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SUPPLEMENTARY TEXT: 

ESTIMATION OF METABOLIC FLUXES USING ISOTOPOMER BALANCING AND 
VALIDITY OF METABOLIC AND ISOTOPIC STEADY STATE ASSUMPTION 

 

Estimation of Metabolic Fluxes Using Isotopomer Balancing 

When a substrate is processed through the metabolic pathways of an organism, a variety of reactions take 
place to generate energy, reducing power and biomass precursors. These reactions may involve carbon-
carbon bond breakage or formation. If a mixture of labeled and unlabeled substrate molecules is 
processed, these bond breakages and formations may lead to unique distributions of isotope isomers 
(isotopomers) for each intermediate metabolite, which in turn is determined by the in vivo fluxes 
(illustrated in Fig. 4). Therefore, in vivo fluxes may be deduced from the labeling pattern of the 
intermediate metabolites. Since biomass building blocks are formed from precursor metabolites 
distributed throughout the metabolic pathways of an organism, they serve as storage of the labeling 
information of the intermediates and hence the metabolic fluxes. Among building blocks, proteinogenic 
amino acids are commonly used for isotopomer analysis because of two reasons. First, and unlike 
precursor intermediates, proteinogenic amino acids are abundant and stable. Secondly, since they provide 
the isotopic labeling information of their central metabolic precursors, their labeling pattern can be used 
to constrain the central carbon metabolic network model to accurately estimate metabolic fluxes. 

The process of estimating metabolic fluxes from isotopomer abundances of proteinogenic amino acids 
obtained via NMR experiments is illustrated in Supplementary Fig. 1. Cell biomass is harvested once 
metabolic and isotopic steady state is achieved (see section below for details), NMR samples are 
prepared, 2D HSQC NMR spectra acquired, the identity of peaks established and the multiplet intensities 
quantified. These intensities are then used to estimate the fraction of each isotopomer (denoted as 
isotopomer abundances, see Supplementary Table 2). Since analytical expressions to directly calculate 
fluxes from isotopomer data do not exist, the computer program NMR2Flux (1) was used to estimate the 
fluxes. An overview of the algorithm used by this software is also depicted in Supplementary Fig. 1. The 
software NMR2Flux is supplied with a metabolic network based on known E. coli biochemistry (see 
supplementary Table 1), isotopomer data (see Supplementary Table 2), and flux constraints (based on 
experimental measurement of extracellular metabolites). Based on the stoichiometry, the program starts 
with a set of guessed fluxes that satisfies the input constraints and simulates the resulting isotopomer 
distribution. The program then calculates the error between the simulated and experimental multiplet 

intensities: i.e. 

€ 

χ 2 = I j − Ixj[ ]
2

j=1

P

∑ , where Ij and Ixj are the j-th simulated and experimental multiplet 

intensities, respectively, out of a total of P multiplet intensities. If this error is lower than the desired 
tolerance, the guessed flux set is accepted, otherwise another set of candidate fluxes is guessed and the 
process is repeated (via a simulated annealing approach). Standard deviations of the fluxes were 
computed by statistical analysis of the resulting fluxes from 250 simulation runs. A detailed description of 
the overall process for estimating metabolic fluxes via isotopomer balancing used in our study can be 
found in the Supplementary Materials IV and VI in Sriram et. al. (1). 
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Metabolic and Isotopic Steady State  

Metabolic fluxes estimated using isotopomer balancing represent the time-averaged in vivo fluxes since 
the incorporation of labeling at any given time is dependent upon the fluxes at that moment. Therefore, it 
is important to ensure that the analysis is conducted during a phase of the culture where the metabolic 
fluxes are constant. The exponential phase of growth during batch cultures provides such a condition as 
the cells are in a pseudo-steady state: i.e. although the concentrations of substrate, products, and cells are 
changing with time, the in vivo fluxes remain constant (2). This study tested whether the fluxes were 
indeed constant during the exponential phase.  

The flux of a metabolite is given by 

    

€ 

υ =
1
x
dM
dt

                                              (a) 

where υ is the flux (mmol/g CDW/h) , x is the cell density (g CDW/L), M is the metabolite concentration 
(mmol/L), and t is time (h). The change in cell density due to growth is determined by the specific growth 
rate, µ (h-1), which is defined as:  

€ 

µ =
1
x
dx
dt

                                               (b) 

By solving equation (b) for x and substituting the resulting expression into (a), the following equation is 
obtained: 

€ 

dM
dx

=
υ
µ

                                               (c) 

Since µ is constant throughout the exponential phase of growth (see Fig. 2), equation (c) indicates that, 
for a constant flux υ, the plot between M and x should be a straight line. The plots shown in 
supplementary Fig. 2 exhibit a very good fit to a straight line for the extracellular metabolites consumed 
and generated during the exponential phase by wild type strain MG1655 and mutant Pdh. These results 
indicate that the extracellular fluxes were indeed constant during exponential growth and thus cultures in 
this phase can be regarded at pseudo steady state.  

The calculation of metabolic fluxes using isotopomer balancing also requires the cellular proteins to be in 
isotopic steady state. This requirement is met by cultivating cells in metabolic steady state (e.g. 
exponentially growing cells in a batch culture as discussed above) until the 13C label is fully propagated 
throughout metabolism (2).  In the batch cultures used in our study, cells precultured on unlabeled glucose 
were inoculated in a medium containing a mixture of labeled and unlabeled glucose (12.5% U-13C, 25% 
1-13C, and 62.5% unlabeled). In order to ensure an isotopic steady state, cells were harvested after five 
generations of exponential growth (i.e. while in metabolic steady state). Although it is widely accepted 
that five generations are sufficient to achieve isotopic steady state (2), the validity of this criterion under 
our experimental conditions is verified in what follows.  
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A batch experiment is typically started with an inoculum precultured on unlabeled glucose (i.e. with 
natural labeling of carbon atoms). These cells are then inoculated in a medium containing a mixture of 
labeled and unlabeled glucose to an initial cell concentration x0 at time t0. For analytical purposes, we will 
assume that the fraction of labeled glucose is y. As the cells start consuming glucose to synthesize 
biomass, labeled carbon atoms are incorporated in the same fraction as in the substrate. Since the amount 
of biomass at any given time (x) can be expressed in terms of the number of doublings (n) as 

€ 

2nx0, the 
fraction of labeled carbon atoms (f) in the biomass can be given by: 

€ 

f = y 1− 1
2n( ) 

 
  

 
                                  (d) 

Using this expression it can be shown that as 

€ 

n→∞ then 

€ 

f → y , and therefore y can be regarded as the 
steady state value of f. Using the above expression the calculated value of f after 5 doublings is 96.9% of 
its steady state value (y), and hence the assumption that five doublings are sufficient to achieve isotopic 
steady state. In our experiments, the cultures were harvested after five doublings. The computer program 
used to compute intracellular fluxes, NMR2Flux (1), accounts for the labeling pattern of the biomass 
before inoculation and hence estimates the true constant flux during exponential phase.  
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Supplementary Fig. 1. An overview of flux estimation using labeled substrate, NMR analysis, and 

isotopomer balancing. An experimenter cultures an organism on a a mixture of labeled (filled circle) and 

unlabeled (open circle) carbon source, harvest the biomass, obtains 2D [13C, 1H] HSQC spectra and 

estimates the fraction of each isotopomer, which constitutes experimental data as shown on the left hand 

side of the Figure. The computer program NMR2FLUX guesses fluxes satisfying the stoichiometry and 

other user input flux parameters and simulates isotopomer distributions based on the guessed fluxes and 

known biochemistry. This constitutes the simulated data shown on the right hand side of the Figure. The 

software then computes the error between simulated and experimental data and follows a simulated 

annealing protocol to identify the global minimum by adjusting the guessed fluxes. The final guessed set 

of fluxes at the identified global minimum is the output and represents the in vivo fluxes since they satisfy 

all the constraints as well as the NMR data. 
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Supplementary Fig. 2. Plot of the extracellular metabolite concentrations versus cell density during the 

exponential phase of growth showing a straight line fit between the two for all the measured metabolites 

in strains MG1655 (A) and Pdh (B). Symbols are as follows: glucose (asterisks), acetate (squares), 

ethanol (diamonds), formate (circles), and succinate (triangles). 
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Supplementary Fig. 3. Comparison of experimental and simulated isotopomer abundances for strains 

MG1655 (A) and Pdh (B). The x-axis represents experimental isotopomer abundances, measured from 

[13C, 1H] spectra, while the y-axis represents isotopomer abundances simulated by the computer program 

NMR2Flux, corresponding to the evaluated fluxes of Fig. 5. Isotopomer abundances are shown as 

fractions of the corresponding metabolite pool. The thick solid line represents a linear fitting as shown in 

the equation while the thin dotted lines illustrate the 95% confidence band.   
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Supplementary Fig. 4. Generation of CO2 by the oxidative branch of the pentose phosphate pathway 

(ox-PPP) and the pyruvate dehydrogenase complex (PDHC). The stoichiometry of the overall reaction in 

each pathway is shown, assuming equal CO2 yields (i.e., generation of the same amount of CO2 upon 

consumption of the same amount of glucose). 
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FLUX SD FLUX SD FLUX SD FLUX SD
Glucose uptake

r1  GLUCOSE + PEP →  G6P + PYR 5.225 0.364 4.620 0.423 100.000 6.966 100.000 9.152
Embden-Meyerhof-Parnas

r2 G6P → F6P 5.070 0.288 4.007 0.334 97.034 5.503 86.731 7.229
r3 F6P + ATP → 2 T3P + ADP 5.069 0.337 4.327 0.329 97.011 6.447 93.663 7.120
r4 T3P + NAD → NADH + 13P2DG 10.107 0.710 8.788 0.656 193.424 13.584 190.220 14.208
r5 13P2DG + ADP → ATP + 3PDGL 10.107 0.710 8.788 0.656 193.424 13.584 190.220 14.208
r6 3PDGL → PEP 9.938 0.710 8.643 0.656 190.202 13.584 187.070 14.208
r7 PEP + ADP → ATP + PYR 3.858 0.242 3.294 0.239 73.845 4.628 71.292 5.171

Pentose phosphate pathway
r8 G6P + 2 NADP → 2 NADPH + CO2 + RL5P 0.133 0.186 0.597 0.051 2.539 3.557 12.914 1.098
r9 RL5P → R5P 0.126 0.062 0.269 0.017 2.403 1.186 5.827 0.366
r10 RL5P → X5P 0.007 0.124 0.327 0.034 0.136 2.371 7.087 0.732
r11 R5P + X5P → T3P + S7P 0.024 0.062 0.181 0.017 0.453 1.186 3.920 0.366
r12 T3P + S7P → E4P + F6P 0.024 0.062 0.181 0.017 0.453 1.186 3.920 0.366
r13 X5P + E4P → F6P + T3P -0.017 0.062 0.146 0.017 -0.318 1.186 3.167 0.366

Glycogen metabolism
r14 G6P →  G1P 0.016 0.000 0.014 0.000 0.302 0.004 0.294 0.004
r15 G1P + ATP → ADP + GLYCOGEN 0.016 0.000 0.014 0.000 0.302 0.004 0.294 0.004

Pyruvate dissimilation and fermentation
r16 PYR + NADH → NAD + LAC 0.048 0.037 0.051 0.026 0.918 0.700 1.108 0.570
r17 PYR + COA + NAD →  ACCOA +  CO2 +  NADH 1.093 0.155 20.928 2.957 0.000 0.000
r18 PYR + COA → FORMATE + ACCOA 7.622 0.666 7.592 0.550 145.864 12.741 164.330 11.914
r19 ACCOA + 2 NADH → 2 NAD + ETOH 4.564 0.320 3.990 0.230 87.345 6.132 86.370 4.971
r20 ACCOA + ADP → AC + ATP 3.701 0.282 3.560 0.328 70.839 5.393 77.056 7.097
r21 FORMATE → CO2 + H2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

TCA cycle - oxidative and reductive branches
r22 PEP + CO2 → OA 0.774 0.115 0.656 0.097 14.813 2.205 14.208 2.101
r23 OA + ACCOA + NADP →  AKG + COA + NADPH + CO2 0.114 0.002 0.098 0.017 2.177 0.030 2.127 0.362
r24 OA + 2 NADH   →  SUCC + 2 NAD 0.460 0.115 0.385 0.097 8.808 2.205 8.339 2.101

