
Supplementary methods 

 

Preprocessing of the Anatomical Data 

 

Cortex segmentation 

In order to perform a cortex-based data analysis, the gray/white matter boundary was segmented 

using largely automatic segmentation routines [1]. Following the correction of inhomogeneities of 

signal intensity across space, the white/gray matter border was segmented with a region-growing  

method using an analysis of intensity histograms. Morphological operations were used to smooth 

the borders of the segmented data and to separate the left from the right hemisphere. Each 

segmented hemisphere was finally submitted to a “bridge removal” algorithm, which ensures the 

creation of topologically correct mesh representations [1]. The borders of the two resulting 

segmented subvolumes were tessellated to produce a surface reconstruction of the left and right 

hemisphere. With a fast, fully automatic 3D morphing algorithm [2], the resulting meshes were 

transformed into inflated  and flattened  cortex representations. The original folded cortex meshes 

were used as the reference meshes for projecting connecticity and clustering maps  on inflated  

representations.  

 

High-resolution intersubject cortex alignment 

To avoid errors in the intersubject registration a  high-resolution, multiscale cortical alignment [3] 

approach has been used. Since the curvature of the cortex reflects the gyral/sulcal folding pattern of 

the brain, this brain matching approach essentially aligns corresponding gyri and sulci across 

subject’s brains. The implemented high-resolution, multiscale cortex alignment procedure has been 

proven to substantially increase the statistical power and spatial specificity of group analyses [4]. 

Cortex-based alignment operates in several steps. The folded, topologically correct, cortex 

representation of each hemisphere  constitute the input of the alignment procedure. In the first step, 

each folded cortex representation is morphed into a spherical representation , which provides a 

parameterizable surface well suited for across-subject nonrigid alignment. Each vertex on the 

sphere (spherical coordinate system) corresponds to a vertex of the folded cortex (Cartesian 

coordinate system) and vice versa. The curvature information computed in the folded representation 



is preserved as a curvature map on the spherical representation. The curvature information (folding 

pattern) is smoothed along the surface to provide spatially extended gradient information driving 

intercortex alignment minimizing the mean squared differences between the curvature of a source 

and a target sphere. The essential step of the alignment is an iterative procedure following a coarse-

to-fine matching strategy. Alignment starts with highly smoothed curvature maps and progresses to 

only slightly smoothed curvature representations. Starting with a coarse alignment as provided by 

AC-PC or Talairach space, this method ensures that the smoothed curvature of the two cortices 

possess enough overlap for a locally operating gradient-descent procedure to converge without user 

intervention [3]. Visual inspection and a measure of the averaged mean squared curvature 

difference reveal that the alignment of major gyri and sulci can be achieved reliably by this method.  

To define a target brain for alignment.  we employed the  “moving target” approach: a "moving 

target" computed repeatedly during the alignment process as the average curvature across all 

hemispheres at a given alignment stage is then created. The procedure starts with the coarsest 

curvature maps. Then the next finer curvature maps are used and averaged with the obtained 

alignment result of the previous level.  The established correspondence mapping between vertices 

of the cortices is used to align the subjects’ gray matter maps, connectivity and clustering maps.  

 

Correction for multiple comparisons 

In this paper we used a recently implemented approach based on a 3D extension of the 

randomization procedure described in Forman et al. [5] for multiple comparison correction as 

suggested by Goebel et al. in [6]. First, a voxel-level threshold was set at t correspondent to a P < 

0.01, uncorrected. Thresholded maps were then submitted to a whole-brain correction criterion 

based on the estimate of the map’s spatial smoothness and on an iterative procedure (Monte Carlo 

simulation) for estimating cluster-level false-positive rates. After 2000 iterations, the minimum 

cluster size threshold that yielded a cluster-level false-positive rate (alpha) of 5% was applied to the 

statistical maps. The implemented method corrects for multiple cluster tests across space. For each 

simulated image, all “active” clusters in the imaged volume are considered and used to update a 

table reporting the counts of all the clusters above this threshold for each specific size. After a 

suitable number of iterations (e.g., 2000), an alpha value is assigned to each cluster size based on its 

observed relative frequency. From this information the minimum cluster size threshold was 

specified in order to yield a cluster-level false-positive rate of  5%. 

