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SI Materials and Methods
Correction of the Limited Sampling Bias in Direct Estimates of
Information. Direct estimates of mutual information can suffer
from a bias due to the limited amount of data available to calculate
the conditional probabilities P(r|s) (compare Eq. 1). This sampling
bias in the information estimate was corrected by using a multistep
procedure, which combines the established shuffling technique (1)
and the quadratic extrapolation procedure (2). For details of this
procedure, see refs. 3 and 4. The performance of this procedure
with the number of trials was tested on simulated data in several
previous reports (3–6). A test of the performance on simulated
data with first-order statistical properties matching those of the
real auditory cortical neurons analyzed here was performed as
follows (we refer to ref. 3 for full details): We computed the time
varying peristimulus time histogram (PSTH) in 4-ms bins collected
in response to the natural sound stimulus. Then, for a given neuron
a simulated set of responses was generated by using an in-
homogeneous Poisson process with the same PSTH as in the real
experiment. We then studied the variation of the information es-
timates as a function of the number of simulated trials included in
the estimate (see figure S2 in ref. 3 for an example). The critical
parameters for the performance of bias correction procedures are
the number of trials per stimulus N (which was in the range 39–70
in the real data, with mean 55) and the cardinality R of the re-
sponse space (i.e., the number of possible different responses that
can be observed), which wasR=26= 64 in this study. The largerR
(and the smallerN), the more difficult is to correct for the bias (1).
The simulations showed that our algorithm is highly data robust,
with very mild degradation of performance when decreasing the
number of trials. In particular, the information estimate converged
to within 4 and 1% of the “asymptotic” (large trial number) value
when using 32 and 64 trials per stimulus, respectively (average over
all simulated neurons), suggesting that our information theoretic
calculations provide a good estimate of the actual values.

Evaluation of the Relative Importance of PSTH Modulations and of
Correlations Between Spike Times in Information Transmission. In the
main text, we computed how mutual information I(S;R) (Eq. 1)
depends on the precision at which neural responses are sampled.
This calculation is useful to prove that precise spike times are
important for encoding, but it is not sufficient to determine what
aspects of the spike train are most crucial for information trans-
mission. The simplest possibility is that the only information-
bearing feature of the spike train is the temporal modulation of
the PSTH. The PSTH is proportional to the time-dependent firing
rate and expresses the first-order statistical properties of the spike
train at a given temporal resolution. A second possibility is that
neuronal firing cannot be described completely by its first-order
statistics, and information is encoded by high order statistical
properties of the spike train, such as correlations between spike
pairs that cannot be explained by firing rate modulations. In this
second case, an observer of the spike train would not be able to
decode all information available in the spike train unless it takes
into account such higher-order correlations between spike times.
We characterized the relative importance of PSTHmodulations

and correlations between spike times by estimating how much
stimulus information can be extracted even by a decoder that
considersonly the time-dependentfiring rate and ignores temporal
correlations. By following refs. 7–9, a lower bound to this in-
formation can be computed by using the following equation:

IPSTH ¼ ∑
r; s

PðrjsÞ log2
PPSTHðrjsÞ
PPSTHðrÞ ; [S1]

where PPSTHðrjsÞis the probability of observing response r to
stimulus s if the neuron fired according to a time-dependent
Poisson process with the same PSTH as the one of the neuron
under analysis, and PPSTHðrÞ ¼ ∑

r
PPSTHðrjsÞPðsÞ.

To determine whether correlations are needed to extract
most information from the spike train, it is useful to compare
the value of IPSTH to the value of IðS;RÞ, which quantifies the
overall amount of information that can be obtained from the
neuronal response taking into account all its characteristics.
By information theoretic inequalities it can be proved that
IPSTH ≤ IðS;RÞ. If the ratio IPSTH=IðS;RÞ is close to 1, then most
information carried by the spike train can be extracted even by
a downstream observer of neural activity that pays attention only
to the first-order statistics and neglects correlations. The
quantity IPSTH was corrected for the limited sampling bias using
the same procedures used for the overall information IðS;RÞand
reported above.

