Supporting text Sebastian Okser et al.

Genetic Variants and Their Interactions in the Prediction of Increased Pre-clinical
Carotid Atherosclerosis: The Cardiovascular Risk in Young Finns Study

Predictive modeling with the Weka data mining platform

Weka software (version 3.7.0) [1] was primarily used for implementing machine learning
functionality onto the datasets that had been prior-filtered for completeness. A number of
different filters and classifiers were initially tested and utilized to implement the feature
selection and to gauge the performance of the scoring metrics on the dataset. The purpose of
the filters was to create a manageable sized dataset that would be free of the biases that could
be present from the first analysis of the data. Examples of these biases include that when
deciding the cutoff values for the subjects who would be considered either ‘Risk” or ‘No
Risk’, the data was sorted based on the numerical IMT values. This sorting could create
biases that possibly result in non-random selection of the patients in the different folds of the
cross-validation. The flow chart of the steps of the overall data mining process is provided in
Figure S3. The following sections describe these steps in more detail.

Selecting informative genetic and conventional risk factors

The first step was to filter out uninformative features (referred to as ‘attributes’ in Weka) that
had originally been kept for reference reasons. Examples of such uninformative attributes are
identifier codes for different years when the clinical and diagnostics characteristics were
conducted. When splitting the dataset into the folds that are required for cross-validation, the
data is stratified and it conserves the proportion of cases to controls. In order to assure that a
representative cross-section of the study cohort was included in each fold, the data was first
randomized. The next step was to perform an information gain attribute selection on the
dataset. This information gain filter is a form of supervised learning and is an option in
‘attribute selection’ filter in Weka, in which those features that have maximal entropy are
ranked higher than those features with lower entropy. During this step, the top forty features

in terms of the entropy metric were chosen and the remaining features were deleted.

A further attribute selection was then performed to implement a wrapper-based feature
selection. This used the wrapper ‘attribute selection’ filter in Weka, performed around the
particular classifier that was being tested, i.e. Naive Bayes, utilizing a backwards selection
method. This attribute selection used a 5-fold cross validation to select the optimal subset of
variables. During this cross-validation, the dataset was stratified to split it into five sets of
equal size, maintaining the original proportion of cases to controls. The learning machine was
trained on four of the five folds and then tested on the remaining fold. This was done until
each fold had been treated as the test fold exactly once. The results were then averaged over
the five folds to determine the final results. When applying the wrapper, a backwards
selection search method used a Best First search algorithm with a search termination of five.
The search termination allows the backtracking of up to five steps to search for better scoring
attribute subsets. The Best First search algorithm searches the samples space for attribute sets
by the means of a greedy hill-climb algorithm which starts with a random solution and

gradually makes minor changes to this solution until an optimal one has been located.

Evaluating the performance of predictive classifier models

After the optimal subset of attributes had been selected, the next step was to implement the
classifier and to test its ability to predict the classes based on the attribute subset that was
selected using the two-step feature selection. This was done using both cross-validation in the
original dataset and a training/test set implementation for the independent validation dataset.
The first experiment was conducted by the use of a 10-fold cross-validation which
automatically split the dataset into ten folds. These folds were stratified in order to conserve
the proportion of cases to controls that were present in the original dataset. The classifier was
trained on nine of the folds and then tested on the remaining fold. This was done until each
fold had been treated as the test fold. The values of the scoring metrics for each of the 10
folds were then averaged together to compute the final accuracy values for the classifier. In
the case of the training/test set implementation, the independent dataset was created as
described in the Supporting Figure S1. The classifier was trained on the original training set
(the same set that had been prior split up into the 10 folds), and then used to classify the

subjects in the newly created independent subject set as the validation set.

Our aim here was to evaluate the prediction capability of the panels of SNPs identified using
the feature selection strategy. Our model building and evaluation process incorporated cross-
validation both in the selection of a modest subset of consistently predictive genetic variants,
through feature selection, as well as in the evaluation of their prediction accuracy, as
compared to the significant SNPs (Figure S3). Cross-validation was necessary here to avoid
selection bias and reporting of large number of variants that are over-fitted to the training
data only. Having too many features in the prediction model may lead to negative result as it
increases the probability of genetic masking between the individual SNPs. The cross-
validation run for the classifier performance helped to demonstrate, that for each of the folds,
the same set of SNPs was performing as expected on different folds. The final evaluation of
the panels of SNPs was done using an independent validation set, which can best assess the
generalization capability of both the model structure and of the variants selected. Testing on
an independent dataset also helps to resolve any biases there may exist in the original k-fold

cross-validation because of the fact that the folds are far from independent of one another.

A 5-fold rather than a 10-fold cross-validation was used for the feature selection as a result of
the algorithm being designed to be scalable also for complete genome scans. These scans will
contain over 500,000 attributes, producing 2™ different feature subsets, where n is the number
of features in the dataset, which can potentially be evaluated by the search algorithm. This
large size yields computational problems and in an attempt to alleviate the number of runs it
was decided that it would be best to limit the number of folds that were used during the
feature selection stage. The evaluation of the performance of the classifier on the selected
feature subset incorporated a 10-fold cross-validation, as the 10-fold is only run on a single
feature subset creating a practical solution that maximizes the independence of the different
folds. A similar procedure has been used in previous works with high computational

complexity [2].

Initial comparison among representative prediction models

To decide which classifier to use, various classifiers were examined for their prediction
potential when adapted to the two-step feature selection. This two-step algorithm first applied
an information gain filter to rank and select the top 40 features, followed by a wrapper-based
feature selection where the attributes are selected based on the features that maximized their

AUC score for the particular classifier being used. The classifiers that were tested were based
on the results of similar studies. This resulted in the examination of four different classifiers,
representing the usual range of classifiers that are implemented for similar experiments.
These were Naive Bayes, Bayes Nets, Support Vector Machines (SMO) and Random Forest.

