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Supplementary text S1: Hamilton’s rule and Price’s covariance formalism

We recall here how Hamilton’s rule can be derived using Price’s covariance formalism [1,2].

A. Price equation

Consider a population composed of groups, indexed by g, themselves composed of individuals,

indexed by i. An individual i can either be a producer, pi = 1, or a non-producer, pi = 0. Initially,

a group g contains a fraction xg of the total population and has a proportion pg of producers; after

a given amount of time, the group size is multiplied by a factor wg, which is assumed to depend

only on pg (and not on the absolute size of the groups as it could more generally do).

The so-called Price equation can be written at two levels. At the population level, it gives the

overall change in the proportion of producers ∆p̄ = p̄′− p̄, where p̄ =
∑

g xgpg represents the initial

proportion, and p̄′ =
∑
x′gp
′
g, with p′g = pg + ∆pg and x′g = xgwg/

∑
h xhwh, the final proportion

(an implicit assumption here is that we are only interested in a mixture of all the groups after a

fixed period of time defining a “final” time; otherwise quantities other than the global mean could

also be of interest). From these definitions, the following identity, known as the Price equation,

follows:

〈wg〉∆p̄ = Cov(wg, pg) + 〈wg∆pg〉. (1)

Here, averages and covariances are taken with weights depending on the initial relative sizes of the

groups: for any quantities ag and bg defined at the group level, 〈ag〉 =
∑

g xgag and Cov(ag, bg) =

〈agbg〉 − 〈ag〉〈bg〉. The second term in Eq. (1) involves ∆pg, the change in proportion of producers

within group g, which can be expressed in terms of a Price equation at the group level:

wg∆pg = Covg(wi, pi). (2)

Here, wi corresponds to the multiplicative factor by which producers (if pi = 1) or non-producers

(if pi = 0) are multiplied (at this level, xi = 1 and ∆pi = 0 since the unit is an individual and no

conversion between producer and non-producer is assumed). Covg(wi, pi) = 〈wipi〉g − 〈wi〉g〈pi〉g

where the subscript g indicates that averages are taken for individuals i belonging to the group g;

in particular, we have by definition 〈wi〉g = wg and 〈pi〉g = pg.
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B. Covariance and regression

Given a set of pairs (pg, wg) with weights xg we can always write

Cov(wg, pg) = β(wg, pg)Var(pg) (3)

where Var(pg) = Cov(pg, pg) = 〈p2
g〉 − 〈pg〉2 is the variance of pg and β(wg, pg) corresponds to the

regression coefficient of wg against pg. β(pg, wg) can also be interpreted as the value of β which

minimizes, together with the other regression coefficient α, the residual sum

R2 = 〈(wg − (α+ βpg))2〉 =
∑

g

xg(wg − α− βpg)2. (4)

Graphically, β(pg, wg) is therefore the slope of the best linear interpolation, in the mean-square

sense (using weights xg) of the data points (pg, wg) (see Fig. 3 of main text).

Similarly, we can write

Covg(wi, pi) = βg(wi, pi)Varg(pi). (5)

With these subtitutions, the condition ∆p̄ > 0 is equivalent to

β(wg, pg)Var(pg) + 〈βg(wi, pi)Varg(pi)〉 > 0. (6)

C. From Price to Hamilton

If βg(wi, pi) is independent of g, corresponding to an intrinsic individual cost independent of

the nature of the group g to which an individual belongs, Eq. (6) can be rewritten

β(wg, pg)r + βg(wi, pi) > 0. (7)

where

r =
Var(pg)
〈Varg(pi)〉

(8)

is a purely “geometrical” parameter, that depends only on the initial composition of the groups.

If we consider for instance groups of equal size with a proportion pg of producers in each group,

we have pi = 1 with probability pg and pi = 0 with probability 1 − pg, so that 〈pm
i 〉g = pg for all

m, and in particular Varg(pi) = pg − p2
g. In such a case,

r =
〈p2

g〉 − 〈pg〉2

〈pg〉 − 〈p2
g〉
. (9)
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D. Linear models

Eq. (7), known as Hamilton’s rule, is most easily interpretable when the regression coefficients

β(wg, pg) and βg(wi, pi) are independent of the distribution of the pg’s. In the model introduced in

Box 1, it is thus assumed that there is a fixed production cost per individual that is independent

from group properties. For this model, we can write the linear relation

wi = a+ kpg − cpi, (10)

where a+ kpg is the multiplicative factor for non-producers (pi = 0) and a+ kpg − c for producers

(pi = 1) when they are in a group with a proportion pg of producers. We have then βg(wi, pi) ' −c

(see next paragraph) and, since averaging within a group leads to wg = a + (k − c)pg, we have

β(wg, pg) = k − c. By introducing b ≡ k − c, we thus obtain Hamilton’s rule under the form

br − c > 0, with r given by Eq. (8).

