Supplemental Materials for

Identification of a quality control mechanism for mRNA 5'-end capping

Xinfu Jiao¹, Song Xiang², ChanSeok Oh¹, Charles E. Martin¹, Liang Tong² and Megerditch Kiledjian¹

¹Dept. Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854 ²Dept. Biological Sciences, Columbia University, New York, NY 10027

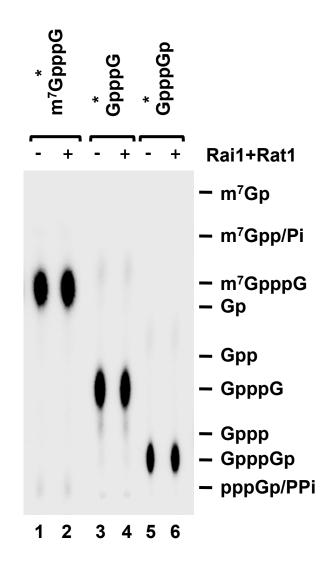
Correspondence information for Megerditch Kiledjian

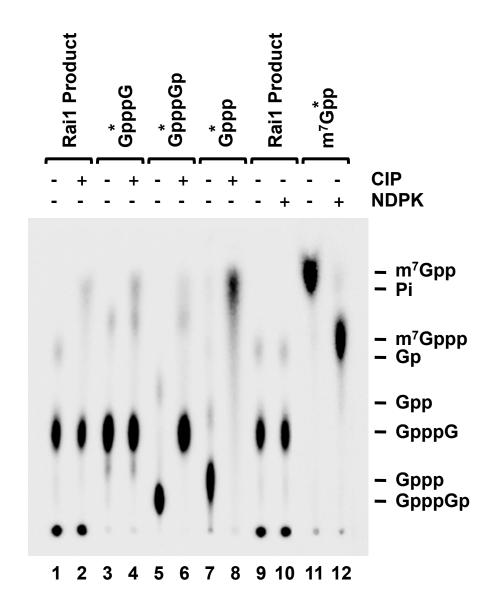
Phone: (732) 445-0796, FAX: (732) 445-0104

Email: kiledjian@biology.rutgers.edu

Supplemental Figure Legends

Fig. S1. Rail decapping activity is restricted to a cap linked to an RNA moiety and does not occur on cap structure. ³²P-labeled m⁷GpppG, GpppG or GpppGp were used as substrates and incubated with or without 50nM recombinant Rail and Rat1 at 37°C for 15 minutes in decapping buffer as indicated. The asterisk denotes the labeled phosphate. Reaction products were resolved by PEI- TLC developed in 0.45 M (NH₄)₂SO₄. Migrations of standard markers were labeled on the right.


Fig. S2. Rail generates GpppN as a reaction product. The products from an unmethylated capped pcP RNA incubated with Rai1 are resistant to calf intestinal alkaline phosphatase (CIP) and nucleoside diphosphate kinase (NDPK). The reaction product of Rai1 hydrolyzed ³²P-labeled unmethylated capped RNA was treated with either 1 unit CIP or NDPK as indicated. Control treatments of GpppG_{OH}, GpppGp, Gpp and m⁷Gpp with CIP or NDPK are as noted. The asterisk denotes the position of the ³²P. Reaction products were resolved on TLC as described in the legend to Fig. S1. Migrations of markers are indicated on the right.


Fig. S3. Rail has comparable pyrophosphohydrolase and decapping endonuclease phosphodiesterase activities. 50nM Rail and Ratl recombinant proteins were incubated with 0.5 pmol 32 P-cap-labeled unmethylated pcP RNA or 32 P 5' end labeled triphosphate uncapped RNA at 37°C in decapping buffer for the indicated times. Hydrolysis products were resolved by PEI-TLC developed in 0.45 M (NH₄)₂SO₄ to resolve the GpppG cap analogue or in 0.75M

