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Appendix

Derivation of the equations of Section 1 in the main text

Using the method of characteristics [1, 2] we get from equations (1) and (2) in the main text

n0(a, t) = n0(0, t− a)e−
∫ a
0 β0(a

′)da′e−
∫ a
0 µ0(a

′)da′ for a < t (1)

n0(a, t) = n0(a− t, 0)e−
∫ a

a−t
β0(a

′)da′e−
∫ a
0 µ0(a

′)da′ for a ≥ t (2)

where Θ(x) is the step function: Θ(x) = 1 for x ≥ 0 Θ(x) = 0 for x ≤ 0. Using the initial condition
n0(a, 0) = δ(a) one gets

n0(a, t) = δ(a− t)S0(a)Q0(t) (3)

Therefore, the total number of cells in division class zero at time t is

N0(t) =
∫ ∞

0

n0(a′, t)da′ = Q0(t)S0(t) (4)

As expected, the total number of cells in the 0 division class at time t, N0(t), is simply the number of
cells that have not divided or died by that time.

Iteratively, one gets for the number of cells of age a that have undergone one division by time t,
n1(a, t)

n1(a, t) = Q1(a)S1(a)n1(0, t− a) = 2Q1(a)S1(a)
∫ ∞

0

β0(a′)n0(a′, t− a)da′ for t ≥ a (5)

and zero for t < a, where we have made use of equation (2). Using equation (3) and the fact that
Pk(t) = βk(t)Qk(t), we get

n0(a, t) = δ(a− t)S0(a)Q0(a) (6)

Therefore, the total number of cells in division class zero at time t is

N0(t) =
∫ ∞

0

n0(a′, t)da′ = Q0(t)S0(t) (7)

As expected, the total number of cells in the 0 division class at time t, N0(t), is simply the number of
cells that have not divided or died by that time.

Iteratively, one gets for the number of cells of age a that have undergone one division by time t,
n1(a, t)

n1(a, t) = Q1(a)S1(a)n1(0, t− a) = 2Q1(a)S1(a)
∫ ∞

0

β0(a′)n0(a′, t− a)da′ for t ≥ a (8)

and zero for t < a, where we have made use of equation (2). Using equation (3) and the fact that
Pk(t) = βk(t)Qk(t), we get

n1(a, t) = 2Q1(a)S1(a)P0(t− a)S0(t− a) for t ≥ a (9)

and n1(a, t) = 0 for t < a. Finally, integrating over the age a

N1(t) = 2
∫ t

0

Q1(a)S1(a)P0(t− a)S0(t− a)da = 2
∫ t

0

Q1(t− x)S1(t− x)P0(x)S0(x)dx (10)
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Calculation of the Nk(t)
′s from the branching process theory

The subsequent mean numbers of cell can be calculated in the same manner. Using the fact that
G(1, t|j) = 1 for all j, from Eqns.(15)-(20) in the main text one gets

N2(t) =
∂G2(s, t)

∂s2
|s=1 =

∫ t

0

dτQ0(τ)S0(τ)β2(τ)2
∂G1(s, t− τ |1)

∂s
|s=1 (11)

2
∫ t

0

dτQ0(τ)S0(τ)β0(τ)
∫ t−τ

0

dxQ1(x)S1(x)β1(x)2
∂G0(s, t− τ − x|2)

∂s
|s=1 = (12)

∫ t

0

P0(τ)S0(τ)
∫ t−τ

0

dxP1(x)S1(x)Q2(t− τ − x)S2(t− τ − x) (13)

Making a substitution τ − x = t2 and τ = t1 we get

N2(t) = 22

∫ t

0

dt2

∫ t2

)

dt1P0(t1)S0(t1)P1(t2 − t1)S1(t2 − t1)Q2(t− t2)S2(t− t2) (14)

which is identical to the Equation (7) in the main text for. This process can be continued iteratively.

Approximate population expansion rate

In this section we derive an approximate expression for the population expansion rate in the case with no
cell death and the distributions of the division and death times do not change from division to division,
that is Qk(t) = Q(t) and Sk(t) = S(t) for all k.

From equations (7),(8) in the main text we get

Nk(t) =
∫ t

0

Q(t− tk)S(t− tk)Lk(tk)dtk = (15)

=
∫ t

0

Q(t− tk)S(t− tk)dtk

∫ tk

0

P (tk − tk−1)S(tk − tk−1)Lk−1(tk−1)dtk−1

Making the substitution of variables x = t− (tk − tk−1) we get

Nk(t) = 2
∫ t

0

P (t− x)S(t− x)dx

∫ x

0

Q(x− tk−1)S(x− tk−1)Lk−1(tk−1)dtk−1

= 2
∫ t

0

P (t− x)S(t− x)Nk−1(x)dx for k = 1, 2, ... (16)

Summing equations (16), using Neumann series [8] and adding equation (4) for N0(t), produces an
elegant equation for the total number of cells at time t, N(t) =

∑∞
k=0 Nk(t)

N(t) = Q(t)S(t) + 2
∫ t

0

P (t′)S(t′)N(t− t′)dt′ (17)

This equation is known as the ‘renewal equation’ and arises in the context of the theory of renewal
and branching processes [3–6]. This equation has a simple probabilistic interpretation: the number of
cells at time t is the sum of all the progeny of the cell that has divided at some time during the interval
[0, t]. A deeper connection to the theory of branching processes is provided in the main text and in [7].

Let us look for an asymptotic (i.e., large time t) solution for the integral equation (17), which de-
termines the populations size N(t), in the form N(t) = eαt [5]. Equation (17), with S(t) = 1 as in the
examples, then becomes

N(t) = Q(t) + 2
∫ t

0

P (t− t′)N(t′)dt′ = Q(t) + 2
∫ t

0

P (t′)N(t− t′)dt′ (18)
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Thus, with N(t) = eαt

eαt = Q(t) + 2
∫ t

0

P (t′)eα(t−t′)dt′ (19)

Dividing both sides by eαt, it reduces to

1 = Q(t)e−αt + 2
∫ t

0

P (t′)e−αt′dt′ (20)

In the asymptotic limit of large times, t À 1/α, we get an implicit equation for α

1
2

=
∫ ∞

0

P (t)e−αtdt (21)

For instance, for P (t) = θntn−1/(n− 1)!e−θt, after integration it can be solved to yield α = ( n
√

2− 1)/θ
and N(t) ' exp(αt) for θt À 1. It is also useful to note that

∫∞
0

P (t)e−αtdt is the Laplace transform of
P (t) [5].
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