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Genes Showing Homology to a Single Domain. To confirm that our
results could not be affected by the best BLAST hit not being the
most closely related sequence, due to variable rates of evolution,
we performed the same analyses using only those genes that have
significant BLAST hits to either archaebacteria or eubacteria.
Because these genes show unambiguous homology to a single
domain, phylogenetic analysis would show ancestry only within
that domain. With these data, the OR for informational genes to
be archaebacterial versus operational genes to be archaebacterial
is 2.66 (95% CI, 1.60–4.40). Lethal genes are 2.13 times more
likely than viable genes to be archaebacterial (95% CI, 1.46–
3.12), and informational genes are 3.27 times more likely than
operational genes to be lethal (95% CI, 1.90–5.64). Within just
informational genes, lethal genes are 1.70 times more likely than
viable genes to be archaebacterial (95% CI, 0.589–4.86), and
within operational genes, they are 1.77 times more likely than
viable genes to be archaebacterial (95% CI, 1.15–2.73). There
are few informational genes with unambiguous BLAST hits to
a single domain (a total of 59), so the 95% CI for the OR within
this category is too wide for there to be a significant difference
between the two probabilities; nonetheless, the pattern of
greater lethality of archaebacterial genes compared with eubac-
terial genes is very similar in the two categories (OR, 1.70 for
informational and 1.77 for operational).
The only notable difference between the two datasets is that

archaebacterial genes show a higher mean number of duplicates
in the single-domain hit data, whereas the opposite was true in the
best-hit domain data. This is probably due to the effect of a few
genes with particularly large numbers of duplicates being only
weakly assigned as eubacterial. Repeating this analysis using me-
dian values rather than the mean, which has much lower statistical
power but is more robust to these extreme values, supports this
result for both datasets. Repeating our other tests using medians
supports our findings, although this test has insufficient power to
give significant P values for many of the comparisons (Table S3).

Phylogenetic Analysis. To check whether our BLAST-based results
are consistent with results from phylogenetic analysis, we designed
a phylogenetic analysis pipeline to test hypotheses of phylogenetic
relationships of particular yeast genes and their homologs in other
genomes. Building robust phylogenetic trees for individual genes
that diverged very anciently is difficult (1–3), and the large size of
many of our trees (up to 2,009 taxa) also makes it difficult to
correctly identify optimal trees; any heuristic approach is likely to
misplace some taxa when working at this scale. Thus, we designed
a pipeline that aims to make robust inference about the rela-
tionships by attempting to identify which relationships each
alignment could significantly reject, rather than relying on cor-
rectly inferring a single tree in any case. This hypothesis-testing
approach should be more robust than relying on a single tree
topology, but still may be sensitive to assumptions made in the
substitution model. Although we have tested alternative empirical
substitution matrices for every locus, we have not attempted to
test the overall fit of any model or to fit more complex hetero-
geneous models, which is computationally impractical for such
a large dataset.
We used RaxML version 7.0.4 (4) to perform both model

selection and maximum likelihood (ML) phylogenetic inference
for all 1,717 yeast ORFs for which we obtained significant hits
from more than one prokaryotic domain in our PSI-BLAST
search. For each ORF, an alignment of the yeast protein, any

eukaryotic seed sequences used in the PSI-BLAST search, and
all prokaryotic hits was generated using MUSCLE version 3.7
(5). For each alignment, we ran a pipeline that:

(a) Found the ML tree topology under the PROTCATWAG
model.

(b) Calculated the likelihood for this tree under the PROT-
CAT versions of all of the empirical AA substitution mod-
els supported by RaxML (WAG, DAYHOFF, DCMUT,
JTT, MTREV, RTREV, CPREV, VT, BLOSUM62, and
MTMAM) both with and without invariant sites and em-
pirical base frequencies, both singly and together.

(c) Found the best fitting of these models under the Akaike
information criterion, corrected for sample size, for sub-
sequent analysis.

(d) Found the unconstrained ML tree under this optimal
model using the fast heuristic search algorithm of RaxML.

(e) Found ML trees under four different constraints:

(i) Monophyly of eukaryotes
(ii) Reciprocal monophyly of eukaryotes, archaea, and

eubacteria
(iii) Presence of (eukaryote + archaea) clade
(iv) Presence of (eukaryote + eubacteria) clade.

(f) Tested whether any of these constraints can be rejected
by the data using the approximately unbiased (AU) test
(6) as implemented in Consel version 0.1i (7).

