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Supporting Discussion              Sebastian Okser et al. 

Genetic Variants and Their Interactions in the Prediction of Increased Pre-clinical 

Carotid Atherosclerosis: The Cardiovascular Risk in Young Finns Study  

 

Prediction of atherosclerosis risk and progression   

The discovery  of  millions  of  DNA markers  has  made  it  possible  to  identify  genetic  loci  for  

complex quantitative traits that are influenced by multiple genes of small effect size, instead 

of focusing solely on qualitative monogenic disorders using case-control designs [1]. Results 

that are emerging from the GWASs indicate that multiple genes are involved in 

cardiovascular disorders, implicating that their genetic liability is distributed quantitatively 

rather than qualitatively. Although the traditional statistical significance testing procedures 

have  provided  important  biological  insights,  it  has  become  clear  that  many  of  the  true  

associations are detected much lower down on the ranked list of hits, compared to the top hits 

with the most statistical support [2]. Ignoring the SNPs in the ‘gray zone’ is likely to result in 

missing an important proportion of the quantitative variation in heritability [3]. This may 

partly explain the fact that even though the GWASs have turned up dozens of variants 

associated with cardiovascular risk, these have had a disappointingly small contribution to the 

prediction of even clinical CHD outcomes [4-9], not to speak of explaining the pre-clinical 

stages of cardiovascular disease, such as arthrosclerosis risk and progression [10,11]. 

Therefore,  in  contrast  to  using  the  statistical  class  comparison  approaches,  which  aim  to  

determine whether the genetic profiles are different between the given classes of subjects, we 

took here a machine learning-based class prediction approach, with the specific aim to build a 

multivariate  discrimination  function  (or  a  classifier)  [12],  which  can  accurately  predict  the  

risk class of a new subject on the basis of a panel of key variants.  

 

Epistasis interactions between predictive genetic factors 

Most  genes  work  together  and  it  is  therefore  likely  that  the  effects  of  one  gene  on  the  

heritability cannot be revealed without knowing the effects of the other genes [3]. This is an 

example of epistasis,  in which either one gene masks the effect  of another or several  genes 
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work together [13,14]. However, due to unknown interactions with other genetic and/or 

environmental factors, most of the gene-gene interactions are beyond the reach of the 

standard single-SNP statistical tests [15,16]. In the context of GWASs, efforts to find such 

epistatic effects generally require good up-front guesses about the interacting partners [3]. 

The machine learning-based predictive modeling approach provides a natural framework to 

simultaneously handle the hidden interactions among the genetic and other risk factors, since 

it searches for composite sets of both genetic and conventional risk factors that positively 

contribute to the predictive power. Exploring the effects of deleting either individual factors 

or factor pairs from the predictive sets provides a simple yet effective post-processing option 

to detect candidate gene-gene or gene-environment interactions. Our definition of the 

interaction score closely resembles the classic definition of epistasis involving single and 

double-deletion experiments in model organisms [17]. The calculation time of the interaction 

scores among the subsets of most predictive variants is independent of the total number of 

SNPs genotyped, making it possible to exhaustively search and prioritize the most promising 

candidate pairs of variants that could be subsequently studied in more detail using, for 

instance, established statistical models [16,18]. Eventually, functional studies are needed to 

confirm in more detail whether a statistical or predictive interaction also encodes a true 

biological interaction or an epistatic effect between the selected interaction partners [16-18]. 

 

As an example case, we studied here the candidate interaction partners of a particular variant 

in the USF1 gene, which is known to regulate the transcription of a number of different 

cardiovascular-related genes and is well established as a gene associated with familial 

combined hyperlipidemia, a condition increasing the risk for coronary heart disease [19]. In 

particular, the specific variant under study (rs2516839) has recently been associated with the 

presence of several types of atherosclerotic lesions and risk for sudden cardiac death [19]. To 

provide further insights into its potential interaction partners, we explored SNP-SNP 

interactions  in  the  panel  of  variants  highly  predictive  of  the  5%  class  of  extreme  IMT-

progression (Figure 3). In addition to the three variants in the genes FMN2 (rs17672135), 

LIPC (rs1800588), and ALOX5AP (rs17222814), which have already been linked to many 

cardiovascular disease-related phenotypes, such as IMT, CHD and HDL-cholestrol [20-22], 

also a variant in the gene PTPN22 (rs2476601) showed an interaction score higher than that 

expected by the additive effects of individual deletions of the two variants separately (as 
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captured by the interaction score). These two genes, USF1 and PTPN22, are located on 

distinct chromosomal neighborhoods and they participate in biological processes that are 

distinct from each other (Table S4), supporting the diversity of the quantitative disorder also 

at the level of genomic location and biological pathways. In recent case-control studies, the 

same  PTPN22  variant  has  been  associated  with  many  complex  diseases,  such  as  type  1  

diabetes, Crohn's disease, and rheumatoid arthritis [23-25]. Its potential role in the 

progression of pre-clinical atherosclerosis into cardiovascular disease conditions warrants 

further follow-up studies in those subjects that will present with diagnostic symptoms later in 

their lives. 

