Supporting Information

Trypsin coatings on electrospun and alcohol-dispersed polymer nanofibers for trypsin digestion column

Seung-Hyun Jun,¹ Mun Seock Chang,² Byoung Chan Kim,³ Hyo Jin An,¹ Daniel Lopez-Ferrer,⁴ Rui Zhao,⁴ Richard D. Smith,⁴ Sang-Won Lee,²* Jungbae Kim¹*

¹ Department of Chemical and Biological Engineering, Korea University, 1, 5-ka, Anam-dong, Seongbuk-gu, Seoul 136-701, Republic of Korea

² Department of Chemistry, Korea University, 1, 5-ka, Anam-dong, Seongbuk-gu, Seoul 136-701, Republic of Korea

³ Institut Pasteur Korea, Seongnam-si, Gyeonggi-do, 463-400, Republic of Korea

⁴ Pacific Northwest National Laboratory, Richland, WA 99352, USA

Table S-1. The kinetic	constants of trypsin	a coatings (EC-TR)	on as-spun (N	NF) and alcoho	l-dispersed
nanofibers (EtOH-NF).					

	EC-TR/NF	EC-TR/EtOH-NF	<u>Ratio</u> EC-TR/EtOH-NF to EC-TR/-NF
V_{max} (× 10 ³ μ M/s)	67 ± 3	1240 ± 90	19
$K_{m}\left(\mu M ight)$	156± 26	896 ± 150	5.8
$V_{max}/K_m (\times 10^6 \text{ s}^{-1})$	430 ± 75	1380 ± 252	3.2

Figure S-1. Schematic of electrospinning system [1].

Figure S-2. Morphology of polymer nanofibers and trypsin-coated nanofibers; (a) trypsin coating on asspun nanofibers and (b) trypsin coating on alcohol-dispersed nanofibers.

Figure S-3. Schematic for the trypsin-catalyzed hydrolysis of L-BAPNA [2].

Figure S-4. (a) MS/MS spectrum of fully tryptic peptide peak (m/z=708.87) in Figures 3 and 4.

Figure S-4. (b) MS/MS spectrum of fully tryptic peptide peak (m/z=643.86) in Figures 3 and 4.

Figure S-4. (c) MS/MS spectrum of fully tryptic peptide peak (m/z=878.48) in Figures 3 and 4.

Figure S-4. (d) MS/MS spectrum of fully tryptic peptide peak (m/z=789.90) in Figures 3 and 4.

Figure S-4. (e) MS/MS spectrum of fully tryptic peptide peak (m/z=911.47) in Figures 3 and 4.

Figure S-5. Sensitivity test of the LC/MS/MS system described in experimental section. Using a tryptic enolase peptides as a standard sample, the current LC/MS/MS system exhibited sub-attomole sensitivity.

Figure S-6. (a) Performance stability of CA-TR/NF in the enolase digestion. Five enolase-specific peptides from extracted chromatogram were checked after enolase digestion using CA-TR/NF at each time point.

Figure S-6. (b) Performance stability of CA-TR/EtOH-NF in the enolase digestion. Five enolasespecific peptides from extracted chromatogram were checked after enolase digestion using CA-TR/EtOH-NF at each time point.

13

EC-TR/NF

Figure S-6. (c) Performance stability of EC-TR/NF in the enolase digestion. Five enolase-specific peptides from extracted chromatogram were checked after enolase digestion using EC-TR/NF at each time point.

EC-TR/EtOH-NF

Figure S-6. (d) Performance stability of EC-TR/EtOH-NF in the enolase digestion. Five enolase specific peptides from extracted chromatogram were checked after enolase digestion using EC-TR/EtOH-NF at each time point.

Figure S-7. The time-course of protein sequence coverage for enolase 1 (a) and enolase 2 (b) by using trypsin nanofibers under recycled uses. Figure 3 shows the same results by using the total peak area of five enolase-specific peptides instead of the protein sequence coverage.

Figure S-8. Digestion performance of (a) in-solution digestion, (b) commercial trypsin beads, and (c) EC-TR/EtOH-NF. In-vial enolase digestion was performed at 50°C. Five enolase-specific peptides from extracted chromatogram were checked after enolase digestion using each sample at each time point.

REFERENCES

- [1] Kim, B. C.; Nair, S.; Kim, J.; Kwak, J. H.; Grate, J. W.; Kim, S. H.; Gu, M. B. Nanotechnology
 2005, *16*, S382-S388.
- [2] Kim, B. C.; Lopez-Ferrer, D.; Lee, S. M.; Ahn, H. K.; Nair, S.; Kim, S. H.; Kim, B. S.; Petritis,
 K.; Camp, D. G.; Grate, J. W.; Smith, R. D.; Koo, Y. M.; Gu, M. B.; Kim, J. Proteomics 2009, 9, 1893-1900.