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Predictive modeling with the Weka data mining platform 

Weka software (version 3.7.0) [1] was primarily used for implementing machine learning 

functionality onto the datasets that had been prior-filtered for completeness. A number of 

different filters and classifiers were initially tested and utilized to implement the feature 

selection and to gauge the performance of the scoring metrics on the dataset. The purpose of 

the filters was to create a manageable sized dataset that would be free of the biases that could 

be present from the first analysis of the data. Examples of these biases include that when 

deciding the cutoff values for the subjects who would be considered either ‘Risk’ or ‘No 

Risk’, the data was sorted based on the numerical IMT values. This sorting could create 

biases that possibly result in non-random selection of the patients in the different folds of the 

cross-validation. The flow chart of the steps of the overall data mining process is provided in 

Figure S3. The following sections describe these steps in more detail. 

 

Selecting informative genetic and conventional risk factors 

The first step was to filter out uninformative features (referred to as ‘attributes’ in Weka) that 

had originally been kept for reference reasons. Examples of such uninformative attributes are 

identifier codes for different years when the clinical and diagnostics characteristics were 

conducted. When splitting the dataset into the folds that are required for cross-validation, the 

data is stratified and it conserves the proportion of cases to controls. In order to assure that a 

representative cross-section of the study cohort was included in each fold, the data was first 

randomized. The next step was to perform an information gain attribute selection on the 

dataset. This information gain filter is a form of supervised learning and is an option in 

‘attribute selection’ filter in Weka, in which those features that have maximal entropy are 

ranked higher than those features with lower entropy. During this step, the top forty features 

in terms of the entropy metric were chosen and the remaining features were deleted.  
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A further attribute selection was then performed to implement a wrapper-based feature 

selection. This used the wrapper ‘attribute selection’ filter in Weka, performed around the 

particular classifier that was being tested, i.e. Naïve Bayes, utilizing a backwards selection 

method. This attribute selection used a 5-fold cross validation to select the optimal subset of 

variables. During this cross-validation, the dataset was stratified to split it into five sets of 

equal size, maintaining the original proportion of cases to controls. The learning machine was 

trained on four of the five folds and then tested on the remaining fold. This was done until 

each fold had been treated as the test fold exactly once. The results were then averaged over 

the five folds to determine the final results. When applying the wrapper, a backwards 

selection search method used a Best First search algorithm with a search termination of five. 

The search termination allows the backtracking of up to five steps to search for better scoring 

attribute subsets. The Best First search algorithm searches the samples space for attribute sets 

by the means of a greedy hill-climb algorithm which starts with a random solution and 

gradually makes minor changes to this solution until an optimal one has been located.  

 

Evaluating the performance of predictive classifier models 

After the optimal subset of attributes had been selected, the next step was to implement the 

classifier and to test its ability to predict the classes based on the attribute subset that was 

selected using the two-step feature selection. This was done using both cross-validation in the 

original dataset and a training/test set implementation for the independent validation dataset. 

The first experiment was conducted by the use of a 10-fold cross-validation which 

automatically split the dataset into ten folds. These folds were stratified in order to conserve 

the proportion of cases to controls that were present in the original dataset. The classifier was 

trained on nine of the folds and then tested on the remaining fold. This was done until each 

fold had been treated as the test fold. The values of the scoring metrics for each of the 10 

folds were then averaged together to compute the final accuracy values for the classifier. In 

the case of the training/test set implementation, the independent dataset was created as 

described in the Supporting Figure S1. The classifier was trained on the original training set 

(the same set that had been prior split up into the 10 folds), and then used to classify the 

subjects in the newly created independent subject set as the validation set.  
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Our aim here was to evaluate the prediction capability of the panels of SNPs identified using 

the feature selection strategy. Our model building and evaluation process incorporated cross-

validation both in the selection of a modest subset of consistently predictive genetic variants, 

through feature selection, as well as in the evaluation of their prediction accuracy, as 

compared to the significant SNPs (Figure S3). Cross-validation was necessary here to avoid 

selection bias and reporting of large number of variants that are over-fitted to the training 

data only. Having too many features in the prediction model may lead to negative result as it 

increases the probability of genetic masking between the individual SNPs. The cross-

validation run for the classifier performance helped to demonstrate, that for each of the folds, 

the same set of SNPs was performing as expected on different folds. The final evaluation of 

the panels of SNPs was done using an independent validation set, which can best assess the 

generalization capability of both the model structure and of the variants selected. Testing on 

an independent dataset also helps to resolve any biases there may exist in the original k-fold 

cross-validation because of the fact that the folds are far from independent of one another. 

 

A 5-fold rather than a 10-fold cross-validation was used for the feature selection as a result of 

the algorithm being designed to be scalable also for complete genome scans. These scans will 

contain over 500,000 attributes, producing 2𝑛  different feature subsets, where n is the number 

of features in the dataset, which can potentially be evaluated by the search algorithm. This 

large size yields computational problems and in an attempt to alleviate the number of runs it 

was decided that it would be best to limit the number of folds that were used during the 

feature selection stage. The evaluation of the performance of the classifier on the selected 

feature subset incorporated a 10-fold cross-validation, as the 10-fold is only run on a single 

feature subset creating a practical solution that maximizes the independence of the different 

folds. A similar procedure has been used in previous works with high computational 

complexity [2]. 

 

Initial comparison among representative prediction models 

To decide which classifier to use, various classifiers were examined for their prediction 

potential when adapted to the two-step feature selection. This two-step algorithm first applied 

an information gain filter to rank and select the top 40 features, followed by a wrapper-based 

feature selection where the attributes are selected based on the features that maximized their 
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AUC score for the particular classifier being used. The classifiers that were tested were based 

on the results of similar studies. This resulted in the examination of four different classifiers, 

representing the usual range of classifiers that are implemented for similar experiments. 