Note that the four constraints together allow us to test three
different possibilities for the relationships of each yeast locus. We
assume a priori that a gene for which eukaryote monophyly
cannot be rejected has a single origin in this domain. A gene for
which both constraints (ii) and (iii) can be rejected shows sig-
nificant support for a clade of eukaryote sequences nested within
the eubacterial radiation, whereas rejection of (ii) and (iv) sug-
gests that a eukaryotic clade is nested within an archaebacterial
radiation. Failure to reject hypothesis (ii) indicates that for this
gene, we cannot reject the traditional three-domain tree of life.
Trees rejecting both (iii) and (iv) must show a more complex
evolutionary history in which neither archaeabacterial nor eu-
bacterial sequences are monophyletic, indicative of lateral
transfer among prokaryotes.
Note that if none of the hypotheses can be rejected significantly,

it is likely to be because of a lack of statistical power.
Because of time constraints imposed by the computing facility

that we used, each alignment was run with a limit of 84 h of CPU
time to complete the pipeline; 1,247 of 1,717 jobs completed
within this time. As we expected, these were mainly the smaller
alignments in our dataset [median number of sequences, 159
(range, 8–1,329) in completed jobs vs. 692.5 (range, 95–2,009) in
uncompleted jobs].

SI Results
To identify the phylogenetic relationships of yeast genes as dis-
played on the ML tree under the best-fitting model from our
pipeline, we used a Perl script that identifies the smallest (i.e.,
least inclusive) cluster (or clan; ref. 8) on each tree that includes
the yeast gene and at least one prokaryotic sequence. These
prokaryotic sequences then form the closest noneukaryotic sister
group to the eukaryotic sequences under most possible rootings
of our unrooted gene trees. We then tested whether this cluster
included just archaebacterial sequences, just eubacterial se-
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quences, or sequences from both domains, and whether this
cluster included all of the sequences from a particular domain
that were present on the tree, indicative of a tree displaying the
three-domain relationship.
We found a total of 143 trees in which the yeast gene is most

closely related only to archaebacterial sequences, 717 trees
showing this relationship to only eubacterial sequences, 48 loci for
which the three-domain tree is most likely, and 283 loci in which
the closest sister group contains sequences from both prokaryotic
domains. These results are ambiguous, presumably indicating that
lateral gene transfer has influenced the phylogeny for this gene.
Comparing these results with our BLAST-based analysis, we find

that, of 620 genes assigned as eubacterial in the best-hit analysis
that we could analyze phylogenetically, in 25 cases the yeast gene
clustered instead with archaebacterial homologs, contradicting
the BLAST result, and an additional 17 showed the three-domain
tree. However, for genes identified by best-BLAST hit as arch-
aebacterial, a much higher proportion (114 out of 266) were
contradicted by theML tree, and 37 showed the three-domain tree.
Although these results underscore the difficulty of accurately

identifying the evolutionary relationships of individual genes, our
main results are robust to these differences (Table S2). When
using the phylogenetic results for assigning all of those genes
with homology to both domains, the OR for informational genes
to be archaebacterial versus operational genes to be arch-
aebacterial is 2.50 (95% CI, 2.22–2.81). Lethal genes are 2.91
times more likely than viable genes to be archaebacterial (95%
CI, 2.15–3.94), and informational genes are 2.57 times more
likely than operational genes to be lethal (95% CI, 1.65–4.01).
Within just informational genes, lethal genes are 2.65 times more
likely than viable genes to be archaebacterial (95% CI, 0.96–
7.29), and within operational genes they are 2.45 times more
likely than viable genes to be archaebacterial (95% CI, 1.74–
3.44). The results of all of these tests closely match those from

our best-hit data and indeed demonstrate the effect more strongly
than our BLAST analysis results in all cases except the increased
lethality of informational genes, which is slightly weaker in this
analysis (but still significant). These results suggest that the
BLAST approach is essentially reliable, but may be adding some
noise to our results.
We would caution against taking our phylogenetic results as any

