Supplementary Table 1: Kinase null strains tested for role in Nab2 phosphorylation.

Number	Standard Name	Systematic	Number	Standard Name	Systematic
		Name			Name
1	Akl1	YBR059C	45	Pho85	YPL031C
2	Ark1	YNL020C	46	Pkh1	YDR490C
3	Atg1	YGL180W	47	Pkh2	YOL100W
4	Bck1	YJL095W	48	Pkh3	YDR466W
5	Bud1	YGR152C	49	Prr1	YKL116C
6	Cka2	YOR061W	50	Prr2	YDL214C
7	Cmk1	YFR014C	51	Psk1	YAL017W
8	Cmk2	YOL016C	52	Psk2	YOL045W
9	Dan1	YJR150C	53	Ptk1	YKL198C
10	Dbf2	YGR092W	54	Ptk2	YJR059W
11	Dbf2	YGR092W	55	Rck1	YGL158W
12	Elm1	YKL048C	56	Rck2	YLR248W
13	Env7	YPL236C	57	Rim15	YFL033C
14	Fmp48	YGR052W	58	Rtk1	YDL025C
15	Fpk1	YNR047W	59	Sak1	YER129W
16	Fus3	YBL016W	60	Skm1	YOL113W
17	Gcn2	YDR283C	61	Slt2	YHR030C
18	Gin4	YDR507C	62	Snf1	YDR477W
19	Hal5	YJL165C	63	Sps1	YDR523C
20	Hog1	YLR113W	64	Ssk2	YNR031C
21	Hrk1	YOR267C	65	Ssk22	YCR073C
22	Hsl1	YKL101W	66	Ssn3	YPL042C
23	Ime2	YJL106W	67	Ste11	YLR362W

24	Ire1	YHR079C	68	Ste20	YHL007C
25	Isr1	YPR106W	69	Ste7	YDL159W
26	Kcc4	YCL024W	70	Swe1	YJL187C
27	Kin1	YDR122W	71	Tda1	YMR291W
28	Kin2	YLR096W	72	Tos3	YGL179C
29	Kin3	YAR018C	73	Tpk1	YJL164C
30	Kin4	YOR233W	74	Tpk2	YPL203W
31	Kin82	YCR091W	75	Tpk3	YKL166C
32	Kka1	YJL094C	76	Twf1	YGR080W
33	Kns1	YLL019C	77	Vhs1	YDR247W
34	Ksp1	YHR082C	78	Vps15	YBR097W
35	Mck1	YNL307C	79	Yak1	YJL141C
36	Mds1	YMR139W	80	Yck2	YNL154C
37	Mek1	YOR351C	81	Yck3	YER123W
38	Mkk1	YOR231W	82	Ygk3	YOL128C
39	Mkk2	YPL140C	83	Ypk1	YKL126W
40	Mlp1	YKL161C	84	Ypk2	YMR104C
41	Mrk1	YDL079C	85	Uncharacterized ORF	YPL150W
42	Nnk1	YKL171W	86	Uncharacterized ORF	YBR028C
43	Npr1	YNL183C	87	Uncharacterized ORF	YNL141C
44	Pak1	YIL095W			