Biosynthesis of amino acids
r25 OA + NADPH  → ASP + NADP 0.026 0.000 0.022 0.004 0.489 0.007 0.478 0.081
r26 OA + 3 ATP + NADPH → ASN + 3 ADP + NADP 0.026 0.000 0.022 0.004 0.489 0.007 0.478 0.081
r27 AKG + NADPH  → GLU + NADP 0.031 0.000 0.027 0.005 0.594 0.008 0.580 0.099
r28 AKG + ATP + NADPH → GLN + NADP + ADP 0.028 0.000 0.024 0.004 0.534 0.007 0.522 0.089
r29 PYR + NADPH → ALA + NADP 0.061 0.001 0.052 0.009 1.161 0.016 1.134 0.193
r30 AKG + 7 ATP + NAD + 4 NADPH  → ARG + 7 ADP + NADH + 4 NADP 0.031 0.000 0.027 0.005 0.600 0.008 0.587 0.100
r31 AKG + ATP + 3 NADPH  → PRO + ADP + 3 NADP 0.023 0.000 0.020 0.003 0.448 0.006 0.438 0.075
r32 2 PYR + ACCOA + NAD + 2 NADPH → LEU + NADH + 2 NADP + 2 CO2 0.048 0.001 0.041 0.007 0.914 0.013 0.893 0.152
r33 2 PYR + 2 NADPH → VAL + 2 NADP + CO2 0.045 0.001 0.039 0.007 0.859 0.012 0.839 0.143
r35 2 PEP + E4P + ATP + 2 NADPH → PHE + 2 NADP + ADP + CO2 0.020 0.000 0.017 0.003 0.376 0.005 0.367 0.062

r36
2 PEP + E4P + ATP + NAD + 2 NADPH → TYR + ADP + NADH + 2 NADP + C02

0.015 0.000 0.013 0.002 0.280 0.004 0.273 0.046

r37 PEP + E4P + R5P + 5 ATP + 2 NAD + 3 NADPH → TRP + 5 ADP + 2 NADH + 3 NADP + 
CO2

0.006 0.000 0.005 0.001 0.115 0.002 0.113 0.019

r38 R5P + 6 ATP + 3 NAD + NADPH + 1C → HIS + 6 ADP + 3 NADH + NADP 0.010 0.000 0.009 0.001 0.192 0.003 0.188 0.032
r39 3 PDGL + NAD + NADPH → SER + NADH + NADP 0.038 0.001 0.032 0.006 0.718 0.010 0.701 0.119
r40 3 PDGL + NAD + NADPH → GLY + 1C + NADH + NADP 0.071 0.001 0.061 0.010 1.354 0.019 1.324 0.225
r41 3 PDGL + 4 ATP + NAD + NADPH → CYS + 4 ADP + NADH + NADP 0.010 0.000 0.008 0.001 0.186 0.003 0.182 0.031
r42 OA + 2 ATP + 3 NADPH → THR + 2 ADP + 3 NADP 0.027 0.000 0.023 0.004 0.515 0.007 0.503 0.086
r43 PYR + OA + 3 ATP + 4 NADPH → LYS + 3 ADP + 4 NADP + CO2 0.036 0.001 0.031 0.005 0.696 0.010 0.680 0.116
r44 OA + 7 ATP + 8 NADPH + 1C → MET + 7 ADP + 8 NADP 0.016 0.000 0.014 0.002 0.312 0.004 0.305 0.052

Biosynthesis of purines

r45
3 PDGL + R5P + 9 ATP + 3 NAD + NADPH + 1C → AMP + 9 ADP + 3 NADH + NADP

0.019 0.000 0.016 0.003 0.358 0.005 0.350 0.060

r46 3 PDGL + R5P + 11 ATP + 3 NAD + 1C → GMP + 11 ADP + 3 NADH 0.023 0.000 0.020 0.003 0.441 0.006 0.431 0.073

r47 3 PDGL + R5P + 9 ATP + 3 NAD + 2 NADPH + 1C → DAMP + 9 ADP + 3 NADH + 2 
NADP

0.003 0.000 0.002 0.000 0.053 0.001 0.052 0.009

r48
3 PDGL + R5P + 11 ATP + 3 NAD + NADPH + 1C → DGMP + 11 ADP + 3 NADH + NADP

0.003 0.000 0.002 0.000 0.055 0.001 0.054 0.009

Biosynthesis of pyrimidines
r49 OA + P5P + 5 ATP + NADPH  → UMP + 5 ADP + NADP 0.015 0.000 0.013 0.002 0.295 0.004 0.289 0.049
r50 OA + P5P + 7 ATP + NADPH  → CMP + 7 ADP + NADP 0.014 0.000 0.012 0.002 0.274 0.004 0.268 0.045
r51 OA + P5P + 5 ATP + 3 NADPH + 1C + 2 NH3  → DUMP + 5 ADP + 3 NADP 0.003 0.000 0.002 0.000 0.053 0.001 0.052 0.009
r52 OA + P5P + 7 ATP + 2 NADPH  → DCMP + 7 ADP + 2 NADP 0.003 0.000 0.002 0.000 0.055 0.001 0.054 0.009

1Carbon metabolism (Formation of 1C)
r53 GLY + NAD → 1C + CO2 + NADH 0.006 0.000 0.005 0.001 0.111 0.002 0.109 0.018

Biosynthesis of lipid components
r54 T3P + NADPH → GLY3P + NADP 0.015 0.000 0.013 0.002 0.280 0.004 0.273 0.046
r55 8.2 ACCOA + 7.2 ATP + 14 NADPH → AVGFAT + 7.2 ADP + 14 NADP 0.029 0.000 0.025 0.004 0.560 0.008 0.547 0.093

Biosynthesis of LPS components
r56 G6P + ATP → UDPG + ADP 0.002 0.000 0.002 0.000 0.038 0.001 0.038 0.006
r57 3 PDGL + 3 ATP + NAD + NADPH → CDPETN + 3 ADP + NADH + NADP 0.003 0.000 0.003 0.000 0.058 0.001 0.056 0.010
r58 7 ACCOA + 6 ATP + 11 NADPH → OHMA + 6 ADP + 11 NADP + 7 COA 0.003 0.000 0.003 0.000 0.058 0.001 0.056 0.010
r59 7 ACCOA + 6 ATP + 12 NADPH → C14:0 + 6A DP + 12 NADP +7 COA 0.003 0.000 0.003 0.000 0.058 0.001 0.056 0.010
r60 P5P + PEP + 2 ATP → CMPKDO + 2 ADP 0.003 0.000 0.003 0.000 0.058 0.001 0.056 0.010
r61 1.5 G6P + ATP + 4 NADP → NHEP + ADP + 4 NADPH 0.003 0.000 0.003 0.000 0.058 0.001 0.056 0.010
r62 F6P + 2 ATP + NH3 → TGSM + 2 ADP 0.002 0.000 0.002 0.000 0.038 0.001 0.038 0.006

Biosynthesis of peptido components
r63 F6P + ACCOA + 3 ATP + NH3 → UDPNAG + 3 ADP + COA 0.003 0.000 0.003 0.000 0.060 0.001 0.059 0.010

r64
F6P + PEP + ACCOA + 4 ATP + NADPH + NH3 → UDPNAM + 4 ADP + NADP + COA

0.003 0.000 0.003 0.000 0.060 0.001 0.059 0.010

r65 OA + PYR + 2 ATP + 3 NADPH + 2 NH3 → DAP + 2 ADP + 3 NADP 0.003 0.000 0.003 0.000 0.060 0.001 0.059 0.010
ATP maintenance

Rx# Stoichiometry

Supplementary Table 1a. Reaction network model and metabolic fluxes calculated using metabolite balancinga

Calculated fluxes (mmol/gCDW/h) Calculated fluxes (normalized)
MG1655 Pdh MG1655 Pdh



r66 ATP → ADP 7.963 0.881 6.962 0.891 152.389 16.855 150.702 19.289
Transhydrogenase

r67 NADH + NADP  →  NADPH + NAD 1.505 0.372 0.336 0.101 28.794 7.113 7.270 2.197
Synthesis of macromolecules elemental units

r68 0.105 UDPG + 0.1578 CDPETN + 0.1578 OHMA + 0.1578 C14:0 + 0.1578 CMPKDO + 
0.1578 NHEP+ 0.105TGSM → LPScell

0.019 0.000 0.016 0.003 0.365 0.005 0.357 0.061

r69 0.25 GLY3P + 0.25 SER + 0.5 AVGFAT+2ATP → LIPIDcell + 2 ADP 0.059 0.001 0.051 0.009 1.120 0.016 1.093 0.186

r70

0.0960 ALA + 0.0553 ARG + 0.0451 ASN + 0.0451 ASP + 0.0171 CYS + 0.0492 GLN + 
0.0492 GLU + 0.1145 GLY + 0.0177 HIS + 0.0543 ILE + 0.0842 LEU + 0.0641 LYS + 
0.0287 MET + 0.0346 PHE + 0.0413 PRO + 0.0403 SER + 0.0474 THR + 0.0106 TRP + 
0.0257 TYR + 0.0791 VAL + 4.3 ATP →  PROTcell + 4.3ADP

0.567 0.008 0.490 0.083 10.854 0.152 10.597 1.802

r71 0.2465 DAMP + 0.2535 DCMP + 0.2535 DGMP + 0.2465 DUMP + 5.4 ATP →  DNA + 
5.4ADP 0.011 0.000 0.010 0.002 0.217 0.003 0.212 0.036

r72 0.2619 AMP + 0.2 CMP + 0.3222 GMP + 0.2159 UMP + 4.4 ATP →  RNA + 4.4ADP 0.072 0.001 0.062 0.011 1.369 0.019 1.337 0.227

r73 0.167 UDPNAG + 0.167 UDPNAM + 0.33 ALA + 0.167 DAP + 0.167 GLU + 0.833 ATP → 
PEPTIDO + 0.833 ADP

0.019 0.000 0.016 0.003 0.359 0.005 0.351 0.060

Synthesis of CELL

r74 0.0149 DNA + 0.0201 GLYCOGEN + 0.0768 LIPIDcell + 0.0250 LPScell + 0.0246 
PEPTIDO + 0.7441 PROTcell + 0.0939 RNA  →  CELL 0.434 0.006 3.750 0.638 8.306 0.118 81.169 13.799

Transport reactions
r75 GLUCOSEext → GLUCOSE 5.225 0.364 4.620 0.423 100.000 6.966 100.000 9.152
r76 LAC → LACext 0.048 0.037 0.051 0.026 0.918 0.700 1.108 0.570
r77 FORMATE → FORMATEext 7.622 0.666 7.592 0.550 145.864 12.741 164.330 11.914
r78 AC → ACext 3.701 0.282 3.560 0.328 70.839 5.393 77.056 7.097
r79 ETOH → ETOHext 4.564 0.320 3.990 0.230 87.345 6.132 86.370 4.971
r80 SUCC → SUCCext 0.460 0.115 0.385 0.097 8.808 0.000 8.339 0.000
r81 CO2 → CO2ext 0.805 0.087 0.245 0.104 15.405 1.657 5.304 2.259
Reaction r21 (underlined) was assumed not to be taking place at pH 7.4.
a Normalized fluxes are expressed as the percentage of the glucose uptake flux.



FLUX SD REV SD FLUX SD REV SD
Glucose uptake

r1  GLUCOSE + PEP →  G6P + PYR 100.000 0.000 100.000 0.000
Embden-Meyerhof-Parnas

r2 G6P → F6P 96.868 1.567 0.749 0.293 84.527 1.970 0.976 0.024
r3 F6P + ATP → 2 T3P + ADP 96.958 0.522 0.681 0.111 92.889 0.657 0.892 0.078
r4 T3P + NAD → NADH + 13P2DG
r5 13P2DG + ADP → ATP + 3PDGL
r6 3PDGL → PEP
r7 PEP + ADP → ATP + PYR 74.427 1.659 68.877 1.627

Pentose phosphate pathway
r8 G6P + 2 NADP → 2 NADPH + CO2 + RL5P 2.705 1.567 15.056 1.970
r9 RL5P → R5P 2.705 1.567 15.056 1.970
r10 RL5P → X5P 2.705 1.567 15.056 1.970
r11 R5P + X5P → T3P + S7P 0.509 0.522 0.987 0.004 4.635 0.657 0.899 0.049
r12 T3P + S7P → E4P + F6P -0.261 0.522 0.648 0.309 3.881 0.657 0.118 0.178
r13 X5P + E4P → F6P + T3P 0.509 0.522 0.981 0.015 4.635 0.657 0.918 0.066

Glycogen Metabolism
r14 G6P →  G1P 0.016 0.000 0.014 0.000
r15 G1P + ATP → ADP + GLYCOGEN 0.016 0.000 0.014 0.000

Pyruvate dissimilation and fermentation
r16 PYR + NADH → NAD + LAC 0.965 0.101 1.073 0.119
r17 PYR + COA + NAD →  ACCOA +  CO2 +  NADH 21.570 2.398 - -
r18 PYR + COA → FORMATE + ACCOA 145.846 2.423 0.436 0.012 161.889 1.696 0.427 0.014
r19 ACCOA + 2 NADH → 2 NAD + ETOH
r20 ACCOA + ADP → AC + ATP
r21 FORMATE → CO2 + H2 0.000 0.000 0.000 0.000

TCA cycle - oxidative and reductive branches
r22 PEP + CO2 → OA 14.265 1.529 0.000 0.000 15.923 1.323 0.000 0.000
r23 OA + ACCOA + NADP →  AKG + COA + NADPH + CO2 2.174 0.022 0.391 0.038 2.127 0.021 0.003 0.005
r24 OA + 2 NADH   →  SUCC + 2 NAD 8.267 1.529 0.313 0.267 10.056 1.323 0.431 0.308

Biosynthesis of amino acids
r25 OA + NADPH  → ASP + NADP 0.490 0.005 0.480 0.005
r26 OA + 3 ATP + NADPH → ASN + 3 ADP + NADP 0.490 0.005 0.480 0.005
r27 AKG + NADPH  → GLU + NADP 0.535 0.005 0.524 0.005
r28 AKG + ATP + NADPH → GLN + NADP + ADP 0.535 0.005 0.524 0.005
r29 PYR + NADPH → ALA + NADP 1.044 0.010 1.022 0.010
r30 AKG + 7 ATP + NAD + 4 NADPH  → ARG + 7 ADP + NADH + 4 NADP 0.601 0.006 0.589 0.006
r31 AKG + ATP + 3 NADPH  → PRO + ADP + 3 NADP 0.449 0.004 0.440 0.004
r32 2 PYR + ACCOA + NAD + 2 NADPH → LEU + NADH + 2 NADP + 2 CO2 0.916 0.009 0.897 0.009
r33 2 PYR + 2 NADPH → VAL + 2 NADP + CO2 0.860 0.008 0.842 0.008
r34 OA + PYR + 2 ATP + 5 NADPH → ILE + 5 NADP + 2 ADP + CO2 0.591 0.006 0.578 0.006
r35 2 PEP + E4P + ATP + 2 NADPH → PHE + 2 NADP + ADP + CO2 0.377 0.004 0.369 0.004

r36
2 PEP + E4P + ATP + NAD + 2 NADPH → TYR + ADP + NADH + 2 NADP + C02

0.280 0.003 0.274 0.003

r37 PEP + E4P + R5P + 5 ATP + 2 NAD + 3 NADPH → TRP + 5 ADP + 2 NADH + 3 NADP + 
CO2

0.116 0.001 0.113 0.001

r38 R5P + 6 ATP + 3 NAD + NADPH + 1C → HIS + 6 ADP + 3 NADH + NADP 0.193 0.002 0.189 0.002
r39 3 PDGL + NAD + NADPH → SER + NADH + NADP 0.439 0.004 0.429 0.004
r40 3 PDGL + NAD + NADPH → GLY + 1C + NADH + NADP 1.245 0.012 1.219 0.012
r41 3 PDGL + 4 ATP + NAD + NADPH → CYS + 4 ADP + NADH + NADP 0.186 0.002 0.182 0.002
r42 OA + 2 ATP + 3 NADPH → THR + 2 ADP + 3 NADP 0.516 0.005 0.505 0.005
r43 PYR + OA + 3 ATP + 4 NADPH → LYS + 3 ADP + 4 NADP + CO2 0.698 0.007 0.683 0.007
r44 OA + 7 ATP + 8 NADPH + 1C → MET + 7 ADP + 8 NADP 0.312 0.003 0.306 0.003

