Legends to Supplemental Figures

S1. Binding curves for the interactions of DNA targets with the *E. coli* TcpP-HSV⁺ (TG387) membrane preparation. The % shifted values for each DNA target were plotted as a function of membrane protein concentration used in mobility shift experiments as presented in Fig. 3. The binding curves for the parental promoter target and derivatives carrying transversions at positions –56 through –48 (Panel A) and positions –47 through –38 (Panel B), as indicated on the right side of the figure, with a vertical arrow indicating the position of the pentameric repeat motif present in the region of the *toxT* promoter analyzed. The intercept of each binding curve with the dashed horizontal line drawn at 50% shifted indicates the concentration of membrane protein required for a 50% shift of each DNA target, as presented in Table 2.

S2. Binding curves for the interactions of DNA targets with the *V. cholerae* ToxR-HA⁺ (TG129) membrane preparation. The % shifted values for each DNA target were plotted as a function of the membrane protein concentration used in mobility shift experiments as presented in S3. The binding curves for the parental promoter target and derivatives carrying transversions at positions -56 through -48 (Panel A) and positions -47 through -38 (Panel B), as indicated on the right side of the figure, with a vertical arrow indicating the position of the pentameric repeat motif present in the region of the *toxT* promoter analyzed. The intercept of each binding curve with the dashed horizontal line drawn at 50% shifted indicates the concentration of membrane protein required for a 50% shift of each DNA target, as presented in Table 3.

1

S3. Electrophoretic mobility shift assay for the binding of DNA targets to proteins present in V. cholerae ToxR⁻ (TG128) and ToxR⁺ (TG129) membrane preparations. The composite image was generated from a single piece of autoradiography film displaying migration patterns from five different gel runs (Panels A to E) as described in the legend to Fig. 3. For Panels A to E, the parental promoter (lanes 1, 2 and 3) or single transversion derivatives at positions -56 to -38 (lanes 4 to 22, respectively), are indicated at the top of the figure. The horizontal arrows above each panel indicate the positions of the pentameric repeat motifs within the TcpP-footprinted region of the toxT promoter. For lanes 3 to 22, the DNA-binding solutions containing end-labeled DNA targets were mixed with membrane buffer only (Panel A) or V. cholerae ToxR⁺ membrane preparation at either 0.21 mg/ml (Panel B), 0.43 mg/ml (Panel C), 0.86 mg/ml (Panel D) or 1.7 mg/ml (Panel E), as indicated on the right side of the figure. DNA-membrane solutions were treated as described in the legend to Fig. 3. The positions of free and shifted end-labeled DNA target migration through the gel are indicated in the column between lanes 2 and 3. The % shifted values given below the free target signal for each sample indicate the percentage of shifted signal, relative to the sum of free and shifted signals, as quantified by densitometry. Control samples containing the parental target mixed with either membrane buffer only (lane 1) or negative control V. cholerae ToxR⁻ membrane preparation (lane 2), present at the same protein concentration as the experimental membrane preparation used for lanes 3-22, as indicated on the right side of each panel, were included in each gel run where appropriate.

Figure S1

Figure S1 cont.

Figure S2

Figure S2 cont.

