Supplemental Materials

for

ROLE OF H-1 AND H-2 SUBUNITS OF SOYBEAN SEED FERRITIN IN OXIDATIVE DEPOSITION OF IRON IN PROTEIN

Jianjun Deng^{+∥}, Xiayun Liao^{+∥}, Haixia Yang^{+∥}, Zichun Hua[±], Taro Masuda[§] *, Fumiyuki

Goto[‡], Toshihiro Yoshihara[‡], Guanghua Zhao⁺ *

From ⁺CAU & ACC Joint-Laboratory of Space Food, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China, [§]Laboratory of Food Quality Design and Development, Division of Agronomy and Horticultural Science, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan, [±]The State Key Laboratory of Pharmaceutical Biotechnology and Department of Biochemistry, College of Life Sciences, Nanjing University, Nanjing 210093, P. R. China, [‡]Biotechnology Sector, Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry, 1646 Abiko, Abiko, Chiba 270-1194, Japan

*Address correspondence to: Dr. Taro Masuda, Tel.: 81-774-38-3762; Fax: 81-774-38-3761; E-mail: <u>masutaro@kais.kyoto-u.ac.jp</u>; Dr. Guanghua Zhao, Tel.:86-10-62737761; Fax:86-10-62737761; E-mail:gzhao1000@yahoo.com. ^{||}These authors contributed equally to the work.

FIGURE S1. Mass distributions of different particle sizes of aporH-2 and aporH-2 plus 96 or 144 Fe^{2+} /shell. The same experimental conditions as used in Figure 1C.

FIGURE S2. Mass distributions of different particle sizes of aporH-1 and aporH-1 plus 200 or 400 Fe^{2+} /shell. The same experimental conditions as used in Figure 2C.

FIGURE S4 (A) Kinetic traces of the rH-1H-2 aggregation during Fe^{2+} oxidation. (B) Time course of the rH-1H-2 aggregation upon addition of Fe^{2+} or Fe^{3+} . The curve represents an average of four experimental measurements. Conditions: [rH-1H-2] = 0.5 μ M in 100 mM Mops (pH 7.0), 24 – 100 μ M FeSO₄, 25 °C.

Time (s)

FIGURE S5 Relative scattered light intensity showing different particle size distributions induced by aerobic addition of Fe^{2+} to AporH-1 (A), AporH-2 (B) and ApoSSF (C) at different times. Conditions: 0.5 µM Apoferritin in 0.1 M Mops (pH 7.0), 200 µM Fe²⁺, 25 °C.

Table S1 Dynamic light scattering results from Figure S1 showing mass distributions of different particle sizes of aporH-2 and aporH-2 plus 96 or 144 Fe^{2+} /shell under the same experimental conditions as used in Figure 1C.

Sample (pH 7.0)	R _h (nm)	% Area ^a	Apparent Mr (kDa) ^b	Approx no. of
				monomers ^c
AporH-2	8.0 ± 1.2	99.9 ± 1.1	454 ± 106	1 ± 0.2
	66.7 ± 2.8	0.1 ± 0.1	$671,000 \pm 42,000$	1342 ± 84
AporH-2 + 96 Fe^{2+}	9.1 ± 1.1	64.0 ± 1.2	609 ± 110	1 ± 0.2
	72.4 ± 3.3	36.0 ± 2.2	$81,900 \pm 8,100$	164 ± 16
AporH-2 + 144 Fe^{2+}	14.6 ± 1.5	1.7 ± 0.4	1869 ± 230	4 ± 0.5
	93.7 ± 3.8	98.3 ± 2.5	$151,000 \pm 9,100$	302 ± 18

^aPercent area under each of the peaks in the mass distribution curve of Figure S1 corresponding to the percentage of species present.

^bSpherical geometry is assumed.

^eEstimated number of monomeric rH-2 molecules that constitute the aggregate. A monomer molecular weight of \sim 500 is assumed.

Sample (pH 7.0)	$R_{h}(nm)$	% Area ^a	Apparent Mr (kDa) ^b	Approx no.
				of monomers ^c
AporH-1	8.4 ± 1.1	99.8 ± 0.9	501 ± 120	1 ± 0.2
	195.9 ± 4.8	0.2 ± 0.1	$861,000 \pm 25,000$	1772 ± 50
AporH-1 + 200 Fe^{2+}	8.4 ± 1.2	95.7 ± 2.3	512 ± 110	1 ± 0.2
	58.5 ± 3.1	3.8 ± 1.1	$49,600 \pm 8,200$	99 ± 16
	341.1 ± 8.4	0.5 ± 0.1	$3,190,000 \pm 95,000$	6380 ± 190
AporH-1 + 400 Fe^{2+}	14.8 ± 2.2	41.0 ± 1.7	1928 ± 430	4 ± 0.8
	96.2 ± 3.7	57.3 ± 1.2	$160,000 \pm 14,000$	320 ± 28
	355.8 ± 6.8	1.7 ± 0.1	$3,530,000 \pm 67,000$	7060 ± 134

Table S2 Dynamic light scattering results from Figure S2 showing mass distributions of different particle sizes of apo rH-1 and rH-1 plus 200 or 400 Fe^{2+} /shell under the same experimental conditions as used in Figure 2C.

^aPercent area under each of the peaks in the mass distribution curve of Figure S2 corresponding to the percentage of species present.

^bSpherical geometry is assumed.

^cEstimated number of monomeric rH-1 molecules that constitute the aggregate. A monomer molecular weight of \sim 500 is assumed.

Sample (pH 7.0)	$R_{h}(nm)$	% Area	Apparent Mr (kDa)	Approx no.
				of monomers
ApoSSF	8.3 ± 1.4	100 ± 0.7	484 ± 108	1 ± 0.2
	328.8 ± 4.2	0 ± 0.2	$2,930,000 \pm 87,000$	5860 ± 184
ApoSSF + 96 Fe^{2+}	9.8 ± 1.1	94.5 ± 1.3	730 ± 140	1 ± 0.3
	70.1 ± 2.5	5.5 ± 0.4	$75,800 \pm 4,900$	152 ± 10
ApoSSF + 144 Fe^{2+}	8.5 ± 1.1	61.8 ± 1.2	519 ± 110	1 ± 0.2
	88.0 ± 3.4	38.2 ± 1.5	$130,000 \pm 6,800$	260 ± 14

Table S3 Dynamic light scattering results from Figure S3 showing mass distributions of different particle sizes of apoSSF and apoSSF plus 96 or 144 Fe^{2+} /shell under the same experimental conditions as used in Figure 4C.

^aPercent area under each of the peaks in the mass distribution curve of Figure S3 corresponding to the percentage of species present.

^bSpherical geometry is assumed.

^eEstimated number of monomeric SSF molecules that constitute the aggregate. A monomer molecular weight of \sim 500 is assumed.