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SI Text

We consider here the model where both populations are repre-
sented by branching processes and show how to derive Eq. 4 in
the paper. The standard theory for these multitype branching
processes can be found in the book by Mode (1) as well as
partially in refs. 2 and 3.

Let p((j k) denote the probability for one wild-type cancer
stem cell to give birth to j wild-type cancer stem cells and k
drug-resistant cancer stem cells. Let p®(j.k) denote the same
probability when the cancer stem cell is drug resistant.

Then the only values for which p@(j k) are nonzero are the
following: p(2,0) = (1 —u)(1 —a —b), pM(1,1) = u(l —a —b),
pY10) = (1-u/2)a,  pM(0.1) = (ua)/2,  p(0.0) =b;
pP(02) =(1-a-b), p?(0,1) =a, p?(0,0) =b. Let D = 0.

Let f(V(s;,5,) and £ (s;.5,) be the probability generating func-
tions of these distributions. Thus

f(l)(sl,sz) (1-u)(1—a—>b)s? +u(l —a—b)s;s,
u ua
+ (1 —E)QSI +752 +b,
f®(sy,8,) = (1 —a—b)s3 +as, +b. [S1]

Let Z,(t) and Z,(¢) be the number of cancer stem cells at time
t, which are wild type and drug resistant, respectively. Note that
these are both random variables now. Let F(V)(s,s,;¢) be the
probability generating function of the total number of cancer
stem cells (both types) at time ¢, for the process that was started
at time 0 by one wild-type cancer stem cell, that is

ZP 0 =j.Z,(t) =

Z5(0)

Sl,Sz,

KZ,(0) = 1

= 0)ssk. [S2]

Similarly, let F®)(s,,5,;¢) be the probability generating func-
tion of the total number of cancer stem cells (both types) at time
t, for the process that was started at time 0 by one drug-resistant
cancer stem cell. Note that because we do not consider backward
mutations, F®) (s, ,s,;¢) is not a function of s; and is given by
ZP k|Z1(0) = 0,Z,(0) = 1)s5.

slss23 *OZZ( )

[S3]
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By Eq. S2 in ref. 2, page 225, we have that the two probability
generating functions satisfy the following system:

F(s),55:8) = e7s

/ Sl 823t

F@(sy;0) = e lts, + / FOO,F? (sy;¢ —y))Ledy.  [S4]

—y).F®(sy;t —y))Le " dy,

These equations can be differentiated to yield the following
system (see, e.g., ref. 3, pages 70 and 88):

(1)
"”;t — _LF0) £ Lf(FO) )Y,
)
dZt = —LF® 4 LfOFD FQ), [S5]

Thus, substituting Eq. S1 into Eq. S5, we obtain the following
system:

(1)

ar :L(l_u)(l_a_b)(FU))z_L(l-a+“—”)p<l>

dt 2
+Lu(1—a—-b)FOF® 4 L% F +Lb,

F(2)

ddt =L(1l-a-b)(F®)? -L(1-a)F® +Lb. [S6]

Note that we have already solved the second equation in Eq. 6;
it is Eq. 16 in the main paper, with D = Lb,

Fo(sy) = 82~ DO/MYEPr — (52 = DJL)
(52— 1)e=P¥ — (s, ~D/L)

[S7]

All that is left is to substitute Eq. 7 into the first equation of
Eq. 6 and solve for F(!). The probability to develop resistance
by the time the tumor is detected is then given by Py =
1 —F(1,0; T), where T is the time of detection of the tumor.
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