Biosynthesis of purines

r45
3 PDGL + R5P + 9 ATP + 3 NAD + NADPH + 1C → AMP + 9 ADP + 3 NADH + NADP

0.359 0.003 0.352 0.003

r46 3 PDGL + R5P + 11 ATP + 3 NAD + 1C → GMP + 11 ADP + 3 NADH 0.442 0.004 0.433 0.004

r47 3 PDGL + R5P + 9 ATP + 3 NAD + 2 NADPH + 1C → DAMP + 9 ADP + 3 NADH + 2 
NADP

0.054 0.001 0.052 0.001

r48
3 PDGL + R5P + 11 ATP + 3 NAD + NADPH + 1C → DGMP + 11 ADP + 3 NADH + NADP

0.055 0.001 0.054 0.001

Biosynthesis of pyrimidines
r49 OA + P5P + 5 ATP + NADPH  → UMP + 5 ADP + NADP 0.296 0.003 0.290 0.003
r50 OA + P5P + 7 ATP + NADPH  → CMP + 7 ADP + NADP 0.274 0.003 0.269 0.003
r51 OA + P5P + 5 ATP + 3 NADPH + 1C + 2 NH3  → DUMP + 5 ADP + 3 NADP 0.054 0.001 0.052 0.001
r52 OA + P5P + 7 ATP + 2 NADPH  → DCMP + 7 ADP + 2 NADP 0.055 0.001 0.054 0.001

1Carbon Metabolism (Formation of 1C)
r53 GLY + NAD → 1C + CO2 + NADH 0.100 0.000 0.277 0.267 0.100 0.000 0.989 0.248

Biosynthesis of lipid components
r54 T3P + NADPH → GLY3P + NADP 0.280 0.003 0.275 0.003
r55 8.2 ACCOA + 7.2 ATP + 14 NADPH → AVGFAT + 7.2 ADP + 14 NADP 0.561 0.005 0.549 0.005

Biosynthesis of LPS components
r56 G6P + ATP → UDPG + ADP 0.039 0.000 0.038 0.000
r57 3 PDGL + 3 ATP + NAD + NADPH → CDPETN + 3 ADP + NADH + NADP 0.058 0.001 0.057 0.001
r58 7 ACCOA + 6 ATP + 11 NADPH → OHMA + 6 ADP + 11 NADP + 7 COA 0.058 0.001 0.057 0.001
r59 7 ACCOA + 6 ATP + 12 NADPH → C14:0 + 6A DP + 12 NADP +7 COA 0.058 0.001 0.057 0.001
r60 P5P + PEP + 2 ATP → CMPKDO + 2 ADP 0.058 0.001 0.057 0.001
r61 1.5 G6P + ATP + 4 NADP → NHEP + ADP + 4 NADPH 0.058 0.001 0.057 0.001
r62 F6P + 2 ATP + NH3 → TGSM + 2 ADP 0.039 0.000 0.038 0.000

Biosynthesis of peptido components
r63 F6P + ACCOA + 3 ATP + NH3 → UDPNAG + 3 ADP + COA 0.060 0.001 0.059 0.001

r64
F6P + PEP + ACCOA + 4 ATP + NADPH + NH3 → UDPNAM + 4 ADP + NADP + COA

0.060 0.001 0.059 0.001

IRREV IRREV

Supplementary Table 1b. Reaction network model and metabolic fluxes calculated using isotopomer balancinga

158.816* 1.665

Stoichiometry

153.482* 1.696

Fluxes (isotopomer balancing, normalized)
MG1655 Pdh

190.234 0.522 IRREV IRREV

Rx#

186.309 0.657



r65 OA + PYR + 2 ATP + 3 NADPH + 2 NH3 → DAP + 2 ADP + 3 NADP 0.060 0.001 0.059 0.001
ATP maintenance

r66 ATP → ADP ND ND ND ND
Transhydrogenase

r67 NADH + NADP  →  NADPH + NAD 25.800 0.535
Synthesis of macromolecules elemental units

r68 0.105 UDPG + 0.1578 CDPETN + 0.1578 OHMA + 0.1578 C14:0 + 0.1578 CMPKDO + 
0.1578 NHEP+ 0.105TGSM → LPScell

0.366 0.004 0.358 0.003

r69 0.25 GLY3P + 0.25 SER + 0.5 AVGFAT+2ATP → LIPIDcell + 2 ADP 1.122 0.011 1.098 0.011

r70

0.0960 ALA + 0.0553 ARG + 0.0451 ASN + 0.0451 ASP + 0.0171 CYS + 0.0492 GLN + 
0.0492 GLU + 0.1145 GLY + 0.0177 HIS + 0.0543 ILE + 0.0842 LEU + 0.0641 LYS + 
0.0287 MET + 0.0346 PHE + 0.0413 PRO + 0.0403 SER + 0.0474 THR + 0.0106 TRP + 
0.0257 TYR + 0.0791 VAL + 4.3 ATP →  PROTcell + 4.3ADP

10.872 0.104 10.644 0.102

r71 0.2465 DAMP + 0.2535 DCMP + 0.2535 DGMP + 0.2465 DUMP + 5.4 ATP →  DNA + 
5.4ADP 0.217 0.002 0.213 0.002

r72 0.2619 AMP + 0.2 CMP + 0.3222 GMP + 0.2159 UMP + 4.4 ATP →  RNA + 4.4ADP 1.372 0.013 1.343 0.013

r73 0.167 UDPNAG + 0.167 UDPNAM + 0.33 ALA + 0.167 DAP + 0.167 GLU + 0.833 ATP → 
PEPTIDO + 0.833 ADP

0.360 0.003 0.352 0.003

Synthesis of CELL

r74 0.0149 DNA + 0.0201 GLYCOGEN + 0.0768 LIPIDcell + 0.0250 LPScell + 0.0246 
PEPTIDO + 0.7441 PROTcell + 0.0939 RNA  →  CELL 8.335 0.080 8.160 0.078

Transport reactions
r75 GLUCOSEext → GLUCOSE 100.000 0.000 100.000 0.000
r76 LAC → LACext 0.965 0.101 1.073 0.119
r77 FORMATE → FORMATEext 145.846 2.423 161.889 1.696
r78 AC → ACext
r79 ETOH → ETOHext
r80 SUCC → SUCCext 8.267 2.226 10.056 2.325
r81 CO2 → CO2ext 12.285 4.027 1.361 2.059
Reaction r21 (underlined) was assumed not to be taking place at pH 7.4.
a Fluxes were normalized and expressed as the percentage of the glucose uptake flux. The transhydrogenase flux (r67) was calculated based on estimated fluxes for reactions consuming 
and generating NAD(P)H and assuming redox balanced conditions.

158.816** 1.665 153.482** 1.696

* Isotopomer balancing does not differentiate between ethanol and acetate since there are no measurable carbon backbone rearrangement between the two metabolites. Hence, the reported 
flux is a sum of flux generating these metabolites.



Abbreviation Description (Reference)
1C 1 carbon carrier with methyl group
13P2DG 1,3-P-D glycerate
3PDGL 3-Phospho-D-Glycerate
AC Acetate
ACext Extracellular Acetate
ACCOA Acetyl Coenzyme A
AKG α-Ketoglutarate
ALA Alanine
AMP Adenosine monophosphate
ARG Arginine
ASN Asparagine
ASP Aspartate
ATP Adenosine triphosphate
AVGFAT Average fatty acid molecule (3, 4, 6)
C14:0 Myristic acid
CDPETN CDP-Ethanolamine
CELL Average cell with composition corresponding to a molecular weight of 143 (3, 4, 6)
CMP Cytidine monophosphate
CMPKDO CMP-2-Keto-3-deoxyoctanoate
CO2 Carbon dioxide
CO2ext Extracellular Carbon dioxide
CYS Cysteine
DAMP Deoxyadenosine monophosphate
DAP Diaminopimelate
DCMP Deoxycytidine monophosphate
DGMP 2-Deoxy-guanosine-5-phosphate
DNA Average DNA-bound nucleic acid (mol. wt. 309.38) (3, 4, 6)
DUMP Deoxyuridine monophosphate
E4P Erythrose 4-phosphate
ETOH Ethanol
ETOHext Extracellular Ethanol
F6P Fructose 6-phosphate
FORMATE Formate
FORMATEext Extracellular Formate
G1P Glucose 1-phosphate
G6P Glucose 6-phosphate
GLN Glutamine
GLU Glutamate
GLY Glycine
GLUCOSE Glucose
GLUCOSEext Extracellular Glucose
GLYCOGEN Glycogen
GLY3P Glycerol-3-phosphate
GMP Guanosine monophosphate
HIS Histidine
ILE Isoleucine
LAC Lactate
LACext Extracellular Lactate
LEU Leucine
LIPIDcell Average LIPID building block (MW 176) (3, 4, 6)
LPScell Average Lipposaccharide building block (MW 202)  (3, 4, 6)

Metabolites



LYS Lysine
MET Methionine
NADH Nicotinamide adenine dinucleotide
NADPH Nicotinamide adenine dinucleotide phosphate
NHEP Heptulose
OA Oxaloacetate
OHMA Myristic acid
PEP Phosphoenolpyruvate
PEPTIDO Average Peptidoglycan building block (MW 151)  (3, 4, 6)
PHE Phenylalanine
PRO Proline
PROTcell Average proteinogenic amino acid (MW 110) (3, 4, 6)
PYR Pyruvate
RL5P Ribulose 5-phosphate 
R5P Ribose-5-phosphate
RNA Average RNA bound nucleic acid (MW 325) (3, 4, 6)
S7P Sedoheptulose-7-P
SER Serine
SUCC Succinate
SUCCext Extracellular Succinate
T3P Glyceraldehyde-3-phosphate/Dihydroxyacetone-3-phosphate
TGSM Glucosamine
THR Threonine
TRP Tryptophan
TYR Tyrosine
UDPG UDP-Glucose
UDPNAG UDP N-acetyl glucosamine
UDPNAM UDP-N-acetyl-D-muramate
UMP Uridine monophosphate
VAL Valine
X5P Xylose-5-Phosphate

