1	Supplementary Material
2	
3	Materials and Methods:
4	
5	Quantitative PCR (qPCR):
6	
7	Intestinal tissue was homogenized using the TissueLyser (Qiagen, Stanford, CA, USA).
8	I otal RNA was isolated using the Qiagen RNeasy mini-kit (Qiagen, Stanford, CA, USA)
9	and DNase treated using DNase1 (Qiagen, Stanford, CA, USA). Genes tested: GA1A4,
10	ileal lipid binding protein (ILBP), Cyp/AI, Cyp8BI, Cyp2/AI, ApoAI, SR-BI, Bile sait
11	reachter (EXP), Short heterodimer protein 1 (SHD 1), Liver V recenter (LVP), and
12	TGP5
13 14	TOKJ.
15	Bile acid Analysis:
16	
17	Tissues were homogenized: and bile acids were extracted by sequential reflux in 80%
18	methanol and chloroform/methanol (1:1, by vol). An aliquot (equivalent to 1/100 -
19	1/500th) of this sample extract was taken and the internal standard nordeoxycholic acid
20	(10-20 ug) added. Bile acids were separated into groups based upon their state of
21	conjugation using the lipophilic anion exchange gel, diethylaminohydroxypropyl
22	Sephadex LH-20 (Lipidex DEAP Instruments, Groningen, The Netherlands).
23	
~ 1	
24	western Blotting:
23	Intestinal segments were homogenized in DIDA buffer with protoese inhibitors (Sigme
20	St Louis MO USA) Equal samples were loaded on a 4 12% SDS polyaerylamide gel
27	(Invitrogen Carlshad CA USA) ASBT antibody (Santa Cruz Biotechnology Santa
20	Cruz CA USA) and GAPDH antibody was used with their respective secondary
30	antibody conjugated with horseradish peroxidase. Immunopositive bands were visualized
31	by chemiluminescence (Amersham ECL plus detection kit. GE Healthcare Chalfont St
32	Giles, UK). Density was determined using FujiFILM LAS-4000 Multi Gage V.3
33	software.

- 35 Energy Expenditure Studies:

Total energy expenditure was monitored using a combined open-circuit indirect calorimetry system (TSE Systems Midland, MI). After adaptation for 20 h, the volumes of oxygen (VO2, ml/h) consumed were measured every 45 min for a total of 72 h. Simultaneously, home-cage locomotor activity was determined by using a multi-dimensional infrared light beam system with beams installed on cage-bottom and cage-top levels and activity being expressed as beam breaks. This system also provided data on meal number per day. The rats were placed in the calorimetry system cages during the 5th week post surgery.

46 Supplementary Data:

47 Meal Number and Energy Expenditure:

48 Total daily meal number was increased in the IIS rats (p<0.05). Locomotor activity was

49 similar in SH-PF and IIS rats (data not shown). RT PCR in brown adipose tissue for

50 uncoupling protein 1 (UCP1) and the bile acid responsive thyroid hormone G protein

- 51 coupled receptor (TGR5) revealed no difference between IIS and SH-PF (data not
- 52 shown).
- 53 Figures:
- 54
- 55 Figure S1
- 56 Rats in the ileal interposition (IIS) and Sham pair fed (SH- PF) surgery group loose more
- 57 body weight initially than the Sham group. N for groups IIS=6, SH=7, SH-PF=8.

- 76
- 77 78
- 79
- 80
- 81
- 82 83
- 83 84

85

86 Figure S2: IIS produces exaggerated intestinal hormonal response.

- A) *PYY response*.
- 88 Plasma active Peptide YY₃₋₃₆ (PYY) levels were measured at 45 and 30 minutes post
- 89 fixed meal respectively. PYY levels were significantly higher in rats that were in the IIS
- 90 group compared to SH or SH-PF groups. N for groups IIS=6, SH=7, SH-PF=8. (***
- 91 =p<0.001).

109

- 112 B) *GLP-1 response*.
- 113 Plasma active Glucagon like Peptide-1 (GLP-1) levels were measured at 45 and 30
- 114 minutes post fixed meal respectively. GLP-1 levels were significantly higher in rats that
- 115 were in the IIS group compared to SH-PF. N for groups IIS=6, SH-PF=8. (* = p < 0.05).

Figure S3: IIS produces fat mass loss, increased energy expenditure, and increased meal number.

A) Magnetic resonance for fat mass estimation before surgery and prior to sacrifice.

- Rats in the IIS group lost more fat mass after surgery compared to SH and SH-PF who
- gained fat mass. N for groups IIS=6, SH=8, SH-PF=8. (* = p < 0.05; *** = p < 0.001).

- B) Magnetic resonance for lean mass estimation before surgery and prior to sacrifice.
- Rats in the IIS group had a trend to gain more lean mass after surgery compared to SH and

- 177 C) Oxygen consumption for IIS and SH-PF rats post surgery.
- 178 Rats in the IIS group consume more oxygen compared to SH- PF surgery group. N for
- 179 groups IIS=7, SH-PF=7.
- 180

- 198 D) Meal number per day for IIS and SH-PF rats post surgery.
- 199 Rats in the IIS group consume more meal per day compared to SH- PF surgery group. N
- 200 for groups IIS=7, SH-PF=7. (*=p<0.05)
- 201

202 Figure S4: The mRNA expression of Cytochrome P450 genes CYP7A1, CYP8B1

203 regulating bile acid production and bile acid response elements farnesoid X receptor

- 204 (FXR) and downstream target short heterodimer protein (SHP) were not significantly
- 205 different between groups. Genes responsible for bile acid hepatocyte uptake and export
- were also unchanged (NTCP, BSEP). N for groups IIS=7, SH=8, SH-PF=8. 206

0.5

0.0

sham

- 217 **Figure S5:** A 72-h fecal collection was performed during the 5th week post-surgery.
- 218 Fecal cholesterol concentration, as measured by gas chromatography, was not different
- 219 between the IIS and SH rats. N for groups IIS=7, SH=8.
- 220

237 Figure S6: The mRNA expression of Ileal bile acid transport pathway elements farnesoid

238 X receptor (FXR) was decreased in the IIS rats but the downstream target bile salt export

- pump (BSEP) was not significantly different. N for groups IIS=7, SH=8, SH-PF=8.
- 240

241 242