kind of gold standard for assigning domain identity for the loci
that we have investigated, given that the relationships within our
ML trees are probably not entirely reliable and certainly are
rather poorly supported in many cases. This is emphasized by the
results of our AU tests for these data, which reveal that most of
the alignments that we analyzed lack the statistical power to
unambiguously assign the evolutionary origin of most eukaryotic
genes. For example, of a total of 1,247 analyzed alignments,
monophyly of the eukaryotic sequences was significantly rejected
in 189 (all AU tests are at an α level of P < 0.01). These align-
ments were removed from subsequent analyses, because any
inference about the origins of these genes would be ambiguous.
Of the remaining 1,058 alignments, 553 rejected the three-do-
main constraint, of which 25 also rejected a eubacterial affinity
for the eukaryotic sequences [constraint (iv) above], 154 rejected
an archaeal affinity for archaebacterial sequences [constraint
(iii)], 345 rejected both of these possibilities, and 29 rejected
neither possibility. Of the 1,058 alignments, 498 could not reject
the three-domain models, the vast majority of which (478) could
not reject any of the constraints, perhaps indicating a lack of
power for these loci. Of the remainder, 17 rejected only con-
straint (iii), and 3 rejected only constraint (iv).
In summary, our main findings are supported by our phylo-

genetic results, but our results underline the difficulty of accu-
rately and unambiguously reconstructing the sequence of evolu-
tionary events that occurred in the distant past.

1. Cox CJ, Foster PG, Hirt RP, Harris SR, Embley TM (2008) The archaebacterial origin of
eukaryotes. Proc Natl Acad Sci USA 105:20356–20361.

2. Pisani D, Cotton JA, McInerney JO (2007) Supertrees disentangle the chimerical origin
of eukaryotic genomes. Mol Biol Evol 24:1752–1760.

3. Rodríguez-Espeleta N, et al. (2007) Detecting and overcoming systematic errors in
genome-scale phylogenies. Syst Biol 56:389–399.

4. Stamatakis A (2006) RAxML-VI-HPC: Maximum likelihood–based phylogenetic analyses
with thousands of taxa and mixed models. Bioinformatics 22:2688–2690.

5. Edgar RC (2004) MUSCLE: Multiple sequence alignment with high accuracy and high
throughput. Nucleic Acids Res 32:1792–1797.

6. Shimodaira H (2002) An approximately unbiased test of phylogenetic tree selection.
Syst Biol 51:492–508.

7. Shimodaira H, HasegawaM (2001) CONSEL: For assessing the confidence of phylogenetic
tree selection. Bioinformatics 17:1246–1247.

8. Wilkinson M, McInerney JO, Hirt RP, Foster PG, Embley TM (2007) Of clades and
clans: Terms for phylogenetic relationships in unrooted trees. Trends Ecol Evol 22:
114–115.

9. Duarte NC, Herrgård MJ, Palsson BO (2004) Reconstruction and validation of
Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic
model. Genome Res 14:1298–1309.

Cotton and McInerney www.pnas.org/cgi/content/short/1000265107 2 of 11

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1000265107/-/DCSupplemental/pnas.201000265SI.pdf?targetid=nameddest=ST2
www.pnas.org/cgi/content/short/1000265107


0.0 0.1 0.2 0.3 0.4

0
20

00
40

00
60

00
80

00

closeness centrality

0.0 0.1 0.2 0.3 0.4
closeness centrality

nu
m

be
r 

of
 h

om
ol

og
s

0 2000 4000 6000 8000
expression level

ex
pr

es
si

on
 le

ve
l

50

0

100

150

nu
m

be
r 

of
 h

om
ol

og
s

50

0

100

150

(A) (B) (C)

Fig. S1. Expression level, protein–protein interaction (closeness centrality in the interaction network), and number of yeast homologs. Each point is a single
yeast gene. Blue points represent genes with a viable deletion phenotype; red points, genes with a lethal deletion phenotype. Circles represent operational
genes; squares, informational genes. Filled points represent genes with eubacterial homology; open points, genes with archaebacterial homology, under the
best-hit criterion. Because closeness centrality and degree in the interaction network are correlated, only the closeness statistic is presented.
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Fig. S2. Expression level, protein–protein interaction (closeness centrality and degree in the interaction network) and number of yeast homologs per func-
tional category. Each point is the mean of the values for genes in a category with a particular deletion phenotype and with homology to a particular domain.
Blue points represent genes with a viable deletion phenotype, red points represent genes with a lethal deletion phenotype, filled circles represent genes with
eubacterial homology, and open circles represent genes with archaebacterial homologs under the best-hit criterion (A) and the single domain hit criterion (B).
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Fig. S3. (Continued)
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(c)