Extracellular metabolites are shown in yellow
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Nucleus Precursor Carbon backbone of the precursor leading to isotopomer frac8on Mean SD Mean SD
Ala-a (s) PYR 123 0.074 0.013 0.074 0.013
Ala-a (d1) PYR 123 0.023 0.013 0.024 0.013
Ala-a (d2) PYR 123 0.343 0.013 0.371 0.013
Ala-a (dd) PYR 123 0.560 0.013 0.531 0.013
Ala-b (s) PYR 123 0.533 0.010 0.576 0.006
Ala-b (d) PYR 123 0.468 0.010 0.424 0.006
Arg-b (s) AKG x234x 0.058 0.013 0.062 0.014
Arg-b (d) AKG x234x + x234x 0.742 0.013 0.737 0.014
Arg-b (t) AKG x234x 0.201 0.013 0.200 0.014
Arg-d (s) AKG xx345 0.100 0.005 0.104 0.007
Arg-d (d) AKG xx345 0.900 0.005 0.896 0.007
Asx-a (s) OAA 123x 0.102 0.012 0.121 0.014
Asx-a (d1) OAA 123x 0.042 0.012 0.025 0.014
Asx-a (d2) OAA 123x 0.101 0.012 0.112 0.014
Asx-a (dd) OAA 123x 0.755 0.012 0.743 0.014
Asx-b (s) OAA x234 0.442 0.005 0.468 0.006
Asx-b (d1) OAA x234 0.380 0.005 0.339 0.006
Asx-b (d2) OAA x234 0.086 0.005 0.100 0.006
Asx-b (dd) OAA x234 0.092 0.005 0.093 0.006
Glx-a (s) AKG 123xx Not observed 0.432 0.015
Glx-a (d1) AKG 123xx Not observed 0.097 0.015
Glx-a (d2) AKG 123xx Not observed 0.374 0.015
Glx-a (dd) AKG 123xx Not observed 0.097 0.015
Glx-b (s) AKG x234x 0.094 0.010 0.027 0.013
Glx-b (d) AKG x234x + x234x 0.727 0.010 0.771 0.013
Glx-b (t) AKG x234x 0.179 0.010 0.202 0.013
Glx-g (s) AKG xx345 0.476 0.005 0.477 0.006
Glx-g (d1) AKG xx345 0.059 0.005 0.065 0.006
Glx-g (d2) AKG xx345 0.410 0.005 0.409 0.006
Glx-g (dd) AKG xx345 0.054 0.005 0.049 0.006
Gly-a (s) T3P 12x 0.154 0.005 0.168 0.009
Gly-a (d) T3P 12x 0.846 0.005 0.832 0.009
His-a (s) R5P xx345 Not observed 0.098 0.019
His-a (d1) R5P xx345 Not observed 0.078 0.019
His-a (d2) R5P xx345 Not observed 0.000 0.019
His-a (dd) R5P xx345 Not observed 0.824 0.019
His-b (s) R5P x234x 0.133 0.006 0.144 0.007
His-b (d1) R5P x234x 0.681 0.006 0.663 0.007
His-b (d2) R5P x234x 0.030 0.006 0.030 0.007
His-b (dd) R5P x234x 0.156 0.006 0.163 0.007
His-d2 (s) R5P 12xxx 0.666 0.015 0.666 0.016
His-d2 (d) R5P 12xxx 0.334 0.015 0.334 0.016
Ile-a (s) OAA 12xx.x2x 0.174 0.024 0.199 0.026
Ile-a (d1) OAA 12xx.x2x 0.672 0.024 0.715 0.026
Ile-a (d2) OAA 12xx.x2x 0.061 0.024 0.000 0.026
Ile-a (dd) OAA 12xx.x2x 0.093 0.024 0.086 0.026
Ile-g1 (s) OAA xx34.x2x 0.736 0.021 0.678 0.019
Ile-g1 (d) OAA xx34.x2x + xx34.x2x 0.230 0.021 0.270 0.019
Ile-g1 (t) OAA xx34.x2x 0.033 0.021 0.052 0.019
Ile-d (s) OAA xx34 0.833 0.032 0.833 0.021
Ile-d (d) OAA xx34 0.167 0.032 0.167 0.021
Ile-g2 (s) PYR x23 0.537 0.032 0.535 0.021
Ile-g2 (d) PYR x23 0.463 0.032 0.465 0.021
Leu-a (s) ACCOA 12.x2x 0.473 0.022 0.464 0.033
Leu-a (d1) ACCOA 12.x2x 0.412 0.022 0.404 0.033
Leu-a (d2) ACCOA 12.x2x 0.065 0.022 0.079 0.033
Leu-a (dd) ACCOA 12.x2x 0.051 0.022 0.053 0.033
Leu-b (s) PYR x2.x2x.x2x 0.696 0.022 0.666 0.022
Leu-b (d) PYR x2.x2x.x2x + x2.x2x.x2x 0.258 0.022 0.264 0.022
Leu-b (t) PYR x2.x2x.x2x 0.046 0.022 0.071 0.022
Leu-d1 (s) PYR x23 0.646 0.027 0.647 0.019
Leu-d1 (d) PYR x23 0.354 0.027 0.353 0.019
Leu-d2 (s) PYR xx3.x2x 0.884 0.027 0.889 0.019
Leu-d2 (d) PYR xx3.x2x 0.116 0.027 0.111 0.019
Lys-b (s) PYR/OAA 0.5{x234 + x23.xxx4} 0.476 0.011 0.464 0.022
Lys-b (d) PYR/OAA 0.5{x234 + x23.xxx4 + x234 + x23.xxx4} 0.438 0.011 0.447 0.011
Lys-b (t) PYR/OAA 0.5{x234 + x23.xxx4} 0.086 0.011 0.089 0.011
Lys-g (s) OAA xx34.xx3 0.527 0.016 0.546 0.016
Lys-g (d) OAA xx34.xx3 + xx34.xx3  0.352 0.016 0.346 0.016
Lys-g (t) OAA xx34.xx3 0.121 0.016 0.109 0.016
Lys-d (s) PYR/OAA 0.5{x234 + x23·xxx4} 0.429 0.011 0.422 0.012

MG1655 PDH‐

Supplementary Table 2. Isotopomer abundances of intracellular precursor metabolites in MG1655 and
Pdh grown on a mixture of labeled and unlabeled glucose (12.5% U-13C, 25%1-13C , 62.5% unlabeled )a. 



Lys-d (d) PYR/OAA 0.5{x234 + x234 + x23·xxx4 + x23·xxx4} 0.457 0.011 0.459 0.012
Lys-d (t) PYR/OAA 0.5{x234 + x23·xxx4} 0.115 0.011 0.119 0.012
Lys-e (s) PYR/OAA 0.5{x23+x23x} 0.110 0.008 0.111 0.011
Lys-e (d) PYR/OAA 0.5{x23+x23x} 0.890 0.008 0.889 0.011
Met-a (s) OAA 123x 0.105 0.022 0.113 0.022
Met-a (d1) OAA 123x 0.036 0.022 0.034 0.022
Met-a (d2) OAA 123x 0.088 0.022 0.105 0.022
Met-a (dd) OAA 123x 0.771 0.022 0.748 0.022
Met-b (s) OAA x234 0.485 0.024 0.445 0.024
Met-b (d) OAA x234 + x234 0.415 0.024 0.423 0.024
Met-b (t) OAA x234 0.100 0.024 0.132 0.024
Met-g (s) OAA xx34 0.888 0.023 0.891 0.023
Met-g (d) OAA xx34 0.112 0.023 0.109 0.023
Phe-a (s) PEP 123 0.060 0.017 0.102 0.017
Phe-a (d1) PEP 123 0.000 0.017 0.001 0.017
Phe-a (d2) PEP 123 0.064 0.017 0.002 0.017
Phe-a (dd) PEP 123 0.876 0.017 0.895 0.017
Phe-b (s) PEP x23.x2x 0.515 0.022 0.507 0.022
Phe-b (d1) PEP x23.x2x 0.378 0.022 0.376 0.022
Phe-b (d2) PEP x23.x2x 0.054 0.022 0.058 0.022
Phe-b (dd) PEP x23.x2x 0.052 0.022 0.059 0.022
Phe-d (s) PEP/E4P 0.5{x23.1xxx+x2x.xx34} 0.641 0.026 0.641 0.029
Phe-d (d) PEP/E4P 0.5{x23.1xxx+x2x.xx34+x23.1xxx+x2x.xx34} 0.331 0.026 0.331 0.029
Phe-d (t) PEP/E4P 0.5{x23.1xxx+x2x.xx34} 0.028 0.026 0.028 0.029
Pro-a (s) AKG 123xx 0.432 0.005 0.432 0.008
Pro-a (d1) AKG 123xx 0.088 0.005 0.087 0.008
Pro-a (d2) AKG 123xx 0.390 0.005 0.388 0.008
Pro-a (dd) AKG 123xx 0.089 0.005 0.092 0.008
Pro-b (s) AKG x234x 0.046 0.010 -0.004 0.031
Pro-b (d) AKG x234x + x234x 0.737 0.010 0.709 0.031
Pro-b (t) AKG x234x 0.209 0.010 0.295 0.031
Pro-g (s) AKG xx345 0.418 0.011 0.426 0.015
Pro-g (d) AKG xx345 + xx345 0.465 0.011 0.468 0.015
Pro-g (t) AKG xx345 0.117 0.011 0.107 0.015
Pro-d (s) AKG xxx45 0.099 0.008 0.093 0.008
Pro-d (d) AKG xxx45 0.901 0.008 0.907 0.008
Ser-a (s) 3PDGL 123 0.069 0.011 0.094 0.011
Ser-a (d1) 3PDGL 123 0.053 0.011 0.226 0.011
Ser-a (d2) 3PDGL 123 0.000 0.011 0.059 0.011
Ser-a (dd) 3PDGL 123 0.879 0.011 0.621 0.011
Ser-b (s) 3PDGL x23 0.733 0.017 0.726 0.017
Ser-b (d) 3PDGL x23 0.267 0.017 0.274 0.017
Thr-a (s) OAA 123x 0.120 0.009 0.123 0.009
Thr-a (d1) OAA 123x 0.022 0.009 0.023 0.009
Thr-a (d2) OAA 123x 0.103 0.009 0.101 0.009
Thr-a (dd) OAA 123x 0.754 0.009 0.752 0.009
Thr-b (s) OAA x234 0.498 0.010 0.488 0.014
Thr-b (d) OAA x234 + x234 0.417 0.010 0.424 0.014
Thr-b (t) OAA x234 0.085 0.010 0.088 0.014
Thr-g (s) OAA xx34 0.811 0.015 0.810 0.021
Thr-g (d) OAA xx34 0.188 0.015 0.190 0.021
Tyr-a (s) PEP 123 0.112 0.013 0.134 0.013
Tyr-a (d1) PEP 123 0.005 0.013 0.002 0.013
Tyr-a (d2) PEP 123 0.010 0.013 0.003 0.013
Tyr-a (dd) PEP 123 0.873 0.013 0.862 0.013
Tyr-b (s) PEP x23.x2x 0.516 0.011 0.495 0.011
Tyr-b (d) PEP x23.x2x + x23.x2x  0.414 0.011 0.413 0.011
Tyr-b (t) PEP x23.x2x 0.075 0.011 0.093 0.011
Tyr-d (s) PEP/E4P 0.5{x23.1xxx+x2x.xx34} 0.520 0.012 0.520 0.012
Tyr-d (d) PEP/E4P 0.5{x23.1xxx+x2x.xx34+x23.1xxx+x2x.xx34} 0.435 0.012 0.435 0.012
Tyr-d (t) PEP/E4P 0.5{x23.1xxx+x2x.xx34} 0.044 0.012 0.044 0.012
Tyr-e (s) E4P 0.5{12xx.xx3+ x234} 0.391 0.009 0.391 0.009
Tyr-e (d) E4P 0.5{12xx.xx3+ x234 + x234 + 12xx.xx3} 0.175 0.009 0.175 0.009
Tyr-e (t) E4P 0.5{12xx.xx3+ x234} 0.434 0.009 0.434 0.009
Val-a (s) PYR 12x.x2x 0.361 0.022 0.389 0.024
Val-a (d1) PYR 12x.x2x 0.525 0.022 0.469 0.024
Val-a (d2) PYR 12x.x2x 0.049 0.022 0.072 0.024
Val-a (dd) PYR 12x.x2x 0.065 0.022 0.070 0.024
Val-g1 (s) PYR x23 0.545 0.028 0.549 0.015
Val-g1 (d) PYR x23 0.455 0.028 0.451 0.015
Val-g2 (s) PYR xx3.x2x 0.883 0.028 0.884 0.015
Val-g2 (d) PYR xx3.x2x 0.117 0.028 0.116 0.015

aIsotopomer abundances were measured from multiplets of cross-peaks of proteinogenic amino acids on [13C, 1H] HSQC spectra and are reported as
fractions of the total signal of the corresponding cross-peak. Standard deviations were derived from measured signal:noise ratios of the NMR spectra.
Isotopomers are grouped and color-coded by the metabolic precursors from which they originate. Multiplets abbreviations are as described in the manuscript.  



Supplementary Table 3. Probabilistic expressions developed to calculate the relative intensities 

of 13C multiplet components in biosynthetically directed 13C-labeled amino acids.  

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The fractions of glucose isotopomers are represented as x (fraction of U-13C labeled glucose), y (fraction of 1-13C 

labeled glucose), and 1-x-y (fraction of unlabeled glucose). The unlabeled carbon atoms exhibit natural 13C labeling 

with a probability Pn (Szypreski, 1995). A central carbon atom (cent) can exhibit nine peaks corresponding to four 

relative isotopomer intensities Is, Ida, Idb and Idd (Szypreski, 1995). These arise from a singlet (s), a doublet split by a 

small coupling constant (da), a doublet split by a larger coupling constant (db), and a doublet of doublets (dd). A 

terminal carbon atom (term) can exhibit two relative intensities, Is and Id. A vector I can be defined such that Iterm = 

(Is, Id) and Icent = (Is, Ida, Idb, Idd). The vector Ki, on the other hand, denotes the relative intensities of multiplet 

components (with i denoting the number of intensities). Ki is defined as Ki = (Ki
s, Ki

s)⟨i = 1, 2⟩ for a terminal carbon 

and Ki = (Ki
s, Ki

da, Ki
db, Ki

dd)⟨i = 1, 2a, 2b, 3⟩ for a central carbon (Szypreski, 1995). 

− Szypreski, T. 1995. Biosynthetically directed fractional 13 C labeling of proteinogenic amino acids. Eur. J. 