 



Clustering 

Voxelwise clustering: Fuzzy clustering 

Fuzzy clustering attempts to partition a subset of N voxels in C ‘clusters’ of activation [7]. This is 

achieved by comparing the voxel's time courses xn (n=1…N) with each other and assigning them to 

representative time courses, called cluster centroids vc (c=1…C), derived during this process. 

Fuzziness relates to the fact that a voxel is generally not uniquely assigned to one cluster only (hard 

clustering), but instead, the similarity of the voxel time course to each cluster centroid is 

determined. This is expressed by the ‘membership’ ucn of voxel n to cluster c. For each voxel, we 

have: 

(1) 

 

Both centroids vc and memberships ucn are updated in an iterative procedure, elaborated by Bezdek 

et al. [8] and expressed by: 

 

 (2) 

 

where d is a distance measure, determining the similarity between the time course of a voxel and a 

cluster center, and m is the fuzziness coefficient, determining the fuzziness of the procedure and 

used to ‘tune out’ the noise in the data. Theoretically, m lies between 1 (smallest fuzziness) and 

infinity. Its ideal value, however, is problem dependent. Several distance measures d can be 

defined: the Euclidean distance dE and the Mahalanobis distance dM [9] are mostly used and are 

defined as: 

 

dE(xn,vc)= xn−vc
2                                                           (3) 

 

 

 (4) 



 

where Σc represents the covariance matrix of cluster c. The Mahalanobis distance takes into account 

the actual (elliptical) shape of the cluster, i.e., instead of treating all voxels xnequally when 

calculating the distance d to the cluster centre vc, it weights the differences by the range of 

variability, described by Σc, in the direction of the voxel. The Euclidean distance does not take into 

account the shape of the cluster, i.e., it assumes a spherical shape, corresponding to a covariance 

matrix Σc with 1s on the main diagonal and 0s elsewhere. 

The algorithm starts from an initial set of membership values for the data set, expressed in matrix 

form as: 

 

 (5) 

 

with U=1/C and V a matrix of randomly chosen cluster centres. Next, the new cluster centres and 

memberships are computed using Eq. (2). The procedure terminates when successive iterations do 

not further change significantly memberships and cluster centres, as calculated by Eq. (2). This 

procedure corresponds to the minimization of the following objective function: 

 

 (6) 

 

which computes the within-class variance over all clusters σw
2
. In practice, a user-defined threshold 

for change in σw
2
 determines when convergence is reached. Preprocessing includes the 

transformation of each time series into its z-score so as to avoid the clustering algorithm to classify 

the voxels based on signal amplitude, instead of signal shape. Finally, PCA is performed to reduce 

data dimensionality. 

 

 

Voxelwise clustering: optimal number of clusters 



The a priori determination of the fuzziness coefficient and the number of clusters are research topics 

often encountered in the literature [10]. Critically, the “true” number of clusters (i.e. optimal 

number of classes) is usually unknown in Fuzzy clustering.  In this perspective, several cluster-

validity indices have previously been proposed in the literature to appreciate, in an unsupervised 

manner, the optimal number of clusters (for a review see [11]). These indices combined different 

measures of compactness and separation of the clustering in order to ensure that identified clusters 

are compact and well-separated. In our paper, we used two different methods: (i) a cross-validation 

method: the group was split in half, and Jaccard's J (which measures dissimilarity between sample 

sets is obtained by dividing the difference of the sizes of the union and the intersection of two sets 

by the size of the union: 

 

 (7) 

 

was used to compare clustering solutions across the groups. The consistency check was performed 

for between 2 and 10 clusters, the minimum number of clusters that minimize the Jaccard 

dissimilarity index J was choosen. It yielded local maxima of  4-cluster solution. (ii) Using the 

similarity index generated by the SogIca method (see [12]) we choose the minimum number of 

clusters that maximized the combined similarity index for each clustered group. The similarity 

index here employed is the absolute value of the mutual correlation coefficients, in space for the 

spatial sources of estimates or in time for the associated basis time-courses; this measure give a 

combined value of similarity based on spatial and temporal correlation (see [12]). 

