Supplemental Data

INTERFERON-γ-MEDIATED INHIBITION OF SERUM RESPONSE FACTOR-DEPENDENT SMOOTH MUSCLE SPECIFIC GENE EXPRESSION* Zengdun Shi¹ and Don C. Rockey²

Supplemental Experimental Procedures

Hepatic Stellate Cell Isolation

The procedures for rat (1) and mouse (2) stellate cell isolation was modified as follows. The liver was perfused sequentially with a series of the following solutions: solution A: L15 containing EGTA (0.5mM) and 5mM Glucose; Solution B: L15 containing CaCl₂ (3.8mM) and pronase (1mg/ml, Roche); Solution C: L15 containing CaCl₂ (0.38mM) and collagenase type I (0.13mg/ml, Worthington). The digested liver was agitated in solution D (L15 containing pronase (0.2mg/ml) and DNase (0.0375mg/ml) at 37°C for 20 minutes. The resultant cell suspension was washed once with cold GBSS, and resuspended in cold GBSS solution with Accudenz gradients to final concentration 10% (Accudenz, Accurate Chemical & Scientific Co., Westbury, NY). 10ml of the cell mixture was loaded in 15 ml tube with 3 ml of GBSS solution on the top. Following centrifuge at 4,000 rpm at 4°C for 30 minutes, the interface cell fractions between cell mixture and GBSS solution were combined and centrifuged at 1,550 rpm for 7 minutes. The cell pellet was washed once and cells were placed in plastic culture dishes in 1990R medium containing 20% serum (10% horse/10% calf).

RT-PCR

2.5 µg of total RNA was used for cDNA synthesis by reverse transcription kit (Invitrogen) and the cDNAs were subjected to Real-Time PCR analysis according to manufacture's instructions (Applied Biosystems). The resulted PCR products were analyzed by 1.5% agarose gel electrophoresis.

Supplemental Table 1

Primers	Sequences (5'-3')	Use
STAT1	CTACCAGAGTATCTGCCTAGAC	aenotypina
	CCTCTCAACCTTCCTGACACC	90.00000.09
Neomycin	CACGACGGGCGTTCCTTGCGCAG	genotyping
	CCTGATGCTCTTCGTCCAGATCAT	5 71 5
SM $\alpha\text{-actin}$ promoter (rat)	GAGGTCCCTATATGGTTGTG	cloning/ChIP
	TGTCTGGGGAGGCTGAATGC	Ū
SRFpro (-787-172) (mouse)	GTGGACCTGTAATGTCGATCACTC	cloning
	AGACATACCGAACTCGCTGCTG	0
SRFpro (-543+11) (mouse)	GATGTGACCTCGCAGCCAGAC	cloning/ChIP
	AGGTATCCCCCAACCCTTC	Ū
SM α -actin cDNA (rat/mouse)	ATGTGTGAAGAGGAAGACAG	cloning/RPA
	GTGATGATGCCGTGTTCTATCG	-
SRF cDNA (rat/mouse)	TCTCAGGCACCATCCACCAT	cloning/RPA
	CCCAGCTTGCTGTCCTATCAC	
SMMHC cDNA (rat)	GTACAAGGGCAAGAAGAGGC	cloning/RPA
	CATCTCATCATCTTGTGCAGC	-
RNase L cDNA (mouse)	GGCATTGAGGACCATGGAGAC	cloning/expression
	CAAGACTCAGCTCTGTATGCC	
RNase L cDNA (mouse)	GAGATGTTGTCAGGGTCCAGC	cloning/RPA
	GCAGCTTCCATGAAAGCCGTG	
SMpro-CArG-B (rat)	GAGGTCCCTATATGGTTGTG	EMSA
	CACAACCATATAGGGACCTC	
SRFpro-SRE2 (mouse)	GCTCGCCATATAAGGAGCGG	EMSA
	CCGCTCCTTATATGGCGAGC	
IRF1pro-GAS (rat/mouse)	GCCTGATTTCCCCGAAATGATGAGGC	EMSA
	GCCTCATCATTTCGGGGAAATCAGGC	
SRFpro-GAS (mouse)	TCACTCTCTTGCTTAAATTTTCTATCC	EMSA
	GGATAGAAAATTTAAGCAAGAGAGTGA	
SRFpro-GAS (mouse)	CTCCACTGTTCCTTTAAGGAGTTGGCT	EMSA
	AGCCAACTCCTTAAAGGAACAGTGGAG	
SMMHCpro CArG-C (rat)	CGACTTCCTTTTATGGCCTGAG	EMSA
	CTCAGGCCATAAAAGGAAGTCG	
SRF mRNA 301R (rat)	TGATCCGCCCGCCACCCTGGACAGATG	cloning
	CAGGTGGTTTAGGCTGGCTCTGACAC	
IRF1 promoter (mouse)	CGCTTAGCTCTACAACAGCC	cloning/ChIP
	GTGAAAGCACGTCCTACCTC	
IRF1 promoter (rat)	CGCTTAGCTCTACAACAGCC	cioning/ChIP
	GTGAGAGCTCTTCCTACCTC	
2-5A synthetase 1A (rat)		KI-PCK