Biochem. 232:433-448. 
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labeled glucose), and 1-x-y (fraction of unlabeled glucose). The unlabeled carbon atoms exhibit natural 
13

C labeling 4 

with a probability Pn (Szypreski, 1995). A central carbon atom (cent) can exhibit nine peaks corresponding to four 5 

relative isotopomer intensities Is, Ida, Idb and Idd (Szypreski, 1995). These arise from a singlet (s), a doublet split by a 6 

small coupling constant (da), a doublet split by a larger coupling constant (db), and a doublet of doublets (dd). A 7 

terminal carbon atom (term) can exhibit two relative intensities, Is and Id. A vector I can be defined such that Iterm = 8 

(Is, Id) and Icent = (Is, Ida, Idb, Idd). The vector K
i
, on the other hand, denotes the relative intensities of multiplet 9 

components (with i denoting the number of intensities). K
i
 is defined as K

i
 = (Ki

s, Ki
s)!i = 1, 2" for a terminal carbon 10 

and K
i
 = (Ki

s, Ki
da, Ki

db, Ki
dd)!i = 1, 2a, 2b, 3" for a central carbon (Szypreski, 1995).  11 
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Abstract 1 

Metabolic fluxes are an important physiological characteristic, providing a global 2 

perspective of the integrated functioning between levels of transcripts, proteins, and metabolites 3 

to cellular phenotype. Comprehensive metabolic flux maps for Escherichia coli under anaerobic 4 

conditions were determined by using a mixture of differently labeled glucose and compared to 5 

conventional flux maps and comprehensive metabolic flux maps obtained with using only U-13C 6 

glucose as the substrate.  As expected, conventional flux analysis performs poorly in comparison 7 

to 13C-MFA, especially in the elucidation of carbon partitioning between the Embden-Meyerhof-8 

Parnas (EMP) and pentose phosphate (PP) pathways. An identifiability analysis indicated that a 9 

mixture of 10% U-l3C glucose, 25 % 1-13C glucose, and 65% naturally labeled glucose would 10 

significantly improve the statistical quality of calculated fluxes over other labeling schemes. 11 

Indeed, experimentally the statistical quality of all fluxes in the PP pathway, the EMP pathway, 12 

the anaplerotic reactions, and the tricarboxylic acid cycle were improved. The effect of network 13 

topology was studied by investigating the distribution of metabolic fluxes in the presence and 14 

absence of the Entner-Doudoroff pathway, the malic enzyme, and the glyoxylate shunt. These 15 

changes did not affect the value or quality of estimated fluxes in a significant way. Another 16 

aspect investigated was the possibility of estimating intracellular fluxes from labeling data alone. 17 

While the combined acetate-ethanol flux can be estimated from the labeling information, the 18 

fluxes around the formate node cannot be estimated in the absence of a formate measurement.  19 

 20 

Keywords: Escherichia coli, identifiability, anaerobic, metabolic flux analysis,21 
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 3 

Introduction 1 

 2 

Metabolic flux analysis (MFA) has become an important tool in cellular physiology and 3 

metabolic engineering as it allows the quantification of steady state intracellular fluxes in a 4 

metabolic network. 1-3 Flux measurements and changes in the distribution of metabolic fluxes in 5 

response to genetic and environmental perturbations contribute to elucidating the contribution of 6 

various pathways in cellular metabolism and can support the design of metabolic engineering 7 

strategies.4  8 

The classical approach of analyzing intracellular carbon fluxes is metabolite balancing 5 9 

and we refer to it here as conventional metabolic flux analysis (c-MFA). c-MFA is based on 10 

mass balances around intracellular metabolites (which are considered in pseudo steady state) 11 

with the measurements of extracellular fluxes acting as constraints for flux calculation. 12 

Frequently, the lack of enough measurements requires assumptions about redox 13 

(NADH/NADPH) or energy (ATP) balances. However, incomplete knowledge about pathways 14 

involving NADH/NADPH or ATP (which is very common as these cofactors are involved in a 15 

very large number of reactions) can lead to incorrect flux estimation. Moreover, c-MFA cannot 16 

account for parallel metabolic pathways, metabolic +cycles, and reversible or bidirectional 17 

reactions.
6  18 

The use of 13C-labeled substrates provides additional constraints to the stoichiometric 19 

equations used in c-MFA, avoiding assumptions about redox and energy balances and potentially 20 

accounting for parallel pathways, cycles, and reversibility.5 In this approach, a mixture of a 21 

specifically 13C-labeled substrate and a naturally abundant version of the same substrate are fed 22 

to the organism of interest and the 13C enrichments or isotopomer distributions in the carbon 23 

Page 3 of 43

John Wiley & Sons

Biotechnology Progress

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 4 

atoms of different metabolites are measured. The most common metabolites used for this 1 

purpose are proteinogenic amino acids because they are abundant, stable, and their labeling 2 

pattern reflects that of precursors metabolites generated in central metabolism. In one approach 3 

introduced by Szyperski,7 the biosynthetically directed fractional 13C labeling of proteinogenic 4 

amino acids is measured through 2-D [13C, 1H] HSQC (Heteronuclear Single-Quantum 5 

Coherence) or COSY (Correlation Spectroscopy) NMR experiments. Probabilistic equations are 6 

then used to relate the observed multiplet intensities of the 13C fine structures to the relative 7 

abundance of the intact carbon fragments and are very useful in the quantitative study of 8 

intermediary metabolism.7,8 An extended version of this approach, called metabolic flux ratio 9 

(MetaFoR) analysis, was later introduced by Szyperski and co-workers.9 MetaFoR aims at 10 

obtaining relative local fluxes around a node from the abundances of intact carbon fragments in 11 

metabolites (calculated from the aforementioned 2-D [13C, 1H] NMR data).10,11 Comprehensive 12 

13C-based metabolic flux analysis (13C-MFA), which cannot be performed with MetaFoR, is 13 

achieved through a modeling approach that requires information on the metabolic network, 14 

labeling patterns of amino acids, and extracellular fluxes. This information is combined in an 15 

error function that accounts for the average difference between measured and simulated labeling 16 

patterns. An iterative, optimization procedure is followed to solve for intracellular fluxes that 17 

minimize this error function.5,12 18 

While 13C-MFA has been extensively used to study the metabolism of wild-type and 19 

recombinant E. coli growing under aerobic conditions,13-22 only a handful of studies has 20 

examined fermentative metabolism.7,17,23 Among the latter, Szyperski7 used biosynthetically 21 

directed fractional 13C labeling of proteinogenic amino acids to analyze important metabolic 22 

branch points under anaerobic conditions. The NMR data were used to calculate the bond 23 
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 5 

integrity of precursor molecules that were in turn used to estimate flux ratios. Using the same 1 

NMR data, Schmidt et al.
23 carried out the first comprehensive 13C-MFA where isotopomer 2 

balances were used in conjunction with constrains from extracellular fluxes. However, the 3 

extracellular measurements used in the flux estimation criterion were obtained from a different 4 

study conducted with unlabeled glucose.24 Using the MetaFoR approach described above, Sauer 5 

et al.
17 reported the analysis of flux ratios at a few nodes under anaerobic conditions.  6 

None of the aforementioned studies examined the appropriate labeling required to 7 

identify metabolic fluxes during the anaerobic fermentation of glucose in E. coli. In this work, 8 

we report the design of 13C labeling experiments, including identifiability analysis, to estimate 9 

metabolic fluxes in E. coli during the fermentative metabolism of glucose. We found that the use 10 

of 1-13C- and U-13C-labeled glucose in combination with extracellular measurements yielded the 11 

most reliable estimate of intracellular fluxes.  12 

 13 

Materials and Methods 14 

 15 

Strain, medium and culture conditions 16 

Escherichia coli K12 strain W3110 (ATCC 27325) was used throughout the study. The 17 

minimal media25 with 1% glucose was used. Ten-time-concentrated media solution was prepared 18 

and stored at -20 oC after filter sterilization. Chemicals were obtained from Fisher Scientific 19 

(Pittsburgh, PA) and Sigma-Aldrich Co. (St Louis, MO), except 13C-labeled glucose, which was 20 

obtained from Cambridge Isotope Ltd (Andover, MA). 21 

Fermentations were conducted in a 1L bioreactor (Bioflow 110, New Brunswick 22 

Scientific, Edison, NJ) with a working volume of 0.9 L and independent control of temperature 23 
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 6 

(37 °C), pH (6.8), and stirrer speed (200 r.p.m.). The system is fully equipped and computer 1 

controlled using manufacturer BioCommand software. A condenser was installed and operated at 2 

4 oC to minimize evaporation out of the bioreactor vessel. The pH was controlled by adding 4M 3 

KOH and anaerobic conditions were maintained by flushing the headspace with high purity 4 

nitrogen (Airgas North Central, Des Moines, IA).  5 

Pre-cultures used to inoculate the above fermenters were prepared as follows. A single 6 

colony was used to inoculate two 50 mL conical tubes (BD Biosciences, San Jose, CA) 7 

completely filled with minimal medium supplemented with 10 g/L of glucose. The tubes were 8 

placed in a rotator and kept at 37 °C until a cell density of 0.6 OD550 (Genesys 20, Thermo 9 

Scientific, MA, USA) was reached. This actively growing pre-culture was centrifuged at 5000g 10 

for 15 min at 4 oC and the pellet resuspended in minimal medium to inoculate the fermenter with 11 

a target starting OD550 of 0.05.  12 

 13 

Analytical methods 14 

Optical density was measured at 550 nm in a Genesys 20 spectrophotometer (Thermo 15 

Scientific, MA, USA) and used as an estimate of cell mass (1 O.D.550 = 0.36 g dry weight/L). 16 

After centrifugation, the supernatants were stored at -20 °C for HPLC (High Performance Liquid 17 

Chromatography) analysis (glucose and fermentation products) using a Waters HPLC system 18 

(Milford, MA) with a 410 refractive index (RI) detector. The Aminex column (HPX-87H, Bio-19 

Rad, Hercules, CA, USA) was maintained at 42 oC and 5 mM H2SO4 was used as the mobile 20 

phase at a flow rate of 0.3 mL/min. 21 

 22 

Sample preparation for NMR experiments 23 
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 7 

Experiments with 13C-labeled glucose were conducted to assess the incorporation of this 1 

carbon source into proteinogenic biomass, information that was then used to calculate 2 

isotopomer abundance and estimate intracellular fluxes (see next sections). Two experiments 3 

were carried out, one with 10% U-13C glucose and 90% naturally labeled glucose and another 4 

one with 10% U-13C glucose, 25% 1-13C glucose and 65% naturally labeled glucose. Cultures 5 

grown as described in the previous section were harvested when the OD550 was 0.6 (mid 6 

exponential phase) and kept in an ice-water bath. The cells were centrifuged at 5000g for 15 min 7 

at 4˚C and the pellets washed with 0.9% saline water. An appropriate amount of the pellet was 8 

transferred to hydrolysis tubes (Pierce Endogen, Rockford, IL), to which 6 N hydrochloric acid 9 

was added (1 mL of HCl per 4 mg of biomass). The hydrolysis was performed at 110°C for 12 10 

hours after flushing the tubes with nitrogen. The acid in the protein hydrolysates was evaporated 11 

in a Rapidvap evaporator (Labconco, Kansas City, MO). The residue was reconstituted in 2 mL 12 

of deionized water, lyophilized for 72 h, and dissolved in 500 µL D2O in an NMR tube. The pH 13 

of the NMR sample was adjusted to 1 using DCl. 14 

 15 

NMR experiments and calculation of isotopomer fractions 16 

Samples prepared as described above were analyzed via NMR spectroscopy to determine 17 

the labeling pattern of proteinogenic amino acids. Two-dimensional Heteronuclear Single-18 

Quantum Coherence [13C,1H]-correlation (2D 1H-13C HSQC) NMR spectra9,26,30 were acquired 19 

on a Bruker Avance DRX 500 MHz spectrometer (Bruker Instruments, Billerica, MA) at 298 K. 20 

The reference to 0 ppm was set using the methyl signal of dimethylsilapentane sulfonate (Sigma, 21 

St. Louis) as an internal standard. The resonance frequency of 13C and 1H were 125.7 MHz and 22 

499.9 MHz, respectively. The spectral width was 5,482.26 Hz along the 1H (F2) dimension and 23 
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 8 

5,028.05 Hz along the 13C (F1) dimension. Peak aliasing was used in order to minimize the 1 

sweep width along the F1 dimension. The number of complex data points was 1,024 (1H) x 900 2 

(13C). A modification of the INEPT (insensitive nuclei enhanced by polarization transfer) pulse 3 

sequence was used for acquiring HSQC spectra. The number of scans was generally set to 16.  4 

The software Xwinnmr (Bruker Instruments, Billerica, MA) was used to acquire all 5 

spectra, and the software NMRView27 was used to quantify nonoverlapping multiplets on the 6 

HSQC spectrum. Overlapping multiplets (α-amino acids), which could not be processed with 7 

NMRView, were quantified by a previously developed peak deconvolution software28 that is 8 

based on the spectral processing algorithm proposed by Van Winden et al.29 The standard 9 

deviations associated with the NMR intensity measurements were estimated from the noise to 10 

peak intensity ratio with minimum set to 1%. The resulting intensities were used to calculate the 11 

isotopomer fractions shown in Supplementary Table 4. Isotopomer fractions, in turn, represent 12 

the key input used in the calculation of metabolic fluxes as described in the next section. 13 

 14 

Metabolic flux analysis (MFA) 15 

The metabolic network used in the Metabolic Flux Analysis (MFA) is shown in Figure 1 16 

and Supplementary Table 1. MFA was conducted using two different approaches. First, 17 

intracellular fluxes were estimated based on network stoichiometry and extracellular 18 

measurements using the technique of metabolite balancing,1 which we refer to here as 19 

“conventional” MFA (c-MFA). The metabolic network consists of reactions involved in the 20 

transport and phosphorylation of glucose via the (PEP)-dependent phosphotransferase system 21 

(PTS), the Embden-Meyerhof-Parnas (EMP) and Pentose Phosphate (PP) pathways, anaplerotic 22 
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 9 

reactions, reductive and oxidative branches of the tricarboxylic acid (TCA) cycle, along with 1 

fermentative and biosynthetic reactions (Figure 1) (see also Supplementary Table 1). The 2 

stoichiometric model used for c-MFA consisted of 37 reactions (fluxes) and 20 balanceable 3 

metabolites (rows in Supplementary Table 2), thus resulting in a system with 17 degrees of 4 

freedom. The fermentation data was used to calculate 17 extracellular fluxes (i.e. specific rates) 5 

associated with biomass synthesis, consumption of glucose, and synthesis of fermentation 6 

products (columns in blue color in Supplemenary Table 2). The availability of these 17 7 

extracellular fluxes made the system determined and allowed the calculation of intracellular 8 

fluxes without the use of an optimization routine. Three independent pairs of measurements were 9 

used in the calculations, thus allowing the estimation of standard deviations.  10 

A second MFA technique, based on the use 13C labeled substrate(s), NMR analysis and 11 

isotopomer balancing, was also employed to estimate intracellular fluxes (referred to here as 13C-12 

based MFA or 13C-MFA). The metabolic network was similar to that described above for c-MFA 13 

but now accounted for reversibility of reactions, cyclic nature of the TCA cycle, and included the 14 

glyoxylate shunt and other reactions as described below (see Supplementary Table 3 and Figure 15 