These were Naïve Bayes, Bayes Nets, Support Vector Machines (SMO) and Random Forest. 

  

Each of these classifiers was tested on their ability to work efficiently when implemented 

with the two-step feature selection method. In deciding which classifier would be optimal for 

the SNP-based prediction of the IMT risk classes, each of these classifiers was applied to 

different risk classes in order to gauge its performance both in terms of AUC and its 

scalability. While certain classifiers may perform well on smaller sets, if they fail to scale to 

larger sets it is likely that the accuracy can be due to severe overfitting. We used the 5% and 

the 15% risk classes to test the learning machines ability to meet to two prior conditions. 

 

5% Risk Class  15% Risk Class 

Classifier Used ROC Area Classifier Used ROC Area 

Naive Bayes 0.879 Naive Bayes 0.802 

Bayes Net 0.880 Bayes Net 0.786 

 SMO 0.739 SMO 0.740 

Random Forest 0.733 Random Forest 0.750 

   

 

It was considered important that the chosen classifier has an AUC performance of greater 

than or equal to 0.8 in order to represent an accurate predictor [3]. Based on this threshold, 

two choices remained based on the above results in the 5% risk class: Naïve Bayes and Bayes 

Net. While the AUC score of the Bayes Net narrowly outperformed the Naïve Bayes 

classifier in the 5% set, its rapid decrease in the 15% set led us to deduce that a more stable 

classifier would be needed for the various risk classes. The Naïve Bayes classifier scaled as 

expected throughout the 5-25% classes, while still allowing a quick and efficient means of 

making the class predictions. While we chose the Naïve Bayes classifier as the final means of 

class prediction, many other alternative statistical or predictive models could be used instead. 
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Predicting IMT classes using genetic and conventional risk factors 

The conventional Naïve Bayes classifier traditionally constructs the prediction model based 

solely on categorical data through the application of Bayes Rule to compute the probability of 

a given class, given the observed values for the attributes that are being used for the 

prediction. Therefore, the conventional Naïve Bayes implementation can be used when the 

categorical SNP attributes were used to predict the IMT-based risk classes. In Weka, the 

Naïve Bayes classifier is implemented as follows [4,5]: 

Given an attribute X with attribute value vectors  𝑥1,…𝑥𝑛  and an outcome class of 𝐶 that 

has individual class labels represented by 𝑐, the Naïve Bayes classifier assumes that 𝑥1, … , 𝑥𝑛  

are conditionally independent of one another. The Bayes’ theorem implies that: 

𝑃 𝐶 = 𝑐 𝑋 = 𝑥 =
𝑃 𝑋 = 𝑥 𝐶 = 𝑐 𝑃(𝐶 = 𝑐)

𝑃(𝑋 = 𝑥)
, 

where 𝑃 𝐶 = 𝑐  can be estimated based on the training data supplied. Since it is assumed that 

the attributes are conditionally independent, it can be shown that 

𝑃 𝐶 = 𝑐 𝑋 = 𝑥 ~𝑃 𝐶  𝑃 𝑋𝑖 = 𝑥𝑖 𝐶 = 𝑐 

𝑖

. 

The classifier used for the SNP data did not implement any secondary options such as kernel 

estimators or supervised discretization of numerical variables. In addition to the categorical 

SNP attributes, we also used numerical conventional risk factors, such as BMI or blood 

pressure. This created the challenge of combining both discrete and numeric attributes to 

build the classifier. This is not an intrinsic task of the Naïve Bayes predictor but its capability 

is automatically built into the Weka implementation which constructs the classifier by first 

assuming that all numeric attributes follow a Gaussian probability distribution and it then 

calculates the mean and standard deviation for each feature, which are used for the estimation 

of the class.  

 

Briefly, Weka calculates the Gaussian probability density function using the known mean and 

standard deviation, which in turn is used to determine the risk class. This is done for all of the 

classes and the numeric attributes that are present in the dataset. If missing values are present 

for any of the confounding variables, Weka then bases the mean and the standard deviation 

only on the values that are present. It approximates 𝑃(𝐶|𝑋) where 𝐶 is the class variable and 

𝑋 are the numerical attribute variables through the following [5,6].  

 



 6 

For each of the class values of 𝑐 it can be assumed that the conditional probability of 𝑋 given 

𝐶 is represented by:  

𝑃 𝑋 = 𝑥 𝐶 = 𝑐 = 𝑔 𝑥: 𝜇𝑐 , 𝜎𝑐 , 

where 𝑔 is the Gaussian probability density function: 

 𝑔 𝑥: 𝜇𝑐 , 𝜎𝑐 =  
1

 2𝜋𝜎
𝑒
 𝑥−𝜇 2

2𝜎2 , 

with mean 𝜇 and variance 𝜎. The mean 𝜇𝑐and variance 𝜎𝑐  are estimated from the values of 𝑋 

in the instances for which 𝐶 = 𝑐 simply through unbiased estimates 

𝜇𝑐 =  
1

#𝑐
 𝑥𝑖

𝑛

𝑖=1,𝑐𝑖=𝑐

,  

𝜎𝑐
2 =  

1

#𝑐 − 1
 (𝑥𝑖

2 − 𝜇𝑐
2

𝑛

𝑖=1,𝑐𝑖=𝑐

),  

where #𝑐 is the number of instances in the dataset where 𝐶 = 𝑐. 

 

For further literature on how to calculate pseudo-Bayes estimates in discrete datasets, 

interested readers are referred to [7]. 
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