Fig. S3. Three metabolic pathways annotated with homology domain and knockout phenotype for genes in the pathway. The gray, rectangular boxes
represent major metabolites, with common cofactors and intermediates removed for clarity. Other boxes represent enzymes. Circular or ellipsoid boxes
represent enzymes encoded by genes with eubacterial homologs; diamond-shaped boxes, those encoded by genes with archaebacterial homologs. Octagonal
boxes show steps for which no gene is annotated in the model used. Red boxes represent genes with lethal knockout phenotype; blue boxes, viable knockout
phenotype; gray boxes, those for which this data are not available or are ambiguous because the different genes possibly encoding this activity vary in
phenotype. Pathways are from the iND750 model of yeast metabolism (9). Pathways shown are for threonine and lysine metabolism (A), pentose phosphate
metabolism (B), and arginine metabolism (C). Note that these examples contain both archaebacterial and eubacterial homologs showing both lethal and viable
deletion phenotypes, but that the proportions of these different categories reflect those found across the whole yeast genome. For example, two out of three
archaebacterial genes involved in threonine and lysine metabolism are lethal, whereas all eubacterial genes are viable, and both of these lethal genes are
aminoacyl-tRNA synthases, with informational functions. Only a single gene in the operational pentose phosphate pathway has archaebacterial homology, and
all genes in this pathway are viable or have an unknown deletion phenotype. Arginine metabolism contains examples of genes with both lethal and viable
phenotypes of both archaebacterial and bacterial homology, although it contains a greater proportion of genes with archaebacterial homology than is typical.
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Fig. S4. The yeast protein–protein interaction network. Each vertex is a single Saccharomyces gene, with edges connecting genes whose protein products are
known to interact. Vertices are colored by the prokaryote domain of best BLAST-hit homology for each gene (blue for eubacteria, red for archaebacteria, green
for equal or nearly equally good hits to both domains, gray for genes showing no significant homology to either prokaryote domain).
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Fig. S5. Testing the impact of taxonomic sampling. To test the sensitivity to the particular set of prokaryote genomes used, we repeated our BLAST ex-
periment on databases consisting of all 22 archaebacterial genomes used in our full dataset together with randomly chosen subsets of the 197 eubacterial
genomes of different sizes. We ran 10 replicates each with subsets of 5, 22 (equal to the archaebacterial count), 50, 75, 100, and 125 genomes. For each
replicate, we recorded the number of yeast genes showing homology to archaebacteria or eubacteria under our two different criteria, taking the domain of
the best BLAST hit and only counting genes that show homology to just one of the two prokaryote domains. This figure shows the results of this analysis. The
results suggest that the results are fairly consistent for any reasonably large (≥50) sample of eubacterial genomes, and thus the exact taxonomic sample chosen
is not critical. A corollary of this is that we would not expect our results to be significantly different if additional prokaryotic genomes were included in the full
dataset, so our conclusions should remain valid as, for example, more and more prokaryote genomes are sequenced and assembled. In particular, we note that
those genes identified as archaebacterial homologs are largely robust to taxonomic sampling as long as at least 22 eubacterial genomes are included, and are
almost entirely robust for samples of size ≥50. Eubacterial identity is slightly more labile but shows a similar pattern. These findings confirm that for any
samples of more than about 50 eubacterial genomes, and for most of the samples with only 22 eubacterial genomes, the difference between these results and
our results from the full dataset is much too small to alter the main result of the paper; for this, an ∼2-fold change in the numbers of genes assigned to
archaebacterial and eubacterial categories would be needed. The data including only those genes showing homology to a single prokaryotic domain are
particularly robust to taxonomic sampling.
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Table S3. Functional correlates for yeast genes, based on best-hit domain and single domain hit data, using medians
rather than means

Data type Eubacteria Archaebacteria All P value

Best-hit domain
Expression level: number of tags 27 (25.02–29.10) 41 (32.55, 48.46) 26 (24.63–26.77) <0.0001
Closeness centrality in interaction network 0.317 (0.315–0.319) 0.327 (0.325–0.330) 0.326 (0.311–0.318) <0.0001
Degree in interaction network 10 (9.38–11.42) 15 (12.65–17.41) 12 (11.50–13.46) <0.0001
Number of homologs in yeast genome 3 (2.88–3.11) 4 (3.43–4.93) 2 (2–2) 0.175
Single-domain hit data
Expression level: number of tags 28 (24.98–30.45) 47 (31.25–60.24) 26 (24.63–26.77) 0.0006
Closeness centrality in interaction network 0.315 (0.312–0.318) 0.326 (0.320–0.331) 0.326 (0.311–0.318) 0.0002
Degree in interaction network 9 (7.71–10.09) 13 (9.95–16.34) 12 (11.50–13.46) 0.0087
Number of homologs in yeast genome 2 (1.66–2.28) 5 (3.75–5.92) 2 (2–2) <0.0001

Values are medians and 95% bootstrap percentile CIs for the median of each parameter (calculated using the nonparametric
bootstrap). P values are bootstrap probabilities for the median of the statistic in archaebacteria being less than or equal to the median
in eubacteria, based on 10,000 replicates.