1). The carbon fate of precursors leading to proteinogenic amino acids was established based on 16 

the work of Szyperski.7 The synthesis of serine from 3-phospho-glycerate and the one carbon 17 

metabolism of serine to glycine were also included in the model. Fermentation reactions leading 18 

to acetate and ethanol from acetyl-CoA (Figure 1) were combined as they lead to similar carbon 19 

rearrangement. Triose phosphates were considered as a single metabolite pool (G3P). Since a 20 

high exchange between ribose-5-phosphate and xylose-5-phosphate was observed, a single 21 

pentose phosphate pool (R5P) was assumed. The reactions leading to the oxidative pentose 22 

pathway (ox-PPP, glucose-6-phosphate dehydrogenase) and the TCA cycle (citrate synthase) 23 
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 10 

were considered irreversible with no negative flux allowed through them. The reactions through 1 

phosphoglucose isomerase and enolase in the EMP pathway and transketolases and 2 

transaldolases in the PPP (Figure 1) were considered reversible. The flux though pyruvate 3 

formate lyase was also assumed to be reversible. Since succinate is a symmetric molecule, the 4 

scrambling reaction was also included in the model. The forward ( 1V ) and backward ( 1−V ) fluxes 5 

associated with each reversible reaction step were transformed into a net flux ( netV ) and extent of 6 

reversibility ( r ) 7 

Vnet = V1 −V−1                     
( )
( )11

1,1

,max

min

−

−
=

VV

VV
r                    (1) 8 

In order to avoid numerical problems, the extents of reversibility were constrained 9 

between 0 and 0.99.  10 

The flux of precursor metabolites toward biomass was estimated based on measurements 11 

of biomass yield and literature data on biomass composition (Table 1). The following were 12 

chosen as free fluxes: glucose uptake, production of lactate and succinate, oxidative pentose 13 

pathway (ox-PPP), glyoxylate shunt pathway, and biomass synthesis. The extents of reversibility 14 

were also considered as free parameters. The pools of intracellular metabolites were assumed to 15 

be in isotopic steady state and the dilution effect in HSQC labeling measurement due to initial 16 

unlabeled biomass was considered negligible. 17 

Estimation of intracellular fluxes via 13C-MFA required modifying the computer program 18 

NMR2Flux (originally developed to estimate metabolic fluxes in plants28,30) to a generic form 19 

that uses as input metabolic network information from any system (i.e. reaction stoichiometries 20 

and carbon skeleton rearrangements). The other input to the software are isotopomer abundances 21 

and extracellular flux and biomass composition data, which were obtained as described in 22 
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 11 

previous sections. NMR2Flux estimates fluxes by minimizing the difference between simulated 1 

and experiment NMR intensities. Free fluxes are first guessed and used to calculate all 2 

intracellular fluxes using stoichiometric balances. The calculated set of fluxes allows estimating 3 

labeling patterns for proteinogenic amino acids (i.e. simulated intensities, Isim). A chi-square (χ2) 4 

is then calculated for the difference between simulated and experimental intensities (Isim and Iexp, 5 

respectively). The extracellular flux measurements (Fmes) of acetate-ethanol and formate were 6 

also included in the χ2. 7 

2 2
exp2

2 2
exp

( ) ( )sim mes sim
I I F F

N N
χ

− −
= +

                                      (2) 8 

The set of fluxes that gives minimum χ2 is taken as the best estimate of the metabolic 9 

fluxes. To verify the global error minimum, multiple simulations were carried out from different 10 

starting points. A statistical error analysis was performed by using a Monte Carlo simulations 11 

approach31 in which synthetic NMR intensities were used as surrogate for experimental data. 12 

Finally, the set of 100 flux distributions obtained by Monte Carlo simulation were used to 13 

calculate standard deviations for the fluxes.  14 

 15 

Identifiability analysis 16 

An identifiability analysis was conducted to determine the effect of substrate labeling on 17 

the statistical identifiability of the fluxes32,33. This analysis used the information content (IC) as 18 

the objective criterion for identifiability. IC is defined as the reciprocal of the geometric mean of 19 

the standard deviation (SD) of the fluxes. The geometric mean of the SD is the nth root of D 20 

( n D ), where n is number of flux parameters and D is the D-criterion that measures the volume 21 

of the confidence ellipsoid of the evaluated flux parameters and which is equal to the 22 

Page 11 of 43

John Wiley & Sons

Biotechnology Progress

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 12 

determinant of the covariance matrix of the flux parameters. Expressions for IC and D are as 1 

follows: 2 

n D
IC

1
=    D = det (Cov (P))                      (3) 3 

The free flux parameters (P) and the NMR intensities (I) are related through a non-linear 4 

relationship of the form )(PhI =  5 

The NMR2Flux software previously developed in our group evaluates flux parameters 6 

iteratively from the labeling data. All computations of IC are reported with respect to a reference 7 

experiment with 10% U-13C glucose as the only labeled substrate. Various combinations of U-8 

13C glucose, 1-13C glucose and naturally labeled glucose were examined for their ability to 9 

provide an improved labeling data set. 10 

 11 

Results and Discussion 12 

 13 

Metabolic fluxes calculated using conventional metabolic flux analysis 14 

The fermentation data for the anaerobic growth of strain W3110 on glucose was used to 15 

obtain the measured fluxes shown in Table 1. Acetate, ethanol, succinate, and lactate were the 16 

major fermentation products. Ethanol and acetate production was high compared to other 17 

fermentation products, as this partition of carbon is known to be favorable to support redox 18 

balance and generation of ATP in the absence of external electron acceptors.34 Metabolite 19 

balancing, referred to here as conventional metabolic flux analysis (c-MFA), was then used to 20 

calculate the intracellular fluxes by making use of the measured fluxes (Table 1) and the 21 

stoichiometric model described in Supplementary Table 3. The following assumptions were 22 

made in constructing the model. The TCA cycle was assumed to be incomplete, and thus 23 
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 13 

operating as two (oxidative and reductive) branches.35 The glyoxylate shunt pathway has also 1 

been reported inactive during glucose metabolism due to repression by this carbon source 13,36 2 

and hence was not considered in the model. Fluxes are considered to be net fluxes because c-3 

MFA cannot account for reaction reversibility. These assumptions yielded an exactly determined 4 

metabolic model. The condition number of the stoichiometric matrix consisting of mass balances 5 

of intracellular metabolites was found to be 8 (Supplementary Table 2), indicating a well-6 

conditioned matrix.1 Measurements of glucose utilization, synthesis of fermentation products, 7 

and biomass formation (Table 1) were used to calculate the intracellular fluxes, with a selected 8 

group of them shown in Table 2 (see Supplementary Table 3 for all calculated fluxes). The 9 

fluxes are reported relative to 100 moles of glucose and standard deviations were estimated using 10 

a Monte Carlo simulation approach as described in Materials and Methods.   11 

The flux through pyruvate formate lyase (pfl), an enzyme that catalyzes the conversion of 12 

pyruvate to acetyl-CoA and formate, was found to be 144.8±10.5 (Table 2) suggesting very high 13 

activity under anaerobic conditions. Most of the produced formate was secreted to the 14 

extracellular medium (135.9±3.8), with only about 6% converted to carbon dioxide and 15 

hydrogen (8.9±11.2) by the action of formate hydrogenlyase (fhl) (Table 2). The combined flux 16 

for the conversion of acetyl-CoA-to-ethanol and acetyl-CoA-to-acetate was found to be 17 

133.9±10.5. The flux through the other major pathway consuming pyruvate (i.e. conversion to 18 

lactate through ldh) was much lower (11.6±4.6). The higher flux through pfl is advantageous as 19 

the production of equimolar amounts of ethanol and acetate from glucose is the most ATP 20 

efficient anaerobic mode producing three molecules of ATP per molecule of glucose fermented 21 

in a redox balanced manner.34 The succinate flux was found to be very small (5.5±0.8).  22 
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 14 

While most fluxes in the Embden-Meyerhof-Parnas (EMP) pathway exhibited small 1 

standard deviations (11.2), the standard deviation of the first step (catalyzed by the enzyme 2 

phosphoglucose isomerase) was about three times larger (33.7) (Table 2). This resulted in a very 3 

large coefficient of variation (CV = standard deviation/average ���� 100) of 61% for the 4 

phosphoglucose isomerase flux (pgi). A substantial flux was calculated for the pentose phosphate 5 

pathway (PPP) (Table 2), suggesting that this pathway may be active during anaerobic 6 

fermentation of glucose, which is consistent with previous findings.7,17,23 However, all fluxes in 7 

the PPP, including that through its oxidative branch (ox-PPP, flux zwf: conversion of glucose-6-8 

phosphate to 6-phosphogluconolactone, catalyzed by glucose-6-phosphate dehydrogenase), 9 

exhibited large standard deviations (Table 2) with average CV of 78.7 % (Supplementary Table 10 

3). When taken together, the above results indicate a poor resolution of metabolic fluxes at 11 

glucose-6-phosphate, a key metabolic node that determines the partition of carbon flux between 12 

EMP and PPP.  13 

The other group of reactions with large error in estimated fluxes were associated with 14 

fermentative pathways, primarily those involved in the conversion of formate to carbon dioxide 15 

and hydrogen (catalyzed by the enzyme FHL, fhl flux) and the carbon dioxide evolution flux 16 

(Table 2 and Supplementary Table 3). As in the case of glucose-6-phosphate, this result indicates 17 

poor resolution of flux partition at the formate node. 18 

 19 

Metabolic flux analysis using uniformly (U)-
13

C-labeled glucose  20 

13C labeling data provide additional measurements that can be used to extend the analysis 21 

conducted with c-MFA, thus obtaining a more comprehensive characterization of metabolic 22 

fluxes and network topology.5,12 To this end, a 13C labeling experiment was carried out using 23 
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 15 

10% uniformly (U)-labeled-13C glucose and 90% naturally labeled glucose (referred to as U-13C 1 

experiment). Exponentially growing cells were harvested and the protein extracted and 2 

hydrolyzed. A two-dimensional [1H, 13C] Heteronuclear Single-Quantum Coherence (HSQC) 3 

spectrum of the proteinogenic amino acids thus obtained was acquired (Figure 2A). Carbon 4 

atoms of 13 amino acids were identified by their unique 13C/1H chemical shifts, distinctive 5 

coupling patterns, and J-coupling constants (JCC).30, 37 Upon quantification of peak integrals 91 6 

peak intensities from 31 sets of relative isotopomer abundances were obtained, corresponding to 7 

31 observed carbon atoms of proteinogenic amino acids, as shown in Supplementary Table 4. 8 

The reactions corresponding to the TCA cycle and the glyoxylate shunt were now 9 

included in the stoichiometric model and reaction reversibility was also accounted for.  The new 10 

model contains 40 net reactions, 11 reversible reactions and 1 scrambling reaction: i.e. a total of 11 

52 fluxes to be estimated (Supplementary Table 3). Assuming pseudo steady state, 21 12 

intracellular metabolite balances contribute to 21 linear constraints. Hence, the model has 31 13 

parameters including 11 reversibility parameters, 1 scrambling parameter, and 19 independent 14 

flux parameters. The fluxes corresponding to the incorporation of 12 precursor metabolites into 15 

biomass were estimated using data on biomass yield and biomass composition reported in the 16 

literature (Table 1). The extracellular fluxes of glucose, lactate and succinate were obtained from 17 

the experimental measurements. The extracellular fluxes of formate and the combined flux of 18 

acetate-ethanol were included in the chi-square (χ2) criterion for the estimation of fluxes. 19 

The software NMR2Flux 28,30 was used to obtain a new set of intracellular fluxes (Table 20 

2, U-13C-MFA column) based on the above-described model, isotopomer abundances, and 21 

extracellular and biomass flux measurements. In general, there was a good fit between the 22 

simulated and experimental measurements of isotopomer abundances (Figure 2B) and calculated 23 
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 16 

and measured formate and acetate-ethanol fluxes (Tables 1 and 2).  The total χ2 was 650 (Table 1 

2) with an average difference between simulated and experimental intensities of 0.019. Out of 91 2 

NMR measurements, 27 measurements from asp-α, ile- α, phe- α, leu- α, tyr-β and tyr-δ 3 

contributed to 60% of the total χ2. Since most of these peaks were analyzed by spectral 4 

deconvolution, their high contribution to χ2 is most likely due to the low standard deviations 5 

assumed for these peaks rather than an inappropriate metabolic model.  6 

The most salient features of the calculated fluxes are as follows. A very low flux through 7 

2-oxoglutarate dehydrogenase (0.57 ± 0.96; CV = 170: Supplementary Table 3) indicates that the 8 

TCA cycle operates as two branches to fulfill demand for precursor metabolites for biomass 9 

synthesis, in agreement with previous studies.7,17,23 The relative flux through the oxidative 10 

branch of the PPP (ox-PPP) was found to be 40±30 (Table 2). Using semi-quantitative NMR 11 

analysis, Szyperski et al.7 estimated that 20 to 30% of glucose is converted to PEP via the PPP in 12 

E. coli B, which appears to be similar to the value calculated here via U-13C-MFA. Additionally, 13 

they found that less than 20% of R5P originates from G6P via ox-PPP. However, it is not 14 

possible to compare these results directly with the net fluxes obtained by c-MFA or 13C-MFA 15 

because rapid equilibration of pentose pool in addition to rapid exchange via transketolase and/or 16 

transaldose can lead to similar carbon labeling pattern for various intracellular flux distributions. 17 