Supplemental References

- 1. Rockey, D. C., Maher, J. J., Jarnagin, W. R., Gabbiani, G., and Friedman, S. L. (1992) *Hepatology* **16**(3), 776-784
- 2. Shi, Z., Wakil, A. E., and Rockey, D. C. (1997) *Proc Natl Acad Sci U S A* **94**(20), 10663-10668

Figure Legends (Supplemental Figures)

Supplemental Figure 1: Signaling through IFN γ -STAT1 pathway reduces SRF binding in SM α -actin promoter *in vivo*. (A) Stellate cells were serum starved (0.1% serum) for 1 day and subsequently exposed to IFN γ (1,000 IU/mL) for 2 hours. Whole cell lysates (left panel) and nuclear extracts (right panel) were subjected to immunoblot analyses. (B) Following serum starvation (0.1%) for 1 day, stellate cells were incubated in medium containing 10% serum with or without IFN γ for 16 hours and then subjected to ChIP assay.

Supplemental Figure 2: SREs in the SRF promoter are responsible for IFN γ responsiveness. The SRF promoter (-787+11bp) and specific mutants are shown in the top panel. Site mutations (black boxes) were introduced into the indicated SREs (wild type SRE1: ccataaaagg, mutant SRE1: atccaaaagg; wild type SRE2: ccatataagg, mutant SRE2: atccataagg; wild type SRE3: gcaaataagt, mutant SRE3: aagcataagt). A pGL3B vector containing the wild type (WT) and different mutant SREs (mu-SRE) were transfected into stellate cells. Stellate cells were incubated in 0.1% serum containing 1990R medium with or without IFN γ for 2 days. Cell lysates were then assayed for luciferase activity (n=3, *p<0.01 for +IFN γ vs. -IFN γ , bottom panel).

Supplemental Figure 3: STAT1 does not directly target SRF GAS elements. (A) Stellate cells were serum starved (0.1%) for 1 day and then exposed to IFN γ for 2 hours. Nuclear extracts were prepared and subjected to EMSA to detect binding to GAS elements of the SRF promoter (or the IRF1 promoter, which was used as a positive control). Specific binding of pSTAT1 to GAS elements was confirmed by supershift with anti-pSTAT1 antibody (arrow). (B) and (C) After exposure to IFN γ for 2 hours, stellate cells were fixed with formaldehyde and subjected to ChIP assay. 20% of each sample was subjected to immunoprecipitation with pSTAT1 antibody and immune complexes were subjected to immunoblot with pSTAT1 (B). The remainder of each sample was subjected to immunoprecipitation with pSTAT1 and PCR was performed to amplify GAS containing SRF or IRF1 promoters (C).