Stimulus Decoding. An alternative approach to computing the mu-
tual information between stimulus andneural response aremethods
based on explicit models for stimulus decoding, such as linear dis-
criminant analysis (10, 11). By making particular assumptions, such
as the linear separability of the responses to different stimuli, these
methods reduce the statistical complexity of estimating the in-
formation conveyed by neural responses about the stimulus and can
yield reliable results also for problems where only small amounts of
experimental data are available.
However, a decoding approach may miss critical ways in which

a response eliminates uncertainty about the stimulus, such as by
making incorrectoroversimplifiedassumptionsabout the stimulus–
response relationship. For example, a linear decoder (as e.g., de-
scribed below) would fail to capture the contribution of nonlinear
stimulus–response relationships. Another reason why decoding
approaches may not capture all information encoded by a neural
response is that responses may encode information by othermeans
than just indicating the most likely stimulus (11, 12). For example,
the knowledge that a particular stimulus is totally unlikely can
provide considerable information that would not be captured by
a decoder extracting the most likely stimulus, even if this decoder
makes all of the proper assumptions about the stimulus–response
relationship (11). In contrast to the decoder, information theory
has the advantages of quantifying all of the knowledge that can be
gained from a response and of taking possible nonlinear stimulus–
response relationships into account.
Here, we used a linear decoder to probe the stimulus–response

relation at different response precisions. Details of the pro-
cedure are described as follows.
General principle. Stimulus decoding analysis is a direct approach to
testhowwellapredeterminedsetofstimulicanbediscriminatedgiven
the set of observed responses. Here we used a linear discriminant
decoder in conjunction with a leave-one-out cross-validation pro-
cedure. Practically, the decoding was done as follows. We randomly
selected eight 1-s chunks from each of the long sounds (Fig. S2) and
used these as eight stimuli for decoding. For each trial and stimulus,
we then repeated the following: (i)Theaverage responses to all other
seven stimuli were computed across all repeats of the respective
stimuli. (ii) For the current stimulus the mean response was com-
puted by averaging across all trials, excluding the current “test” trial.
(iii) The Euclidean distance (over time points) was computed be-
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tween the response on the test trial and all eight average responses.
The test trial was decoded as that stimulus yielding the minimal
distance to the test response. This procedure was repeated for each
trial of each of the eight stimuli, and the total percentage of correctly
decoded trials and the confusion matrix were determined. It should
be noted that this decoding operation is based only on the likelihood
of the neural response given the stimulus and, therefore, implicitly
assumes that all stimuli have the same prior probability of being
presented, as it actually happens in our experiment by design.
Response definition and temporal precision. Decoding was applied to
the same eight stimulus chunks used for the information analysis
and individual neuron’s responses were sampled at 1-ms resolution
(resulting in a response vector of 250 points). To study the impact
of temporal response precision on decoding, we used a temporal
shuffling procedure. The temporal precision of the response was
manipulated by shuffling (independently across trials and stimuli)
the responses in groups of n neighboring time bins, where the
parameter n indicates the temporal extend of the shuffling. Im-
portantly, this shuffling procedure preserves the original number of
time bins and, hence, the statistical dimension of the data, but
reduces the effective precision at which the response is “read” by
the decoder.
Decoding performance quantification. To quantify the performance of
the decoder, we derived the information provided by the “confu-
sion” matrix of the decoder. The values on a given row s and col-
umn d of the confusion matrix Q(d |s) represent the fraction of
trials on which the presented stimulus swas decoded to be stimulus
d. If decoding is perfect, the values inQ will be one on the diagonal
and zero otherwise. The confusion matrix is of interest not only
because it provides an intuitive picture of the decoding success and
errors, but also because it provides a direct link to information
theory. The information in the confusion matrix is defined by the
following equation:

IðS;DÞ ¼ ∑
d; s

PðsÞQðdjsÞlog2
QðdjsÞ
QðdÞ : [S2]

Information theoretic inequalities ensure that I(S;D) ≤ I(S;R),
with I(S;R) being the direct information estimate (13). It is im-
portant to note that even for an optimal decoder, the extracted
information may be strictly less than the information available in
the response. This inequality comes because the decoding oper-
ation captures only one aspect of the information carried by the
population response, namely the identity of the most likely stim-
ulus. Mutual information [I(S;R)], in contrast, quantifies the
overall knowledge about the stimulus gained with the single-trial
response, including information carried by the absence of a re-
sponse in a particular time window, or by providing evidence
about the relative likelihood of different stimuli (14). As a con-
sequence, methods of (linear) decoding can provide considerable

insight about the stimulus–response relationship but may fall
short in capturing all of the knowledge that can be gained by
observing a neural response.