Using the same NMR data and a more comprehensive 13C flux analysis, Schmidt et al. 23 found 18 

the flux through ox-PPP to be 77%. However, the extracellular flux measurements for the 19 

fermentation products were taken from a different study in the literature.24 Moreover, the 20 

demand for NADPH and precursor metabolites generated by PPP (and used in biomass 21 

synthesis) should be low under fermentative conditions due limited cell growth (about 90% of 22 
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 17 

the carbon is recovered as fermentation products: see Table 1). Hence, a low flux through PPP 1 

appears more reasonable. 2 

The glyoxylate shunt is often assumed to be inactive in glucose grown cultures as this 3 

pathway is subjected to catabolite repression by glucose.36 However, the glyoxylate shunt was 4 

found to be active in wild-type E. coli under conditions of glucose hunger in a slow-growing 5 

continuous culture22 and under glucose-excess batch conditions in a phosphoglucose isomerase 6 

mutant.10,18 Moreover, while repressed by glucose in K12 strains, the glyoxylate cycle appears to 7 

be expressed in E. coli B during growth on glucose.38,39 Although comprehensive, all the 8 

aforementioned studies investigated the metabolism of glucose under aerobic conditions. Our U-9 

13C-MFA indicates that the flux through the glyoxylate shunt during the anaerobic fermentation 10 

of glucose is very low (2.34) with a large standard deviation (1.48) that reaches 63% of the 11 

calculated value (Supplementary Table 3). This result appears to indicate that the glyoxylate 12 

shunt is unlikely to be active during fermentative growth of E. coli W3110 on glucose.  13 

 14 

Identifiability analysis 15 

While the results of U-13C-MFA were superior to those obtained with c-MFA (see 16 

previous sections), the estimated fluxes for PPP and some fermentative reactions still exhibited 17 

large standard deviations (Table 2). Consequently, the flux split ratio at several nodes such as the 18 

glucose 6-phosphate and formate were not well resolved. These findings indicate that the 19 

labeling measurements from the U-13C experiment do not provide enough information to 20 

estimate the above-mentioned fluxes. The large standard deviations associated with the ox-PPP 21 

flux are in agreement with previous observations by Dauner et al.
40 who found large confidence 22 

interval for ox-PPP flux in their MFA of aerobic metabolism of B. subtilis using U-13C glucose. 23 
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 18 

However, Schmidt et al.
41 were able to accurately estimate the ox-PPP flux using a mixture of 1-1 

13C glucose and 6-13C glucose to characterize the aerobic metabolism of glucose in a 2 

glucoamylase-producing strain of Aspergillus niger. In general, it has been well documented in 3 

the literature that a statistical analysis is required to identify the best mixture of labeled carbon 4 

that supports good estimates of intracellular fluxes.12,21,32,42 Specifically, the fluxes in the PPP 5 

and the flux split ratio at the glucose-6-phosphate node can be well resolved using 1st position 6 

labeled glucose.21,32,41,42 Therefore, we conducted an identifiability analysis to determine the 7 

impact of using 1-13C-labeled glucose in combination with U-13C-labeled and naturally labeled 8 

glucose on flux identifiability compared to the flux values estimated from the 10% U-13C 9 

labeling experiment. To this end, we used the fluxes obtained via U-13C-MFA and employed 10 

identifiability analysis based on linear statistics32 to obtain synthetic measurement data sets as 11 

surrogates for labeling experiments.23,40,41 Figure 3 depicts the information content (IC, which 12 

indicates the statistical quality of the experiment) for various combinations of 1-13C- and U-13C-13 

labeled glucose relative to the reference experiment with 10% U-13C-labeled glucose. In 14 

computation of IC, the statistical quality of all the flux parameters was taken into account. The 15 

maximum improvement in IC (2.2-fold) was observed with the combination of 5% U-13C 16 

glucose and 95% 1-13C glucose. This overall improvement is primarily due to a very large 17 

improvement in statistical quality of the ox-PPP flux when 1-13C glucose is used in combination 18 

with U-13C glucose as labeled substrate (Figure 4). Using these simulations we determined that a 19 

labeled substrate mixture containing 25% of 1-13C and 10% of U-13C glucose (balance naturally 20 

labeled glucose) supports adequate estimation of the PPP fluxes along with high overall 21 

statistical quality while maintaining the use of labeled substrates at a reasonable level (e.g. less 22 

than 40% of the total substrate). 23 
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 1 

Metabolic flux analysis using a complex mixture of 1-
13

C and U-
13

C-labeled glucose 2 

Based on the results of the identifiability analysis presented above, a labeling experiment 3 

was carried out with a mixture of 10% U-l3C glucose, 25 % 1-13C glucose, and 65% naturally 4 

labeled glucose (referred to as 1-U-13C experiment). The flux map thus obtained is shown in 5 

Figure 5 (see also Table 2 and Supplementary Table 3). In agreement with the in silico analysis, 6 

the statistical quality of calculated fluxes was significantly improved. All fluxes in the PPP, 7 

including the ox-PPP and backward fluxes in reversible reactions, showed improvements in the 8 

1-U-13C-MFA. The same was observed for the EMP, anaplerotic reactions, and the TCA cycle 9 

(Figure 5; see also Table 2 and Supplementary Table 3). The largest improvement in estimated 10 

fluxes was observed at the glucose-6-phosphate and formate nodes, which are discussed in detail 11 

below.  12 

Glucose-6-phosphate is a very important metabolic node as it determines the distribution 13 

of carbon between the PP and EMP pathways by converting glucose-6-phosphate to fructose-6-P 14 

(enzyme phosphoglucose isomerase, pgi flux) or 6-phosphogluconolactone (enzyme glucose-6-15 

phosphate dehydrogenase, ox-PPP, zwf flux). The standard deviation of the flux through 16 

phosphoglucose isomerase decreased by 10 times, with an estimated value 1.3 higher in the 1-U-17 

13C experiment (Figure 5 and Table 2). When both changes were taken into account, the 18 

coefficient of variation in the 1-U-13C experiment was only 7% of that observed in the U-13C 19 

experiment (Table 2). The same decrease in standard deviation was observed for the estimated 20 

flux through glucose-6-phosphate dehydrogenase, the committed step of the ox-PPP (Figure 5). 21 

In this case the CV decrease to around 80% of its value in the U-13C experiment. When the 22 

results for phosphoglucose isomerase and glucose-6-phosphate dehydrogenase are combined, a 23 
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 20 

very large improvement in flux resolution at the glucose-6-phosphate node is realized: i.e. an 1 

average decrease in standard deviation and coefficient of variation of 10- and 2-fold, 2 

respectively.  3 

Formate is another important metabolic node under fermentative conditions as this 4 

metabolite can be either exported to the extracellular medium via transporters FocA and FocB or 5 

disproportionated to carbon dioxide and hydrogen by the action of the enzyme fomate 6 

hydrogenlyase (FHL).34,35 While the net efflux of formate can be estimated based on the 7 

measurement of formate accumulated in the extracellular medium, the fhl flux cannot be 8 

calculated based on measurements of carbon dioxide or hydrogen evolution; the latter due to the 9 

involvement of carbon dioxide in many other metabolic pathways and the recycling of hydrogen 10 

by the action of hydrogenases.35 As previously discussed, the estimated fhl flux was very poor in 11 

c-MFA, with a standard deviation that exceeded the calculated value of the flux (Table 2). While 12 

the U-13C-MFA improved the quality of the estimated flux, its coefficient of variation was still 13 

very large representing 80% of the calculated flux (Table 2). As in the case of glucose-6-14 

phosphate, the use of a complex mixture of 1-13C- and U-13C-labeled glucose allowed a better 15 

resolution of fluxes at the formate node (Figure 5 and Table 2). For example, the coefficient of 16 

variation for the fhl flux decreased from 79% to 37 %. 17 

The estimated flux distribution was used to calculate the overall redox balance by 18 

considering generation and consumption of reducing equivalents in biomass formation, oxidative 19 

pentose phosphate pathway, isocitrate dehydrogenase, glyceraldehydes 3-phosphate 20 

dehydrogenase, acetaldehyde/alcohol dehydrogenase and lactate dehydrogenase. According to 21 

our calculations, the net flux from NADPH to NADP was negative (-14.7), but this is probably 22 
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compensated by the action of transhydrogenases, which interconvert NADH and NADPH.18 The 1 

transhydrogenase flux converting NADH into NADPH was therefore estimated to be 14.7.  2 

Unlike the case of aerobic conditions, under fermentative conditions it is possible to 3 

estimate metabolic production of ATP without assuming a P/O ratio. The total ATP production 4 

in central carbon metabolism was found to be 152.9 mole of ATP per 100 mole of glucose 5 

consumed. Several cellular processes require the consumption of ATP for maintenance such as 6 

constant electrochemical gradients across membranes, futile cycles, and turnover of 7 

macromolecules without net generation of cell biomass. The ATP consumption for maintenance 8 

was found to be 128.2 mole ATP per 100 mole glucose consumption.   9 

 10 

Topology of the metabolic network and identifiability of extracellular fluxes from labeling 11 

data 12 

Since the generic nature of our flux evaluation methodology allows easy modification of 13 

the metabolic network, the topology of the network was further investigated. To this end, two 14 

general areas of the original network were modified: i) the glyoxylate shunt was excluded and 15 

the TCA cycle modified to operate as two independent branches ii) the Entner-Doudoroff (ED) 16 

pathway (ed) and the malic enzyme reaction (me) were added to the network. The exclusion of 17 

the glyoxylate shunt and operation of the TCA cycle as two branches did not affect the χ2 and no 18 

significant changes were observed in the resolution of fluxes in the EMP, PPP or fermentative 19 

pathways (Table 2). The only significant changes were observed in anaplerotic and TCA cycle 20 

fluxes, which were better estimated in this scenario: i.e. the average CV decreased by 40% (data 21 

not shown).  22 
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When the ED pathway and the malic enzyme reaction were added to the metabolic 1 

network, a significant decrease in χ2 was observed, although the quality of most estimated fluxes 2 

remained almost unchanged, as can be judged by their standard deviations (and coefficients of 3 

variation) (Table 2 and Supplementary Table 3). In this scenario, the calculated flux for the ED 4 

pathway was only 1.3±1.5, which is clearly negligible and statistically unidentifiable (CV = 5 

121%). The flux through the malic enzyme reaction (me flux), however, was found to be 6 

considerably large (65.5±21.2) and brought about significant changes around the 7 

phosphoenolpyruvate-pyruvate node. First, there was a 10-fold increase in the conversion of PEP 8 

to OAA to MAL, which is supported by 10-fold increase in the ppc and mdh fluxes by PEP 9 

carboxylase and malate dehydrogenase (Table 2). Along with this, there was a 5-fold decrease in 10 

the pyruvate kinase flux (pyk). Taken together, this scenario indicates that a large fraction of the 11 

pyruvate is generated by the combined action of PEP carboxylase, malate dehydrogenase, and 12 

malic enzyme, thus by-passing pyruvate kinase. This three-step conversion of PEP to PYR 13 

involves carboxylation and decarboxylation reactions, thus affecting the labeling pattern of 14 

amino acids and explaining the better χ2 (Table 2). However, the high-energy bond of PEP is 15 

wasted and no ATP is generated. In contrast, the conversion of PEP to PYR catalyzed by 16 

pyruvate kinase generates one molecule of ATP (Figure 1). In conclusion, while the inclusion of 17 

me flux provides a better fit of the experimental data (i.e. lower χ2) the calculated fluxes around 18 

the phosphoenolpyruvate-pyruvate node do not reflect a metabolically feasible scenario due to its 19 

low energy efficiency. That is, the ATP generated without the malic enzyme reaction was 152.9 20 

mole per 100 mole glucose, but upon inclusion of the me flux it significantly decreased to 83.9 21 

mole per 100 mole of glucose.  22 
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Another aspect investigated was the possibility of estimating intracellular fluxes from 1 

labeling data alone (i.e. without including extracellular flux measurements in the χ2 criterion). In 2 

comprehensive 13C-MFA, intracellular fluxes are estimated by using the NMR measurements 3 

along with extracellular measurements, both being included in the χ2 criterion (see Materials and 4 

Methods for details). The labeling patterns per se are dependent on intracellular fluxes only and 5 

do not contain information about extracellular fluxes. However, since intracellular fluxes are 6 

related to extracellular fluxes through stoichiometric constrains, the accurate determination of 7 

intracellular fluxes would result in accurate determination of extracellular fluxes. To test the 8 

hypothesis of whether extracellular fluxes can be estimated from labeling measurements alone, 9 

formate and ethanol-acetate measurements were not included in the χ2 criterion and the results 10 

are shown in Table 2 (see also Supplementary Table 3). The calculated flux values in ethanol-11 

acetate production are very similar in both cases of inclusion and exclusion of two measurements 12 

in the χ2 criterion (Equation “(2)”).  The acetate-ethanol flux was estimated to be 144.4±5 with 13 

inclusion of both ethanol-acetate and formate extracellular measurements and it was 146.3±6.9 14 

without inclusion of them. This result indicates that the acetate-ethanol combined flux can indeed 15 

be estimated from the labeling information alone.  16 

Unlike the acetate-ethanol flux, the fluxes around the formate node (i.e. conversion of 17 

formate to carbon dioxide and hydrogen by FHL, formate export, and carbon dioxide evolution) 18 

were all associated with large standard deviations and coefficients of variation (Table 2 and 19 

Supplementary Table 3). Moreover, when compared to experimental measurements, the net 20 

formate (export) flux was poorly estimated: 78.5±45.6 (Table 2) compared to a measured value 21 

of 135.9±3.8 (Table 1). We then conclude that the fluxes around the formate node cannot be 22 

estimated in the absence of formate measurement.  23 
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To investigate why the fluxes around the formate node are associated with large standard 1 

deviations (and why formate production can not be estimated from labeling data alone), a 2 

linearized method was used to estimate the effect of the ox-PPP, PEP carboxylase and TCA 3 

cycle fluxes on the SD of the formate-related fluxes (i.e. fhl flux, formate export, and carbon 4 

dioxide evolution) (Figure 6). These reactions/pathways were chosen because of their 5 

involvement in carbon dioxide metabolism, which link them to the reactions involved in the 6 

formate node. The simulations predict that the TCA and PEP carboxylase fluxes do not have a 7 

significant impact on the standard deviation of the formate flux but the ox-PPP flux significantly 8 

affected it (Figure 6A).  9 

Theoretically, the fluxes of fhl and formate production in the branch pathways from the 10 

formate node could be estimated if the enrichment of CO2 and formate is different. When 10% 11 

