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Supplementary Material: 
___________________________________________________________________________________________________________________ 
Methdology : 
Feature Selection: 
Overall algorithmic steps of our feature subset selection method are illustrated in Figure 1. We denote as C(N,M) a microarray data in a matrix 
form of N gene expression levels and M samples of experiment conditions. Let Ci(N, 1) denote i-th column vector of C(N,M). Referring to Figure 
1, the details of the feature selection steps are as follows. 
 
Step 1: First, column vectors Ci(N, 1), i = 1, 2,…, M, are created from C(N,M). Each of these column vectors actually corresponds to one sample 
of gene expression data. Each column vector Ci(N, 1) is fed into a difference operation (denoted as ○- ) which computes the element-wise 
difference between Ci(N, 1) and all the columns of C(N,M). For each i, this operation outputs a difference matrix,  
 
Di(N,M) = C(N,M) ○-  Ci(N, 1),  i = 1,2,..., M,                    (1) 
 
where each entry of Di(N;M) is computed as the difference between two real numbers, 
 
Di(r, c) = C(r, c) − Ci(r, 1),  r = 1,2,…,N,  c = 1,2,…,M.                 (2) 
    
Let D(N, j) denote j-th column of matrix D(N,M). By definition, Di(N, j) contains the measure about how i-th sample Ci(N, 1) differs from j-th 
sample Cj(N, 1). One advantage of this vector-based scheme is that between-gene difference information is also kept in the column vectors 
together with between-sample differences. This is useful in examining how all the genes are correlated as will be shown shortly. 
 
Step 2: Magnitude of elements of Di(N,M) can be used as a measure to determine how useful each gene (row) is in classification. Our strategy 
here is based on a simple idea: differences between two samples in the same class will be small for most genes, while two samples coming from 
different classes will show large differences for many genes. Our objective is to identify and select out those genes that behave according to the 
conjecture. In order to mark the genes which take big or small values in Di(N,M), we introduce upper threshold u and lower threshold l, which are 
set to 75-percentile and 25-percentile, respectively, of the values in Di(N,M). As the range of difference values could be varying depending on 
class, thresholds are determined using the values within a class and represented as uw and lw for class w.   
 
Step 3: Marking of the values in Di(N,M) is carried out as follows. For an element Di(n,m) given, if i-th sample and m-th sample belong to the 
same class, then the absolute value of Di(n,m) would be expectedly small for gene n. Otherwise if they belong to different classes, then Di(n,m) 
would take a large value for gene n. In any case, if this expectation is met for gene n, we mark the gene by setting Ii(n,m) to 1. This marking 
implies that n-th gene is useful for describing the (inverse) correlation between i-th to m-th sample in terms of classification. Also it should be 
noted that this naturally provides hints about where irrelevant features arise. However, final decision on usefulness of a gene in classification 
should be postponed until the gene proves to be useful for all the samples involved, which is taken care of in the next step. 
 
Step 4: The objective of this step is to construct class-specific features from a set { Ii(N,M), i = 1,2, … , M}, which holds individual sample-based 
information. As we assume M samples are collected from W different classes, M columns can be decomposed into a partition of W blocks, 
 
Ii(N, M) = Ii(N, M1 + M2 + ... + MW),          (3) 
 
where Mw refers to the number of samples in class w. With this scheme, for each w, we element-wise add Ii(N,M)’s within class w to get Sw(N, M).  
For example, if we suppose M2 consists of 3 samples indexed from 5 to 7, the features specific to class 2 are computed by: 
 
S2(n,m) = I5(n,m) + I6(n,m) + I7(n,m),  n = 1,2,...,N,  m = 1,2,...,M. Once we have constructed all Sw(N,M)’s, we identify the elements taking 
significant values by applying a threshold which is set to 90-percentile of the values in Sw(N,M) for each class w. This threshold operation 
produces a binary matrix Fw(N, M). It should be noted that Fw(N, M) holds a useful measure for determining how much each gene n contributes to 
the classification of each sample m.    
 
Step 5: After we collect the within-class features in Fw(N, M), we then move on to selecting the most influencing genes. Selection of genes at this 
step is rather trivial, because all useful information has already gathered in Fw(N, M). We just count the marked elements in Fw(N, M) for each 
gene n, whose value is denoted by Fw(n), and use it as a final measure to determine the usefulness of gene n in the classification task as described 
in step 6. 
 
Clustering of Samples 
Gene expression data are typically given without any information about the phenotype of genes within each class. In handling such case of 
lacking a priori knowledge of representative patterns, nonnegative matrix factorization (NMF) has proved to be successful in capturing 
biologically meaningful clusters in the unsupervised manner [3, 12, 13]. In contrast to holistic methods such as principle component analysis 
(PCA) and self-organizing map (SOM), NMF yields a sparse, parts-based decomposition of data without discarding the original interpretation of 
features [14]. Suppose gene expression data is represented as N × M nonnegative matrix A which is C(N’, M) after feature selection. The number 
N of genes is usually in the thousands. NMF method decomposes A into two nonnegative matrices, V of size N ×κ and H of size κ ×M, so that A ~ 
V H. The rank κ of factorization defines the number of metagenes, which reflects the degree of latent factors. In a classification scheme, the value 
of κ represents the number of clusters, and the goal of NMF is to find two nonnegative matrices V and H such that · clusters optimally 
characterize the intrinsic structure of samples in A. The NMF algorithm starts by initializing V and H to random values and iteratively updates 
their values to minimize the distance between A and V H. A number of the divergence functionals have been proposed to measure the distance, 
including Euclidian distance and Kullback-Leibler (KL) divergence [12, 13, 14]. The KL divergence functional is given by the Poisson likelihood 
of generating A from V and H,  
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The divergence KL(·) is non-increasing under the following multiplicative update rules [15],  
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The updates of the two matrices are iteratively performed until the divergence of Equation (4) converges to a (local) minimum. Each sample is 
then considered to determine its membership to one of the κ clusters by the highest value of metagene expression pattern (column of H). 
____________________________________________________________________________________________________________________ 
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where δ(j) is 1 if j-th sample is correctly classified and 0 otherwise.  
_________________________________________________________________________________________________________________ 
 
Table 1: Number of 1-valued elements in Fw(N,M) for the Leukemia data. Fi - Fj denotes the number of elements whose values take 1 both in 
class i and j. Also Fi - Fj - Fk denotes the number of elements that have 1 for all three classes i, j, and k. 
F1 F2 F3 F1 - F2 F1 - F3 F2 - F3 F1 - F2 - F3 
23,115 22,758 24,785 1,640 1,127 4,468 7 
 
Table 2: Number of 1-valued elements in Fw(N,M) for the Medulloblastoma data 
F1 F2 F1 - F2 
22,665 20,913 72 
 
Table 3: Number of 1-valued elements in Fw(N,M) for the Central nervous system tumors data. The value in the first column is the average of 
four Fw’s.  
Avg. of Fw’s F1 - F2 - F3 F1 - F2 – F4 F1 – F3 – F4 F2 – F3 – F4 F1 - F2 - F3- F4 
26,710 3,627 1,829 2,682 210 98 

 