Characterization of Neural Precision by Peristimulus Time Histogram
(PSTH) AutocorrelationWidth.By followingDesbordes et al. (15), the
temporal precision of a neuron’s response can be measured by
using the width of the central peak in the temporal autocorrelo-
gram of the trial averaged PSTH. Under assumptions described in
ref. 15, this analysis provides a goodmeasure of the width of typical
peaks in the neuron’s response.We here computed thismeasure by
first calculating the temporal autocorrelation of the trial averaged
response and defined the response precision as the half-width at
half-height (HWHH) of the central peak of the autocorrelogram.

SI Results
Stimulus Decoding Versus Direct Information Estimates. Several
previous analyses on the time scales of stimulus representations
were based on decoding techniques. By making specific assump-
tions, such as the linear separability of the responses to different
stimuli, these methods reduce the statistical complexity and can
yield reliable results also when only small amounts of experimental
data are available. However, even for optimal well constructed
decoders, the extracted information may be strictly less than the
total information available in the response (11), because the de-
coding operation captures only one aspect of the response: the
identity of the most likely stimulus. Direct estimates of mutual
information [I(S;R)], in contrast, quantify the overall knowledge
about the stimulus gained from a single-trial response including,
for example, information carried by the amount of certainty with
which the most likely stimulus was predicted, or by providing evi-
dence about which are the less likely stimuli given the neural re-
sponse. As a consequence, decodingmethodsmight underestimate
the contribution of precise spike timing.
Indeed, when using a linear decoder to probe the stimulus–re-

sponse relation at different effective precisions,we founda reduced
information loss compared with the direct information estimates
reported above. Fig. S3 directly compares the normalized infor-
mation values obtained with the direct estimate from the responses
to random chords (as in Fig. 1E) to the information extracted from
the linear decoder (Eq. S2). For all temporal precisions, the in-
formation loss suggested by the decoder was smaller than that ob-
tained from the direct information estimate, with the difference
between the two methods amounting up to 60% at 48 ms effective
precision. This result shows that the information carried by pre-
cisely timed spikes is better revealed when considering the full
dependency between stimulus and response and might be under-
estimated by decoding approaches.
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Fig. S1. Responses of example neurons to random chords (A) and natural sounds (B). (Left) Spike times on individual repeats of the same stimulus together
with the trial-averaged response (upper trace). (Right) The stimulus information obtained at different effective temporal precisions (Upper) and the response
autocorrelation (Lower).
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Fig. S2. Details of the temporal shuffling procedure and the stimulus definition. (A) Temporal shuffling procedure to reduce the effective response precision.
Spikes were shuffled (independently across trials and stimuli) across N neighboring time bins. In particular, we shuffled spikes in neighboring bins (doubling the
effective resolution, n = 2), in triplets (increasing resolution by a factor of three, n = 3) or all six spikes in the pattern (increasing resolution by a factor of six, n =
6). Boxes correspond to time bins (here, Δt = 2 ms). (B) Stimulus definition for information calculation. Stimuli were eight sections (black traces) randomly
chosen from a long sound sequence (gray trace). For the quantification of spike patterns, each section was divided into nonoverlapping time windows Ti
consisting of n = 6 time bins (Δt = 1, 2, 4, or 8 ms). Mutual information was calculated between responses (spike patterns), and these eight stimuli separately for
each time window Ti. Information values were averaged over all subsequent time windows to provide the information conveyed by the responses for dis-
criminating the eight different sound sections. To ensure the independence of our results from the eight stimulus sections used to calculate the information
values, we repeated the same procedure by using 50 sets of randomly selected sections and averaged the information values.
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Fig. S3. Comparison of direct information estimates and those derived from stimulus decoding. The figure displays the normalized information values derived
from direct estimates of the stimulus information (black, same as in Fig. 1E) and from the confusion matrix of a linear decoder (red). It demonstrates that in this
situation, a linear decoding method reveals a smaller drop in stimulus information with progressively coarser effective temporal precision than the direct
method. For each neuron, information was normalized (100%) to the value at 1-ms precision. Boxplots indicate the median and 25th–75th percentile across
neurons.
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