Figure S3

1 Table S1: Oligonucleotides used in this study

primer name	purpose	sequence 5' to 3'
$toxT_{pro}$ -57 C-A TOP	mutagenesis	catgagttactttatgtttttattatgtaatacgtctgtaact
$toxT_{pro}$ -57 C-A BOTTOM	mutagenesis	agttacagacgtattacataataaaaacataaagtaactcatgttat
$toxT_{pro}$ -56 T-G TOP	mutagenesis	tactttatgtttcgagtatgtaatacgtctg
$tox T_{pro}$ -56 T-G BOTTOM	mutagenesis	cagacgtattacatactcgaaacataaagta
$toxT_{pro}$ -55 T-G TOP	mutagenesis	actttatgtttcgatgatgtaatacgtctgt
$toxT_{pro}$ -55 T-G BOTTOM	mutagenesis	acagacgtattacatcatcgaaacataaagt
<i>toxT</i> _{pro} -54 A-C TOP	mutagenesis	ctttatgtttcgattctgtaatacgtctgta
$toxT_{pro}$ -54 A-C BOTTOM	mutagenesis	tacagacgtattacagaatcgaaacataaag
$toxT_{pro}$ -53 T-G TOP	mutagenesis	tttatgtttcgattaggtaatacgtctgtaa
$toxT_{pro}$ -53 T-G BOTTOM	mutagenesis	ttacagacgtattacctaatcgaaacataaa
$toxT_{pro}$ -52 G-T TOP	mutagenesis	ttatgtttcgattatttaatacgtctgtaac
$toxT_{pro}$ -52 G-T BOTTOM	mutagenesis	gttacagacgtattaaataatcgaaacataa
$toxT_{pro}$ -51 T-G TOP	mutagenesis	tatgtttcgattatggaatacgtctgtaact
$toxT_{pro}$ -51 T-G BOTTOM	mutagenesis	agttacagacgtattccataatcgaaacata
$toxT_{pro}$ -50 A-C TOP	mutagenesis	atgtttcgattatgtcatacgtctgtaactt
$tox T_{pro}$ -50 A-C BOTTOM	mutagenesis	aagttacagacgtatgacataatcgaaacat
$toxT_{pro}$ -49 A-C TOP	mutagenesis	tgtttcgattatgtactacgtctgtaacttg
$toxT_{pro}$ -49 A-C BOTTOM	mutagenesis	caagttacagacgtagtacataatcgaaaca
$toxT_{pro}$ -48 T-G TOP	mutagenesis	tgtttcgattatgtaagacgtctgtaacttgttcttatgtct
$toxT_{pro}$ -48 T-G BOTTOM	mutagenesis	agacataagaacaagttacagacgtcttacataatcgaaaca
$toxT_{pro}$ -47 A-C TOP	mutagenesis	tgtttcgattatgtaatccgtctgtaacttgttcttatgtct
$toxT_{pro}$ -47 A-C BOTTOM	mutagenesis	agacataagaacaagttacagacggattacataatcgaaaca
$toxT_{pro}$ -46 C-A TOP	mutagenesis	tgtttcgattatgtaataagtctgtaacttgttcttatgtct
$toxT_{pro}$ -46 C-A BOTTOM	mutagenesis	agacataagaacaagttacagacttattacataatcgaaaca
$tox T_{pro}$ -45 G-T TOP	mutagenesis	tcgattatgtaatacttctgtaacttgttct
$toxT_{pro}$ -45 G-T BOTTOM	mutagenesis	agaacaagttacagaagtattacataatcga
$toxT_{pro}$ -44 T-G TOP	mutagenesis	cgattatgtaatacggctgtaacttgttctt
$toxT_{pro}$ -44 T-G BOTTOM	mutagenesis	aagaacaagttacagccgtattacataatcg
$toxT_{pro}$ -43 C-A TOP	mutagenesis	gattatgtaatacgtatgtaacttgttctta
$toxT_{pro}$ -43 C-A BOTTOM	mutagenesis	taagaacaagttacatacgtattacataatc
$toxT_{pro}$ -42 T-G TOP	mutagenesis	attatgtaatacgtcggtaacttgttcttat
$toxT_{pro}$ -42 T-G BOTTOM	mutagenesis	ataagaacaagttaccgacgtattacataat
$toxT_{pro}$ -41 G-T TOP	mutagenesis	ttatgtaatacgtctttaacttgttcttatg
$toxT_{pro}$ -41 G-T BOTTOM	mutagenesis	cataagaacaagttaaagacgtattacataa
toxT _{pro} -40 T-G TOP	mutagenesis	tatgtaatacgtctggaacttgttcttatgt
$toxT_{pro}$ -40 T-G BOTTOM	mutagenesis	acataagaacaagttccagacgtattacata
$toxT_{pro}$ -39 A-C TOP	mutagenesis	atgtaatacgtctgtcacttgttcttatgtc
$toxT_{pro}$ -39 A-C BOTTOM	mutagenesis	gacataagaacaagtgacagacgtattacat

toxT _{pro} -38 A-C TOP	mutagenesis	tgtaatacgtctgtaccttgttcttatgtct
$toxT_{pro}$ -38 A-C BOTTOM	mutagenesis	agacataagaacaaggtacagacgtattaca
toxT _{pro} -51 T-G, -40 T-G	mutagenesis	tatgtttcgattatggaatacgtctggaacttgttcttatgt
ТОР		
<i>toxT</i> _{pro} -51 T-G, -40 T-G	mutagenesis	acataagaacaagttccagacgtattccataatcgaaacata
BOTTOM		
<i>toxT</i> _{pro} -49 A-C, -38 A-C	mutagenesis	tgtttcgattatgtactacgtctgtaccttgttcttatgtct
ТОР		
$toxT_{pro}$ -49 A-C, -38 A-C	mutagenesis	agacataagaacaaggtacagacgtagtacataatcgaaaca
BOTTOM		
$toxT_{pro}$ -51 T-G, -49 A-C, -	mutagenesis	tatgtttcgattatggactacgtctggaccttgttcttatgtct
40 T-G, -38 A-C TOP		
$toxT_{pro}$ -51 T-G, -49 A-C, -	mutagenesis	agacataagaacaaggtccagacgtagtccataatcgaaacata
40 T-G, -38 A-C		
BOTTOM		
$toxT_{pro}$ -50 A-C, -39 A-C	mutagenesis	tgtttcgattatgtcatacgtctgtcacttgttcttatgtct
ТОР		
$toxT_{pro}$ -50 A-C, -39 A-C	mutagenesis	agacataagaacaagtgacagacgtatgacataatcgaaaca
BOTTOM		
5' <i>Eco</i> RI <i>toxT</i> #12	cloning primer	cccggaattcgaaaatggtcgatatgat
3' <i>Eco</i> RI <i>toxT</i> #15	cloning primer	ccggaattetaettteggaagaacee
$toxT_{pro}$ -172 BamHI	cloning primer	gcgcggatccgtatagcaaagcatattcagagaac
$toxT_{pro}$ +45 EcoRI	cloning primer	gcgcgaattcaaataaacgcagagagccatcc
XhoI to NotI	pTL61T <i>Xho</i> I site	tcgacgcggccgcg
	to Notl site	
	conversion	
wt-TcpP + basal TOP	rarental torT	
	promoter	aatt
wt-TcpP + basal BOTTOM	construction of	aagttaatataaaactacataacagacataagaacaagttacagacgt
	parental $toxT$	attacataatcg
	promoter	
ToxR binding site TOP	construction of	tggctgttatcttatctcaaaaaacataaaataacatgagttactttatgttt
	parental <i>toxT</i>	
	promoter	
ToxR binding site	construction of	aaacataaagtaactcatgttattttatgttttttgagataagataacagcc
BOTTOM	parental toxT	a
524 D II.4	promoter	
5 <i>IOXK-HA</i>	torR	gggggalccicaaaagagalaicgalgag
3° tor $R_{-}HA$	epitone tagging of	ggggggetegageteacacactttgatgge
	toxR	222222. 2222. 222. 222. 222. 222. 222.
L		1