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Fig. S1. Paired inhibitor combinations perturb CVB3-induced phosphorylation signatures nonadditively. (A) Measured inhibitor pairs were reprinted from Fig.
1 and compared with (B) an additive model, in which single inhibitor time courses from Fig. 1 were used to predict paired inhibitor signatures by adding the net
perturbation of each inhibitor compared with the DMSO control. Differences between the measured and modeled signatures were evaluated by R2 goodness
of fit (Right). The median R2 value was 0.6.
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Fig. S2. Single and paired inhibitors specifically inhibit CVB3-induced cardiotoxicity. Cell death as measured by MTS assay is shown for (A) sham-infected
cardiomyocytes or (B) CVB3-infected cardiomyocytes at 16 and 24 h p.i. HL1 cells were pretreated and infected as described in Fig. 1. Data are presented as the
mean of three independent replicates. Cell death was normalized to the DMSO-treated control.
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Fig. S3. Time-dependent hierarchical clustering of the nine-protein signature based on inhibitor data. (A–F) Data were analyzed as described in Fig. 3. HL1
cells were pretreated and infected as described in Fig. 1. Using a Euclidean distance metric and average linkage, phosphoproteins were clustered at the in-
dicated time points. The dendrograms were built from the complete original dataset of single and double inhibitors (original) or subsampled as single, double,
or single + double inhibitor subsets as described in Methods.

Table S1. Measured signaling molecules and virus replication
indicators

Variables Assays

Akt (pS473) Phospho-ELISA
ATF2 (pTpT69/71) Phospho-ELISA
CREB (pS133) Phospho-ELISA
ERK1/2 (pTpY185/187) Phospho-ELISA
GSK3β (pS9) Phospho-ELISA
Hsp27 (pS82) Phospho-ELISA
IκBα (pS32) Phospho-ELISA
JNK1/2 (pTpY183/185) Phospho-ELISA
p38 MAPK (pTpY180/182) Phospho-ELISA
Src (pY418) Phospho-ELISA
Viral protein (CVB3 VP1) Western blot
Virion progeny release Plaque assay
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Table S2. Scientific support for the CVB3 partial correlation network shown in Fig. 4B

Edge Partial correlation Reported interaction Ref(s).

Hsp-27–CREB 0.5 Direct phosphorylation of Hsp-27 and CREB by RSK2 (1)
JNK–IκBα −0.5 Inhibition of JNK activation by NF-κB-mediated induction of GADD45B and XIAP (2, 3)
p38–IκBα 0.5 p38-mediated phosphorylation of MSK1 promotes NF-κB function, which induces IKBA (4, 5)
ERK–CREB 0.5 Direct phosphorylation of CREB through ERK-mediated phosphorylation of RSK (6)
Akt–GSK3β 0.4 Direct phosphorylation of GSK3β by Akt (7)
JNK–ATF-2 −0.3 Direct phosphorylation of ATF-2 by JNK (negative correlation unexplained) (8)
IκBα–ATF-2 −0.3 Negative correlation unexplained —

GSK3β–IκBα 0.3 GSK3β required for normal NF-κB function, which induces IKBA (9–11)
Akt–IκBα 0.3 Direct phosphorylation of IκBα through Akt-mediated phosphorylation of IKK (12, 13)
p38–Hsp-27 0.3 Direct phosphorylation of Hsp-27 through p38-mediated phosphorylation of MK2 (14, 15)
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