 

Limitations of the study and future developments 

To reduce the risk of model over-fitting, which can lead to over-optimistic prediction results, 

we used here a stringent two-step feature selection procedure that effectively limits the 

number of either genetic or conventional risk factors that are used in the final prediction 

models, in accordance with our objective of finding a minimal subset of non-redundant 

factors that are the most predictive of the risk classes. This selection procedure also 

highlighted only a subset of the conventional risk factors due to their strong correlation 

structure (Table S3); in particular, while the age of the subjects was found to be a highly 

predictive factor in predicting IMT-levels in 2001 and 2007, it was not considered so 

important when predicting the IMT progression. Therefore, although the actual risk estimates 

and AUC-values observed here are unlikely to extrapolate to other study populations, we 

believe that this limitation did not affect our key finding that already a modest panel of 

selected SNPs can improve the prediction accuracy of the IMT-based risk and progression 

classes beyond that obtained with the conventional risk factors. The predictive accuracy also 

remained high in an independent validation set of subjects within the same population cohort 

(Figure 4). Whether or not similar improvements and genetic variants are also observed in 

populations with different subject characteristics remain to be studied using, for instance, 

meta-analyses, where the prediction models are trained using independent subsets from 

multiple population cohorts with different genetic backgrounds. 
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A more technical limitation of the present evaluation procedure concerns the subject 

classification. In absence of established diagnostic thresholds for the IMT-levels, we simply 

divided the subjects into a continuum of risk classes using quantiles as cut-off points to 

investigate how the selected SNPs and their predictive power were affected by the extreme 

subject selection strategy [1]. Such a selection strategy has previously been shown to increase 

statistical power in single-locus association analyses [26-29], whereas here we combined this 

strategy into a predictive modeling framework to detect panels of SNPs which do not 

necessary pass the level of statistical significance but can still classify subjects with an 

increasing degree of risk of developing atherosclerosis. Our stratified sampling procedure 

results in balanced low- and high-risk subject classes, provided that there are no ties in the 

outcome variables. Since the IMT recordings were made on three digits resolution, some of 

the subjects had exactly the same IMT value. In the 2001 follow-up study, for instance, there 

were only 171 unique IMT values among the 1,027 subjects. Such tie cases at the quantile 

levels were dealt with by including all the subjects with the quantile IMT-value, such as 15% 

or 85%, into the low risk or high risk class, respectively, even if this reduced the prediction 

accuracies to some extent (Figure 4). The categorical nature of the IMT levels makes the 

classification models more appropriate for the IMT prediction than the standard regression 

models. It is likely that novel and more efficient continuous modeling frameworks for the 

categorical SNP and IMT data need to be developed before moving toward the ‘apogee’ of 

the quantitative trait thinking for atherosclerosis [1]. 

 

Although prediction algorithms, such as the naïve Bayes can handle missing SNP data, the 

missing values can have an adverse effect on the overall performance of the predictive model. 

As our objective was to report reliable sets of SNPs that can predict the increasing IMT risk 

classes, we wanted to make sure that neither the prediction accuracies nor the SNPs reported 

were distorted because of the missing values, and therefore the subjects without SNP or IMT 

data were excluded in the current analysis. The IMT distributions were similar between the 

included and excluded subjects both in the 2001 and 2007 follow-up studies (Kolmogorov-

Smirnov test D=0.034 and D=0.040, respectively, both with p>0.4). However, it is possible 

that  some  of  the  informative  variants  were  filtered  out  during  the  initial  selection  phase  in  

which the complete data matrix was constructed (see Figure S1). It is therefore expected that 

even better prediction accuracies, together with novel variants, will be obtained when the 
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same protocol will be applied to an unbiased genome-wide genotyping of SNPs in the same 

individuals. The possibility that many relevant genetic variants were not among the set of the 

108  candidate  SNPs  used  in  the  prediction  studies  here,  may  also  partly  explain  the  rather  

limited overlap between the SNP sets that were found to be most predictive of the 2001 and 

2007 IMT-levels, as well as of its progression from 2001 to 2007 (Tables 2-4). On the other 

hand, the relatively high variability in the most predictive variants across the various IMT 

risk classes, which was also observed within each individual follow-up study (Table S1), is 

likely to reflect the genotype-specificity of the quantitative IMT phenotype. 

 

Clinical significance and conclusion 

Highly predictive genetic profiles could offer opportunities for many clinical and public 

health applications, ranging from guiding population-based screening procedures to the 

guidance of clinical decision making in terms of diagnostic or prognostic tests [30]. For 

instance, the finding that the genetic variants most predictive of sub-clinical atherosclerosis 

risk are mostly different from those of clinically manifesting CHD outcomes likely reflects 

the genetic heterogeneity of the disease pathogenesis and suggests that multiple panels of 

genetic markers may be needed to characterize its different development stages. While 

assessing that the genetic markers are predictive of the early disease risk is an essential first 

step in translating genetic profiles into medical and public health applications, it is still far 

from the eventual assessment of the net benefit of prevention strategies guided by genetic 

profiles. Once the reproducibility of the candidate markers has also been confirmed on other 

similar materials, one may consider proceeding to the next phases of biomarker development, 

involving, for instance, more targeted clinical immunoassays and evaluation studies in large 

and well-controlled study populations. 

In conclusion, we have demonstrated, for the first time in a population-based follow-up study, 

that genetic variants, which do not necessarily meet the level of statistical significance, can 

contain added information according to which it is possible to classify subjects with different 

degrees of risk of developing atherosclerosis. The predictive modeling framework facilitates 

the usability of genetic information by discovering informative panels of variants, along with 

conventional risk factors, which may prove to have clinical utility in the early detection and 

management of sub-clinical atherosclerosis and other quantitative disorders. 
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