Table S2. Genes showing archaebacterial and eubacterial homology, with lethal and viable deletion phenotypes, for both informational
and operational functional categories, for best-hit domain, for single-domain hit data, and for genes showing homology to both domains
based on our phylogenetic assignment

Lethal deletion phenotype Viable deletion phenotype

Eubacteria Archaebacteria No hit Ambiguous Missing Eubacteria Archaebacteria No hit Ambiguous Missing

Best-hit domain
Informational genes 20 35 100 0 0 39 18 127 0 0
Operational genes 210 102 444 2 0 1,226 257 1,565 8 0
Unknown function 7 0 19 0 0 341 41 745 0 0
All genes* 237 137 630 2 0 1,610 316 2,912 8 2

Single-domain hit
Informational genes 11 18 100 26 0 19 11 127 27 0
Operational genes 89 37 444 188 0 595 118 1,565 778 0
Unknown function 0 0 19 7 0 164 15 745 203 0
All genes* 100 55 630 221 0 781 144 2,912 1,009 2

Genes showing homology to both domains
Informational genes 21 20 100 14 0 38 7 127 12 0
Operational genes 188 62 444 64 0 1,127 127 1,565 237 0
Unknown function 3 0 19 4 0 311 23 745 48 0
All genes* 212 82 630 827 0 1,480 157 2,912 297 2

“No hit” indicates genes that have no significant homology to any sequence in the prokaryotic genome data used here.
*All gene counts include genes for which no Gene Ontology data are available; thus, this row is not the sum of the rows above.

Table S1. Functional correlates for single domain hit data

Data type Eubacteria Archaebacteria All P value

Expression level: number of tags 79.51 (58.45–100.90) 172.21 (112.5–232.0) 85.89 (78.80–93.09) 5 × 10−4

Closeness centrality in interaction network 0.312 (0.310–0.315) 0.321 (0.317–0.326) 0.316 (0.315–0.317) 0.0007
Degree in interaction network 15.05 (14.17–15.98) 18.17 (16.05–20.18) 18.02 (17.60–18.48) 0.0039
Number of homologs in yeast genome 5.75 (5.02–6.54) 7.66 (6.69–8.73) 7.58 (7.14–8.04) 0.001

Values are means and 95% bootstrap percentile CIs for the mean of each parameter (calculated using the nonparametric bootstrap). P values are bootstrap
probabilities for the mean of the statistic in archaebacteria being less than or equal to the mean in eubacteria, based on 10,000 replicates.
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Table S5. OR results

For all data
Test of informational/operational bias

Info. Oper.
Archaebacterial 53 359
Eubacterial 59 1436
P(arch|info) = 53/53+59 = 53/112
P(arch|oper) = 359/359+1436 = 359 /1795
OR = 2.366071
ASE = ASE (log odds) = sqrt (1/53 + 1/359 + 1/59 + 1/436) = 0.202228
Log OR = log(2.366071) = 0.8612308
95% CI = 0.8612308 + 1.96*0.202228 = 1.257598
0.8612308–1.96*0.202228 = 0.4648639
95% CI for OR (out of log space): 1.591798–3.51692
Test of archaebacterial lethality versus archaebacterial viable phenotype

Lethal Viable
Archaebacterial 137 316
Eubacterial 237 1610
P(arch|lethal) = 137/374
P(arch|viable) = 316/1926
OR = 2.232637; log OR = 0.8031834
ASE = ASE(log odds) = sqrt(1/137 + 1/316 + 1/237 + 1/1610) = 0.1237108
95% CI for log OR = 0.5607102–1.045657
95% CI for OR = 1.751916–2.845267
Test of lethality of informational genes versus lethality of operational genes

Info. Oper.
Lethal 55 312
Viable 57 1483
P(lethal|informational) = 55/112
P(lethal|operational) = 312/1795
OR = 2.979338; log OR = 1.091701
ASE = sqrt(1/55 + 1/57 + 1/312 + 1/1483) = 0.1990103
95% CI for log OR = 1.481761–0.7016408
95% CI for OR = 2.017060–4.400689
Test of lethality of archaebacterial genes versus lethality of eubacterial genes for informational
genes only