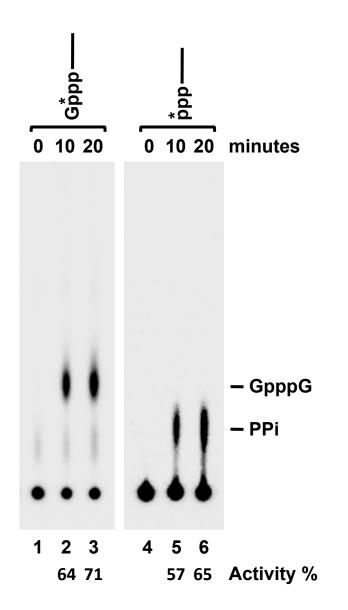
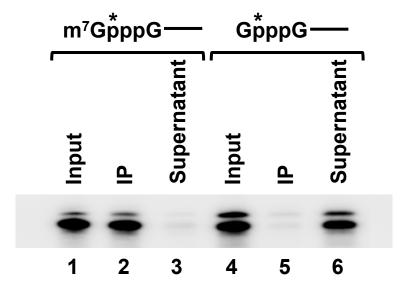

KH₂PO₄ (pH 3.4) to resolve pyrophosphate (PPi). Migrations of markers are shown on the right. Percent of product released are indicated at the bottom.

Fig. S4. Immunopurification of methyl-capped RNA. The monoclonal antitrimethylguanosine antibody column can distinguish between methylated and unmethylated capped RNA. A mixture of 0.5 pmol ³²P -cap-labeled monomethylated or unmethylated pcP RNA (m⁷G*ppp RNA or G*ppp RNA, respectively) with 20µg of total yeast RNA was immunoprecipitated with monoclonal anti-trimethylguanosine antibody (α TMG) Agarose beads. Immunoprecipitated RNA (IP) isolated from the α TMG agarose column and the corresponding supernatant containing the unbound RNA (Supernatant) were resolved by denaturing 5% PAGE and are shown.


Fig. S5. Generation of an aberrant 5' cap is an early event. The percentage of aberrantly capped intron containing pre-mRNA is not altered following nutrient starvation indicating the aberrant cap does not arise from a previously normally capped and methylated RNA. Methyl-capped and aberrant capped mRNAs were fractionated by immunopurification utilizing monoclonal anti-trimethylguanosine antibody column as in Fig 4c. Presented are the ratios of aberrantly capped intron containing CYH2 pre-mRNA relative to methyl-capped intron containing CYH2 pre-mRNA relative to 1. The ratio obtained with cells grown in complete medium was arbitrarily set to 1. The ratios remain constant under the different growth conditions. The analyses were carried out as in Figure 4c.

Jiao et al. Fig. S3

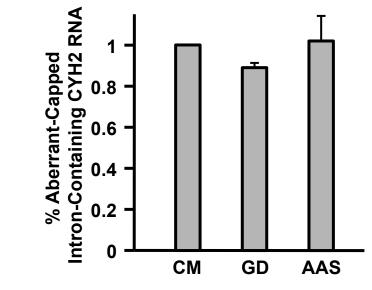


Table S1. Yeast Strains Used in This Study

Strain Name	Genotype	Reference
ABD1 WT	MATα, leu2, ura3, lys2, trp1, his3, abd1::LEU2, p358-ABD1 (TRP1, CEN)	Schwer et al., 2000
abd1-5	MATα, leu2, ura3, lys2, trp1, his3, abd1::LEU2, p358-abd1-5 (TRP1, CEN)	Schwer et al., 2000
ABD1; rai1∆	MATα, leu2, ura3, lys2, trp1 his3, abd1::LEU2, p358-ABD1 (TRP1, CEN), rail1Δ::kanMAX4	This study
abd1-5; rai1∆	MATα, leu2, ura3, lys2, trp1, his3, abd1::LEU2, p358-abd1-5 (TRP1, CEN), rail1Δ::kanMAX4	This study
abd1-5; dcp2/	MATα, leu2, ura3, lys2, trp1, his3, abd1::LEU2, p358-abd1-5 (TRP1, CEN), dcp2Δ::kanMAX4	This study
DTY-10A	MATa, leu2-3, leu2-112, can1-100, ura-3-1, ade2-1, his3-11, his3-15 (TRP1 ⁺)	This study
YGL246C	Mat a, his3, leu2, met15, ura3, YGL246c::kanMX4	Open Biosystems
YNL118C	BY4743, Mat a/a, his3/his3, leu2/leu2, lys2/LYS2, MET15/met15, ura3/ura3,	Open Biosystems
	YNL118c::kanMX4/YNL118c	