Each of these classifiers was tested on their ability to work efficiently when implemented
with the two-step feature selection method. In deciding which classifier would be optimal for
the SNP-based prediction of the IMT risk classes, each of these classifiers was applied to
different risk classes in order to gauge its performance both in terms of AUC and its
scalability. While certain classifiers may perform well on smaller sets, if they fail to scale to
larger sets it is likely that the accuracy can be due to severe overfitting. We used the 5% and
the 15% risk classes to test the learning machines ability to meet to two prior conditions.

5% Risk Class 15% Risk Class

Classifier Used ROC Area | Classifier Used ROC Area
Naive Bayes 0.879 Naive Bayes 0.802
Bayes Net 0.880 Bayes Net 0.786
SMO 0.739 SMO 0.740
Random Forest 0.733 Random Forest 0.750

It was considered important that the chosen classifier has an AUC performance of greater
than or equal to 0.8 in order to represent an accurate predictor [3]. Based on this threshold,
two choices remained based on the above results in the 5% risk class: Naive Bayes and Bayes
Net. While the AUC score of the Bayes Net narrowly outperformed the Naive Bayes
classifier in the 5% set, its rapid decrease in the 15% set led us to deduce that a more stable
classifier would be needed for the various risk classes. The Naive Bayes classifier scaled as
expected throughout the 5-25% classes, while still allowing a quick and efficient means of
making the class predictions. While we chose the Naive Bayes classifier as the final means of

class prediction, many other alternative statistical or predictive models could be used instead.

Predicting IMT classes using genetic and conventional risk factors

The conventional Naive Bayes classifier traditionally constructs the prediction model based
solely on categorical data through the application of Bayes Rule to compute the probability of
a given class, given the observed values for the attributes that are being used for the
prediction. Therefore, the conventional Naive Bayes implementation can be used when the
categorical SNP attributes were used to predict the IMT-based risk classes. In Weka, the

Naive Bayes classifier is implemented as follows [4,5]:

Given an attribute X with attribute value vectors (x, ... x,,) and an outcome class of C that
has individual class labels represented by c, the Naive Bayes classifier assumes that x4, ..., x;,

are conditionally independent of one another. The Bayes’ theorem implies that:

where P(C = c¢) can be estimated based on the training data supplied. Since it is assumed that

the attributes are conditionally independent, it can be shown that

P(C = c|X = x)~P(C) HP(Xi —x|C =0).

The classifier used for the SNP data did not implement any secondary options such as kernel
estimators or supervised discretization of numerical variables. In addition to the categorical
SNP attributes, we also used numerical conventional risk factors, such as BMI or blood
pressure. This created the challenge of combining both discrete and numeric attributes to
build the classifier. This is not an intrinsic task of the Naive Bayes predictor but its capability
is automatically built into the Weka implementation which constructs the classifier by first
assuming that all numeric attributes follow a Gaussian probability distribution and it then
calculates the mean and standard deviation for each feature, which are used for the estimation

of the class.

Briefly, Weka calculates the Gaussian probability density function using the known mean and
standard deviation, which in turn is used to determine the risk class. This is done for all of the
classes and the numeric attributes that are present in the dataset. If missing values are present
for any of the confounding variables, Weka then bases the mean and the standard deviation
only on the values that are present. It approximates P(C|X) where C is the class variable and

X are the numerical attribute variables through the following [5,6].

For each of the class values of c it can be assumed that the conditional probability of X given
C is represented by:

P(X =x|C =c) = g(x: pe, 0c),
where g is the Gaussian probability density function:

(x—p)?
e 20°

g(x:pe,0.) =
2no

with mean u and variance o. The mean u.and variance o, are estimated from the values of X

in the instances for which € = ¢ simply through unbiased estimates

1
uc:#_c Z Xi)

i=1,c;=c
1 n
2 § 2 2
gf = x5 —
c #C _ 1 (L l’l’C)’
i=1,c;i=c

where #c is the number of instances in the dataset where C = c.

For further literature on how to calculate pseudo-Bayes estimates in discrete datasets,

interested readers are referred to [7].

References

1.

Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The
WEKA Data Mining Software: An Update; SIGKDD Explorations, Volume 11, Issue
1: 10-18.

Saeys Y, Degroeve S, Aeyels D, Rouzé P, Van de Peer, Y (2004) Feature selection for
splice site prediction: A new method using EDA-based feature ranking. BMC
Bioinformatics 5:64-75.

Kraft P, Wacholder S, Cornelis MC, Hu FB, Hayes RB, et al. (2009) Beyond odds
ratios: communicating disease risk based on genetic profiles. Perspective. Nat Rev
Genet 10: 264-269.

Long N, Gianola D, Rosa GJ, Weigel KA, Avendafio S (2009) Comparison of
classification methods for detecting associations between SNPs and chick mortality.
Genet Sel Evol 41: 18.

Witten IH, Frank E (2005) Data Mining: Practical Machine Learning Tools and
Techniques, 2nd edition. San Francisco: Morgan Kaufmann Publishers.

John G, Langley P (1995) Estimating continuous distributions in Bayesian classifiers.

Proceedings of the Eleventh Conference of Uncertainty in Artificial Intelligence: 338-
345.

Bishop YM, Fienberg SE, Holland PW (1975) Discrete Multivariate Analysis: Theory

and Applications, Cambridge, Mass., The MIT Press: Chapter 12, pp. 401-434.