Lethal Viable
Arachaebacterial 35 18
Eubacterial 20 39
P(arch|lethal) = 35/55
P(arch|viable) = 18/57
OR = 2.015152; log OR = 0.7006944
ASE = sqrt(1/35 + 1/18 + 1/20 + 1/39) = 0.3997099
95% CI for log OR = 1.484126–0.082737
95% CI for OR = 0.9205932–4.411108
Test of lethality of archaebacterial genes versus lethality of eubacterial genes for operational genes
only

Lethal Viable
Archaebacterial 102 257
Eubacterial 210 1226
P(arch|lethal) = 102/312
P(arch|viable) = 257/1483
OR = 1.886486, log OR = 0.6347159
ASE = sqrt(1/102 + 1/210 + 1/257 + 1/1226) = 0.1388256
95% CI for log OR = 0.3626177,0.906814E
95% CI for OR = 1.437086,2.476420)
For informational hits data
Test of informational/operational bias

Info. Oper.
Archaebacterial 29 155
Eubacterial 30 684
P(arch|info) = 29/59
P(arch|oper) = 155/839
OR = 2.660580; log OR = 0.9785441
ASE = sqrt(1/29 + 1/155 + 1/30 + 1/684) = 0.2571903
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Table S5. Cont.

95% CI for log OR =0.4744511–1.482637
95% CI for OR = 1.607132–4.404545
Test of archaebacterial lethality versus archaebacterial viable phenotype

Lethal Viable
Arachaebacterial 55 129
Eubacterial 100 614
P(arch|lethal) = 55/184
P(arch|viable) = 100/714
OR = 2.134239; log OR = 0.7581102
ASE = sqrt(1/55 + 1/129 + 1/100 + 1/614) = 0.1938103
95% CI for log OR = 0.378242–1.137978
95% CI for OR = 1.459716–3.120454
Test of lethality of informational genes versus lethality of operational genes

Info. Oper.
Lethal 29 126
Viable 30 713
P(lethal|info) = 29/59
P(lethal|oper) = 126/839
OR = 3.272935; log OR = 1.185687
ASE = sqrt(1/29 + 1/30 + 1/126 + 1/713) = 0.2777681
95% CI for log OR = 0.6412615–1.730112
95% CI for OR = 1.898875–5.641288
Test of lethality of archaebacterial genes versus lethality of eubacterial genes for informational
genes only

Lethal Viable
Archaebacterial 18 11
Eubacterial 11 19
P(arch|lethal) = 18/29
P(arch|viable) = 11/30
OR = 1.69279; log OR = 0.526378
95% ASE = sqrt(1/18 + 1/11 + 1/11 + 1/19) = 0.5385214
95% CI for log OR = -0.5291239–1.58188
95% CI for OR = 0.5891208–4.864091
Test of lethality of archaebacterial genes versus lethality of eubacterial genes for operational genes
only

Lethal Viable
Archaebacterial 37 118
Eubacterial 89 595
P(arch|lethal) = 37/126
P(arch|viable) = 118/713
OR = 1.774348; log OR = 0.5734328
95% ASE = sqrt(1/37 + 1/118 + 1/89 + 1/595) = 0.2200414
95% CI for log OR = 0.1421517–1.004714
95% CI for OR = 1.152751–2.731126

Each calculation presents first the numbers of genes involved in the calculation as a 2 × 2 table. Then the two
probabilities (odds) are calculated separately. Then the OR is calculated, followed by the SE and 95% CI.

Table S6. Genes in each homology, function, and lethality category, with ORF names, gene
names, GO cellular process annotation, and descriptions from the Saccharomyces Genome
Database (SGD)

http://bioinf.nuim.ie/supplementary/CottonMcInerneyPNAS_2010/tableS5.pdf

An asterisk in the “GO cellular process” column indicates that there are multiple GO terms in this category
attached to this gene and we have reported the most commonly used term, as reported by the SGD. Shaded
rows are those genes that exhibited significant similarity to sequences to both prokaryotic domains. These are
genes that are present in the “best hit” data set but removed in the data set that is used for calculations based
on hits to only one of the two prokaryotic groups. This table can be downloaded from http://bioinf.nuim.ie/
supplementary/CottonMcInerneyPNAS_2010/tableS5.pdf.
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