 

Group components clusterization  

To obtain a unsupervised  group components clusterization of all the single subject clusters 

generated by the Fuzzy clustering technique we employed the Self organizing group ICA. This 

method [12], originally developed for single subject ICA results can be successfully employed also 

for our data, indeed  with this method  the  clusters of single-subject decompositions are grouped 

according to the combined spatio-temporal information using a self organizing grouping procedure 

that is based on hierarchical cluster analysis [13]. 

 

Voxel distance calculations 



For each ROI we calculated the Euclidean distance between the center of the ROI and every other 

voxel that reached significance in the thresholded Z-score map of positive FC (cluster significance: 

p < 0.05). The Euclidian distance between two voxels P = (px, py, pz) and Q = (qx, qy, qz) was 

computed with the formula √ (px – qx)
2
 + (py – qy)

2
 + (pz – qz)

2
. Then, for each ROI, we computed 

the number of significant voxels at specific distances (from 0 to 140 mm in 4-mm bins) from the 

center of the ROI for each individual. Such ranges thus comprise short- (< 40 mm), medium- (40-80 

mm) and long- (> 80 mm) distance connections.  

 

Matlab Scripting  

 

We created a Maltab® script (version 7.0) for voxel of interest (VOI) analysis. Using the AFNI data 

collection (http://afni.nimh.nih.gov/afni/doc/misc/afni_ttatlas), we saved two atlases, each 

consisting of arrays of 140x172x120 voxels with a 1x1x1 mm
3 

resolution, in .mat format. The first 

was created for Gyrus classification of the normalized brain in the Talairach space (Fig A1) and the 

second for Brodmann Areas (Fig A2). 

 

Fig A1. Gyrus AFNI Template 

 

Three orthogonal slices of the template showing different Gyri in different colors 

 

We then created other atlases forcing the classification of null voxels on the basis of a simple 

algorithm: if the absolute majority (>0.5) of nearest voxels (see Fig A3 bottom left) belong to a 

category we assigned that voxel to it. Using the algorithm iteratively we saved eight more atlases 

(called R1, R2, R3, R4) with an increasing number of classified voxels, but also with some image 

degradation (see Fig A3).  

 



Fig A2. Brodmann Areas AFNI Template 

 

Three orthogonal slices of the template showing different BAs in different colors 

 

 

The inputs of the script were .voi files saved from BrainVoyager QX volume maps. These files 

contained samples of statistically significant voxels, divided into clusters. The script can compare 

these with the selected atlases to produce masked subsamples of the voxels with respect to a 

prespecified VOI.  

 

Fig A3. Brodmann Area AFNI R1 Template 

 

Three orthogonal slices of the template showing different BAs in different colors after near voxel forced classification 

 

 

The Gyrus/BA output of the script produces three graphs using the selected AFNI Gyrus or BA 

atlas: 

The percentage of active voxels divided by the cerebral gyri (see Fig A4 on the left) or BA, the 

procedure stops at a fixed threshold of the total number of voxels (p.e. with a 5% threshold the 



script graphs the gyri that contain a number of voxel greater than 5% of total voxel, see Fig A4)  

The lateralization percent of the gyri or BA that overcome the threshold (see Fig A4 on the right). 

The number of active voxels of the supra-threshold areas as a function of the gyrus or BA and of the 

Talairach coordinate X (left to right, see Fig A5). 
 