U-13C glucose and 90% unlabeled glucose were used, the enrichment of the carbon in formate 12 

and CO2 would be the same to 11% (10% from U-13C and 1% from natural abundance), and thus 13 

the fluxes in extracellular formate production and fhl flux are unidentifiable. On the other hand, 14 

using a mixture of 10% U-13C glucose and 25% 1-13C glucose, the carbon enrichment in formate 15 

and CO2 will be different through metabolic pathways. Of the fluxes involved with the formate 16 

node, the ox-PPP flux (zwf) affected the most the fhl flux and the carbon dioxide evolution flux 17 

(Figure 6B). Since the flux through ox-PPP affects the fraction of carbon dioxide originating 18 

from the first carbon of glucose, higher ox-PPP fluxes result in higher enrichment of carbon 19 

dioxide. However, the small flux in zwf (3.4±1.3) from 1-U-13C-MFA results in similar 20 

enrichment of formate and carbon dioxide as shown in Figure 6B.  21 

 22 

Conclusions 23 
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 1 

Comprehensive metabolic flux analysis using a mixture of differently labeled glucose led 2 

to a superior estimation of metabolic fluxes during the fermentation of glucose by Escherichia 3 

coli when compared to the use of conventional flux analysis or only U-13C glucose as the 4 

substrate. An identifiability analysis indicated that a mixture of 10% U-l3C glucose, 25 % 1-13C 5 

glucose, and 65% naturally labeled glucose would significantly improve the statistical quality of 6 

calculated fluxes over other labeling schemes. The most significant improvements were observed 7 

for fluxes involved in two metabolic nodes: the glucose-6-P node, which determines carbon 8 

partitioning between the Embden-Meyerhof-Parnas and pentose phosphate pathways, and the 9 

formate node, which determines the fate of formate between export and oxidation to CO2 and 10 

hydrogen. The study of network topology indicated that the inclusion of the Entner-Doudoroff 11 

pathway, the malic enzyme, or the glyoxylate shunt does not significantly affect the value or 12 

quality of estimated fluxes. It was also concluded that while the combined acetate-ethanol flux 13 

can be estimated from the labeling information alone, the fluxes around the formate node 14 

couldn’t be estimated in the absence of a formate measurement. 15 
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Table S2. Stiochiometric matrix (G) of metabolic network of E.coli used in conventional 1 

metabolic flux analysis 2 

Table S3. Metabolic reactions and flux values quantified by c-MFA and 13C based MFA 3 

Table S4. Simulated and experimentally meausred NMR intensity from U-13C-MFA and 1-13C-4 

MFA 5 

 6 

Abbreviations  7 

AcCoA, acetyl coenzyme A; ACK, acetate kinase; ADH, alcohol dehydrogenase; AKG, α-8 

ketoglutarate; ED, Entner-Doudoroff pathway; EMP, Embden-Meyerhof-Parnas; E4P, erythrose-9 

4-phosphate; FHL, formate hydrogen-lyase; FUM, fumarate; F6P, fructose-6-phosphate; G3P, 10 

combined pool of triose-3-phosphate; G6P; glucose-6-phosphate; HPLC, high performance 11 

liquid chromatography; GOX, glyoxylate; HSQC, Heteronuclear Single-Quantum Coherence; 12 

ICIT, isocitrate; MAL, malate; MFA, metabolic flux analysis; non-ox-PPP, non-oxidative branch 13 

of the pentose phosphate pathway; OAA, oxaloacetate; ox-PPP, oxidative branch of the pentose 14 

phosphate pathway; PEP, phosphoenolpyruvate; PFL, pyruvate formate-lyase; PGLU, 6-15 

phospho-D-gluconate; PGLUL, D-glucono-δ-lactone-6-phosphate; PP, pentose phosphate; PPP, 16 

pentose phosphate pathway; PYK, pyruvate kinase; PYR, pyruvate; RL5P, ribulose-5-phosphate; 17 

R5P, ribose-5-phosphate; S7P, sedoheptulose-7-phosphate; SUCC, succinate; TCA, tricarboxylic 18 

acid; X5P, xylose-5-phosphate 19 
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Figure Captions 1 

 2 

Figure 1. Pathways involved in the synthesis of fermentation products, precursor metabolites, 3 

ATP, and reducing equivalents during the fermentative utilization of glucose by E. coli. 4 

Enzyme(s) catalyzing shown reaction(s) are as follows. Glucose transport and phosphorylation: 5 

[1], phosphoenolpyruvate-dependent phosphotrasnferase system (PTS). EMP: [2], 6 

phosphoglucose isomerase; [3], combined reactions by 6-phosphofructokinase, fructose 7 

bisphosphate aldolase and triose phosphate isomerase; [4], glyceraldehyde-3-phosphate 8 

dehydrogenase, phosphoglycerate kinase, phosphoglycerate mutases and enolase; and [5], 9 

pyruvate kinase. ox-PPP: [6], glucose 6-phosphate dehydrogenase; [7], 6-10 

phosphogluconolactonase; and [8], 6-phosphogluconate dehydrogenase. non-ox-PPP: [9], 11 

ribulose phosphate 3-epimerase; [10], ribose-5-phosphate isomerases; [11], transketolases; and 12 

[12], transaldolases. Oxidative and reductive branches of the TCA cycle: [13], citrate synthase 13 

and acomitases; [14], isocitrate dehydrogenase; [15], malate dehydrogenase and fumarases; and 14 

[16], fumarate reductase. Anaplerotic reaction: [17], phosphoenolpyruvate carboxylase. Pyruvate 15 

dissimilation: [18], pyruvate formate-lyase. Fermentation: [19], lactate dehydrogenase; [20], 16 

formate hydrogen-lyase; [21], phosphate acetyltransferase; [22], acetate kinase; [23], 17 

alcohol/acetaldehyde dehydrogenase. Cell growth: [24], synthesis of cell mass from precursor 18 

metabolites (*), ATP, and reducing equivalents. See the detail description in Supplementary 19 

Table  S1 and S3 and the list of abbreviations.   20 

 21 

 22 
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Figure 2. Two-dimensional  [13C, 1H] HSQC spectra of hydrolyzed extracts of wild type E. coli 1 

K12 strain W3110 grown on a mixture of 10% U-13C and 90% naturally labeled glucose (A) and 2 

comparison of experimental and simulated NMR intensities of proteinogenic amino acids (B). 3 

The solid line represents a linear fitting as shown in the equation while the short dashed lines 4 

illustrate the 95% confidence intervals. 5 

 6 

Figure 3. Effect of the use of 1-13C-labeled glucose in combination with U-13C-labeled on flux 7 

identifiability as represented by the information content (IC). The IC, which takes into account 8 

the statistical quality of all the flux parameters, is shown relative to the reference experiment 9 

[10% U-13C]. 10 

 11 

Figure 4. Identifiability of the ox-PPP flux for various combinations of 1-13C- and U-13C-labeled 12 

glucose, expressed relative to the reference experiment with 10% U-13C-labeled glucose. 13 

 14 

Figure 5. In vivo distribution of metabolic fluxes for wild-type E. coli K12 strain W3110 15 

calculated using 10% U-13C-labeled, 25% 1-13C-labeled, and 65% naturally labeled glucose 16 

(lower values) compared to fluxes using 10% U-13C glucose (upper values). The values in 17 

parentheses represent standard deviations. Estimated fluxes represent the molar percentages of an 18 

average specific glucose uptake rates of 30.7 ± 2.8 mmol/gCDW/h. Arrowheads indicate the 19 

direction of fluxes shown as positive (negative fluxes are in opposite direction to that of 20 

arrowheads).  See Supplementary Table S1 for details about these pathways and nomenclature 21 

for abbreviations. 22 
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Figure 6. Formate flux identifiability. (A) Effect of zwf, akgdh and extent of reversibility of ppc 1 

on fhl flux standard deviations in 1-U-13C experiment. Linearized method was used to estimate 2 

standard deviations of fhl. (B) Effect of zwf flux on CO2 and formate enrichment, and the SD of 3 

fhl flux in 1-13C experiment. Linearized method was used to estimate standard deviations of fhl. 4 
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Tables 1 

Table 1. Metabolic fluxes for the synthesis of fermentation products and biomass formation 2 

obtained from experimental data in c-MFA, U-13C-MFA, and 1-U-13C-MFA.  3 

  c-MFA/U-13C-MFA 1-U-13C-MFA 
Biomass 
synthesis 

   

 G6P 0.46 ± 0.05 0.44 ± 0.04 
 F6P 0.16 ± 0.02 0.15 ± 0.02 
 R5P 2.02 ± 0.20 1.91 ± 0.19 
 E4P 0.81 ± 0.08 0.77 ± 0.08 
 T3P 0.29 ± 0.03 0.28 ± 0.03 
 3PG 1.59 ± 0.16 1.51 ± 0.15 
 PEP 1.17 ± 0.12 1.11 ± 0.11 
 PYR 6.37 ± 0.64 6.04 ± 0.60 
 AcCoA 8.43 ± 0.84 7.99 ± 0.80 
 AKG 2.43 ± 0.24 2.30 ± 0.23 
 OAA 4.02 ± 0.40 3.81 ± 0.38 
 Serine 0.46 ± 0.05 0.44 ± 0.04 
 Glycine 1.31 ± 0.13 1.24 ± 0.12 
Fermentation 
productions 

   

 Glucose 100.00 ± 0.00 100.00 ± 0.00 
 Lactate 11.78 ± 4.84 11.28 ± 4.25 
 Succinate 5.49 ± 0.81 5.22 ± 1.08 
 Formate 136.13 ± 4.07 136.32 ± 5.01 
 Acetate 70.90 ± 10.02 72.37 ± 13.36 
 Ethanol 62.86 ± 0.99 60.13 ± 0.18 

 Acetate/Ethanol* 133.77 ± 11.01 132.51 ± 13.54 

*combined flux of acetate and ethanol production4 
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Table 2. Selected intracellular fluxes calculated using conventional Metabolic Flux Analysis (c-MFA) and 13C-based Metabolic Flux 1 
Analysis (13C-MFA). 13C-MFA was conducted using either uniformly (U)-13C-labeled glucose (U-13C-MFA) or a combination of U-2 
13C- and 1-13C-labeled glucose (1-U-13C-MFA).  3 
 4 

13
C-MFA                          MFA technique 

Pathway/Reaction                  

 

c-MFA 
U-

13
C-MFA 1-U-

13
C-MFA 1-U-

13
C-MFA* 1-U-

13
C-MFA** 1-U-

13
C-MFA*** 

Glucose transport and phosphorylation        

GLU + PEP � G6P + PYR  100.0±0.0 100.00±0.00 100.00±0.00 100.0±0.0 100.0±0.0 100.0±0.00 

 Embden-Meyerhof-Parnas        

G6P � F6P 55.1±33.7 75.7±13.5 96.9±1.3 98.4±0.6 97.0±1.7 96.2±1.3 

F6P + ATP � G3P + G3P  83.0+11.2 89.8±4.5 97.2±0.4 97.6±0.2 96.2±1.6 96.9±0.5 

G3P � PEP + ATP + NADH 175.9±11.2 182.7±4.5 192.4±0.5 192.7±0.5 191.2±1.7 192.0±0.6 

PEP � PYR + ATP 62.8±11.2 71.6±6.2 82.8±1.7 78.2±1.8 17.8±21.2 82.1±1.5 

  Oxidative pentose phosphate       

G6P � R5P + CO2 + 2NAD(P)H 44.4±33.7 23.9±13.5 2.7±1.3 1.2±0.6 1.3±0.7 3.4±1.3 

  PEP carboxylation        

PEP + CO2 � OAA 11.9±0.8 10.0±2.0 6.9±1.5 11.9±1.2 70.6±20.9 7.2±1.6 

  Pyruvate dissimilation        

PYR � AcCoA + Formate 144.8±10.5 151.2±8.8 167.6±6.3 160.6±6.7 165.±6.8 165.0±4.1 

   Fermentation        

PYR + NADH � Lactate 11.6±4.6 14.0±5.3 9.4±4.9 11.5±5.2 13.3±5.0 11.3±4.0 

AcCoA � Acetate + ATP 149.2±6.9 136.5±7.7 144.4±4.4 

AcCoA + 2NADH � Ethanol 
133.9±10.5 135.1±7.2 146.3±6.9 

   

Formate � CO2 + H2 8.91±11.21 16.5±13.1 33.7±12.5 26.5±12.0 28.3±12.4 86.6±44.8 

Formate� Formateext 135.9±3.8 134.7±11.3 133.9±12.4 134.1±12.6 137.2±12.8 78.5±45.6 

   Carbon dioxide evolution       

CO2 � CO2ext 45.1±24.9 35.3±13.9 36.4±13.3 19.4±12.4 34.4±13.2 91.1±44.8 

Chi square (χ
2
) 646 652 729.5 681 544.5 651 

 5 
Estimated fluxes represent the molar percentages of the average specific glucose uptake rates, which were 29.0 ± 2.4 mmol/gCDW/h  for c-MFA and U-13C-6 
MFA, and 30.7 ± 2.8 mmol/gCDW/h  for 1-U-13C-MFA. See nomenclature for abbreviations and Figure 1 for details about pathways. Asterisks indicate the 7 
following modifications: *) the glyoxylate shunt was excluded and the TCA cycle modified to operate as two independent branches, **) the Entner-Doudoroff 8 
(ED) pathway and the malic enzyme (ME) were added to the network; and ***) extracellular measurements were not included in the χ2 criterion. 9 
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