socioeconomic status.
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Movie S1. Time-lapse sequences show how spatial distribution of greater cortical thickness in males compared with females changes between ages 9 and 22 y
for anterior-oblique left views of the cortical surface. Colored regions indicate a larger estimated mean group cortical thickness in male compared with female
subjects. Color variation represents variation in the absolute magnitude of estimated difference in sex-group average cortical thickness. The transition from
purple to dark blue to light blue to green to yellow to red represents grades of sex-group cortical thickness difference ranging from just above 0 mm to 0.5 mm
greater cortical thickness in male than female subjects. White regions are where cortical thickness is greater in female than male subjects. At age 9 y, cortical
thickness is greater in males than females over most of the cortex with the exception of small regions in bilateral supplementary motor (SMot) and inferior
temporal (ITG) gyri, and right dorsolateral prefrontal (DLPF) regions. Then, as adolescence advances, frontal cortical thickness differences are lost in a bilateral
wave that starts in posteriodorsal superior frontal gyrus and spreads in an anterioventral direction. This is driven by (i) cortical thinning with age in both male
and female subjects, (ii) this occurring more rapidly in males, (iii) regional differences within the frontal lobe in the magnitude and sex difference in cortical
thickness at age 9 y, and (iv) regional differences within the frontal lobe in the magnitude of sex difference in the rate of cortical thickness loss with age (Fig. 1
and Fig. S1). There is a striking similarity between these movies and those we previously published detailing the order at which frontal regions structurally
mature relative to each other (http://www.pnas.org/content/suppl/2004/05/13/0402680101.DC1/02680Movie2.mpg). Therefore, the last regions in the frontal
lobe to structurally mature are also the last where cortical thickness in males catches up with that in females. In contrast, beyond the frontal lobes, cortical
thickness differences between male and female subjects generally increase over adolescence (with the exception of bilateral precuneus, superiodorsal parietal,
and fusiform cortices). Divergence in cortical thickness between sex groups is most prominent in the temporal poles bilaterally.

Movie S1
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Movie S2. Time-lapse sequences show how spatial distribution of greater cortical thickness in males compared with females changes between ages 9 and 22 y
for anterior-oblique right views of the cortical surface. Colored regions indicate a larger estimated mean group cortical thickness in male compared with
female subjects. Color variation represents variation in the absolute magnitude of estimated difference in sex-group average cortical thickness. The transition
from purple to dark blue to light blue to green to yellow to red represents grades of sex-group cortical thickness difference ranging from just above 0 mm to
0.5 mm greater cortical thickness in male than female subjects. White regions are where cortical thickness is greater in female than male subjects. At age 9 y,
cortical thickness is greater in males than females over most of the cortex with the exception of small regions in bilateral supplementary motor (SMot) and
inferior temporal (ITG) gyri, and right dorsolateral prefrontal (DLPF) regions. Then, as adolescence advances, frontal cortical thickness differences are lost in
a bilateral wave that starts in posteriodorsal superior frontal gyrus and spreads in an anterioventral direction. This is driven by (i) cortical thinning with age in
both male and female subjects, (ii) this occurring more rapidly in males, (iii) regional differences within the frontal lobe in the magnitude and sex difference in
cortical thickness at age 9 y, and (iv) regional differences within the frontal lobe in the magnitude of sex difference in the rate of cortical thickness loss with age
(Fig. 1 and Fig. S1). There is a striking similarity between these movies and those we previously published detailing the order at which frontal regions
structurally mature relative to each other (http://www.pnas.org/content/suppl/2004/05/13/0402680101.DC1/02680Movie2.mpg). Therefore, the last regions in
the frontal lobe to structurally mature are also the last where cortical thickness in males catches up with that in females. In contrast, beyond the frontal lobes,
cortical thickness differences between male and female subjects generally increase over adolescence (with the exception of bilateral precuneus, superiodorsal
parietal, and fusiform cortices). Divergence in cortical thickness between sex groups is most prominent in the temporal poles bilaterally.

Movie S2
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