 

Fig A4. Gyrus Output 1 & 2 

 

Gyrus counts percent (left) and gyrus lateralization (right) 

 



Fig A5. Gyrus Output 3 

 

Gyrus counts in function of areas and lateralization 

The possible abbreviations of the gyrus output are: PCC = Posterior Cingulate; ACC = Anterior 

Cingulate; SbCG = Subcallosal Gyrus; TTG = Transverse Temporal Gyrus; Unc = Uncus; RG = 

Rectal Gyrus; FG  = Fusiform Gyrus; IOG = Inferior Occipital Gyrus; ITG = Inferior Temporal 

Gyrus; Ins = Insula; PaHG = Parahippocampal Gyrus; LG = Lingual Gyrus; MOG = Middle 

Occipital Gyrus; OrG  = Orbital Gyrus; MTG = Middle Temporal Gyrus; STG = Superior Temporal 

Gyrus; SOG = Superior Occipital Gyrus; IFG = Inferior Frontal Gyrus; Cun = Cuneus; Ang = 

Angular Gyrus; SMG = Supramarginal Gyrus; CinG = Cingulate Gyrus; IPL = Inferior Parietal 

Lobule; Pcun = Precuneus; SPL = Superior Parietal Lobule; MFG = Middle Frontal Gyrus; PaCL = 

Paracentral Lobule; PoCG = Postcentral Gyrus; PrCG = Precentral Gyrus; SFG = Superior Frontal 

Gyrus; MdFG = Medial Frontal Gyrus; vUv = Uvula of Vermis; vPyr = Pyramis of Vermis; vTub = 

Tuber of Vermis; vDec = Declive of Vermis; vCul  = Culmen of Vermis; Cton = Cerebellar Tonsil; 

SLun = Inferior Semi-Lunar Lobule; Fast = Fastigium;  Dent = Dentate; Nod = Nodule; Uvu = 

Uvula; Pyr = Pyramis; Tub = Tuber; Dec = Declive; Cul = Culmen; Clin = Cerebellar Lingual.              

           

The possible abbreviations of the BA are: Hippo = Hippocampus; Amg = Amygdala; HyTH = 

Hypothalamus; SN = Substantia Nigra; CauTa = Caudate Tail; CauBo = Caudate Body; CauHd = 

Caudate Head; VAN = Ventral Anterior Nucleus; VPMN = Ventral Posterior Medial Nucleus; 

VPLN = Ventral Posterior Lateral Nucleus; MDN = Medial Dorsal Nucleus; LDN = Lateral Dorsal 

Nucleus; Pulv = Pulvinar; LPN = Lateral Posterior Nucleus; VLN = Ventral Lateral Nucleus; MN = 

Midline Nucleus; AN = Anterior Nucleus; MaBo = Mammillary Body; Md GP = Medial Globus 

Pallidus; Lt GP = Lateral Globus Pallidus; Put = Putamen; NAcc =Nucleus Accumbens; MGB = 



Medial Geniculum Body; LGB = Lateral Geniculum Body; SuTH = Subthalamic Nucleus; BA 1-47 

= Brodmann Area 1-47. 

 

The Table output of the script is a .txt file with many rows. Every row represents an area that meet 

some criteria: the number of active voxels included in the area surpasses a fixed fraction of total 

activation voxels (default = 5%) and/or the number of active voxels surpasses a fixed fraction of the 

total voxels of that area (default = 25%) and/or the number of active voxels surpasses a fixed 

absolute number of voxels in subcortical areas (default = 125) and the number of active voxels 

surpasses a minimum fixed absolute number of voxels (default = 100). 

Every row contains the following data: name of the gyrus preceded by the left, right or bilateral 

attribute, number of active voxels, lateralization, Brodmann areas of the voxels group in decrescent 

order. The maximum number of Brodmann Areas written in the table is fixed (default = 4) not to 

obscure the output readability. 

 

The script and the atlases (both  in .mat or .img format) are available to anyone for examination or 

use, if interested, please send an email at federico.dagata@unito.it 
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