When deriving these formulas, pi and pg should not be treated as independent variables (for

instance, if pg = 0, then necessarily pi = 0). Introducing pg−i, the fraction of producers in the

subgroup of size ng − 1 where i is excluded (ng representing the total size of group g), we have

pg = pg−i(ng − 1)/ng + pi/ng. Therefore, wi = 1 + k(ng − 1)/ngpg−i + (k/ng − c)pi where now,

conditionally on pg, the variables pg−i and pi are uncorrelated. We thus get βg(wi, pi) = −c+k/ng,

which simplifies to βg(wi, pi) ' −c when the size of the group ng is large.

E. Non-linearities and interpretation of b

In general, the relation between wg and pg is non linear and the “benefit” b = β(wg, pg) depends

on the distribution into groups (see Fig. 3 for an illustration). Formally, Eq. (7) still holds but

since both b and r change when the composition of the group changes, and since the change of

b = β(wg, pg) cannot be from the current values of b and c only, the relation cannot indicate how

the direction of selection is affected when the system is perturbed. Only when operating in a regime

where wg varies linearly with pg can a single number, b, provide a sufficient characterization.

Note also that, even in the linear case, the notion of benefit that enters in Hamilton’s rule is

that of a “differential benefit” that addresses only changes in the relative proportion of producers

and non-producers: if the relation wg = a + bpg is changed to wg = a′ + bpg with a′ > a, there

is an (absolute) “benefit” in the sense that the population globally improves its growth, but no

(differential) “benefit”, in the sense of Hamilton’s rule, since the ratio between producers and

non-producers is not affected. This situation is illustrated with our system in Fig. 3.
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Supplementary text S2: A model for the dynamics of producer and nonproducer strains

We introduce here a simple model for the dynamics of the synthetic producer and nonpro-

ducer strains. The population dynamics depend on the concentration of autoinducer, AI, which is

assumed to modulate the growth rate between smin and smax following

s(AI) = smin + (smax − smin)
(

AI

AI +KM

)
, (11)

where KM is the concentration of autoinducer at which half-maximal response occurs. Assuming

a logistic growth with a common carrying capacity K and an autoinducer dependent growth rate,

the dynamics of producers is described by

d[P ]
dt

= s(AI) P
(

1− P +NP

K

)
, (12)

and the dynamics of producers by

d[NP ]
dt

= κ s(AI) NP
(

1− P +NP

K

)
, (13)

where κ > 1 represents the relative advantage of nonproducers. Finally, the autoinducer production

rate is taken to be proportional to number of producers

d[AI]
dt

= αP. (14)

This model is simply focused on the growth dynamics of producers and nonproducers and notably

does not explicitly incorporate on/off rates, transport rates, transcription/translation/degradation

rates. When this model was simulated using parameter values estimated from experimental data

and initial conditions corresponding to our experimental conditions, the simulation qualitatively

reproduced the main experimental observations [3]: ∆p̄ was greater than zero while ∆pg was

less than zero for all g (Supplementary Figure S1). The model also qualitatively reproduces the

dependence of growth of producers and nonproducers on pg (Supplementary Figure S2).
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Supplementary figures

Figure S1: Simpsons paradox in a simulated population of producers and nonproducers

The model described in Supplementary Text S2 was numerically integrated in Matlab using

parameters K = 4 × 109 cells/ml, KM = 3 µM, smax = 0.0075 min−1, smin = smax/10, κ = 1.05,

α = 3 × 10−16 mmol cell−1 min−1. Ten mixed subpopulations, each initially containing 4 × 107

cells/ml (representing the 100-fold dilution made at the beginning of an experiment with living

cells), were formed with pg = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95}. This distribution is the

same as that used in our experiments with living cells. Since the amount of autoinducer in a

saturated culture of pure producers is approximately 30 µM, the initial autoinducer concentration

in each subpopulation was 30 × (pg/100) µM. The system was simulated for 780 min (13 hours),

corresponding to the length (12 to 13 hours) of a typical experiment with living cells. The initial

producer proportion pg of each subpopulation is plotted as a magenta circle and a black line segment

connects pg to the final producer proportion pg. In agreement with experiments with living cells,

Simpsons paradox is observed in the simulation, since ∆pg ≤ 0 for all g, but ∆p̄ > 0 globally.
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Figure S2: Growth of producers and nonproducers as a function of initial producer proportion

wNP (black) is the same as w− of Box 1. wP (green) is the same as w+ of Box 1. wg (magenta)

is the growth of the subpopulation composed of pg producers and (1− pg) nonproducers.

(A) Representative sample for experimental data, with lines representing fits from linear regression.

(B) Simulated system of Supplementary Figure S1.