Supplementary Table 2: S. cerevisiae strains used in this study

Strain	Genotype	Reference/Source
BY4742	Mat α his3 $\Delta 1$ leu2 $\Delta 0$ ura3 $\Delta 1$ lys2 $\Delta 1$	Research Genetics
Nab2-TAP	$NAB2$ - TAP :HIS5 Mata his3 $\Delta 1$ leu2 $\Delta 0$ met15 $\Delta 0$ ura3 $\Delta 1$	(Ghaemmaghami et al., 2003)
bck1 Δ	$BCK1::KAN$ Mata his $3\Delta 1$ leu $2\Delta 0$ met $15\Delta 0$ ura $3\Delta 1$	(Winzeler et al., 1999)
slt2∆	SLT2::KAN Mat α his3 Δ 1 leu2 Δ 0 lys2 Δ 0 ura3 Δ 1	(Winzeler et al., 1999)
hogl∆	$HOG1::KAN$ Mata his $3\Delta 1$ leu $2\Delta 0$ met $15\Delta 0$ ura $3\Delta 1$	(Winzeler et al., 1999)
ypk1 <u>A</u>	$YPK1::KAN$ Mata his $3\Delta 1$ leu $2\Delta 0$ met $15\Delta 0$ ura $3\Delta 1$	(Winzeler et al., 1999)
SWY4307	$NAB2::HIS3$ Mat α his3 $\Delta 1$ leu2 $\Delta 0$ trp1 Δ ura3 $\Delta 1$ p(AC636)	(Marfatia et al., 2003) (Marfatia et al., 2003)
SWY4308	NAB2::HIS3 Matα his3 Δ l leu2 Δ 0 trp1 Δ ura3 Δ l p(SW3579)	This study
SWY4309	$NAB2::HIS3$ Mat α his3 $\Delta 1$ leu2 $\Delta 0$ trp1 Δ ura3 $\Delta 1$ p(SW3580)	This study
SLT2-TAP	SLT2-TAP:HIS5 Mata his3 $\Delta 1$ leu2 $\Delta 0$ met15 $\Delta 0$ ura3 $\Delta 1$	(Ghaemmaghami et al., 2003)
BCK1- TAP	$BCK1$ -TAP:HIS5 Mata his3 $\Delta 1$ leu2 $\Delta 0$ met15 $\Delta 0$ ura3 $\Delta 1$	(Ghaemmaghami et al., 2003)
MKK1- TAP	MKK1-TAP:HIS5 Mata his $3\Delta 1$ leu $2\Delta 0$ met $15\Delta 0$ ura $3\Delta 1$	(Ghaemmaghami et al., 2003)
YPK1- TAP	YPK1- TAP:HIS5 Mata his $3\Delta 1$ leu $2\Delta 0$ met $15\Delta 0$ ura $3\Delta 1$	(Ghaemmaghami et al., 2003)
nup42∆	$NUP42::KAN$ Mat α his3 $\Delta 1$ leu2 $\Delta 0$ lys2 $\Delta 0$ ura3 $\Delta 1$	(Winzeler et al., 1999)
SWY4493	NUP42::KAN NAB2::HIS3 Mat α his3 Δ 1 leu2 Δ 0 trp1 Δ ura3 Δ 1 p(AC636)	This study
SWY4494	NUP42::KAN NAB2::HIS3 Mat α his3 Δ 1 leu2 Δ 0 trp1 Δ ura3 Δ 1 p(SW3579)	This study
SWY4495	NUP42::KAN NAB2::HIS3 Mat α his3 Δ 1 leu2 Δ 0 trp1 Δ ura3 Δ 1 p(SW3580)	This study

SWY4552	$NAB2$ -mCherry:HygB YRA1-GFP:HIS3 Mata his3 $\Delta 1$ leu2 $\Delta 0$ ura3 $\Delta 1$	This study
SWY4225	$NAB2$ -mCherry:HygB MLP1-GFP:HIS3 Mata his3 $\Delta 1$ leu2 $\Delta 0$ ura3 $\Delta 1$	This study
SWY4034	$NAB2$ -GFP:HIS5 MLP1::KAN Mat α his3 Δ 1 leu2 Δ 0 ura3 Δ 1	This study
MEX67- GFP	$MEX67$ -GFP:HIS5 Mata his3 $\Delta 1$ leu2 $\Delta 0$ met15 $\Delta 0$ ura3 $\Delta 1$	(Huh et al., 2003)
SWY4225	$NAB2$ -mCherry:HygB MLP1-GFP:HIS3 Mata his3 $\Delta 1$ leu2 $\Delta 0$ met15 $\Delta 0$ ura3 $\Delta 1$	This study
SWY4251	NAB2-mCherry:HygB MLP1-GFP:HIS3 SLT2::KAN Mata leu2Δ0 ura3Δ1	This study
$mlp I \Delta$	$MLP1::KAN$ Mat α his3 $\Delta 1$ leu2 $\Delta 0$ lys2 $\Delta 0$ ura3 $\Delta 1$	(Winzeler et al., 1999)
gfd1∆	$GFD1::KAN$ Mat α his3 $\Delta 1$ leu2 $\Delta 0$ lys2 $\Delta 0$ ura3 $\Delta 1$	(Winzeler et al., 1999)
pAC1152	NAB2::HIS3 p(nab2∆N LEU2) Mata leu2 ura3	(Marfatia et al., 2003)

Supplementary Table 3: Plasmids used in this study

Plasmid	Description	Reference/Source
pAC 636	NAB2 CEN LEU2 AMP	(Green et al., 2002)
pSW3579	nab2-T178A/S180A CEN LEU2 AMP	This study
pSW3580	nab2-T178E/S180E CEN LEU2 AMP	This study
Nab2- pGEX2TK	pGEX2TK GST-NAB2 AMP	(Lee and Aitchison, 1999)
pSW3610	pGEX2TK GST-nab2 T178A/S180A AMP	This study
pSW3629	pGEX2TK GST-nab2 T178E/S180E AMP	This study
pSW3465	6x-HIS- <i>MTR2:MEX67</i> AMP	This study
pSW1319	GST-Dbp5 AMP	(Alcazar-Roman et al., 2006)

Supplementary Figure 1: Poly(A^+) tail length is unaffected in *slt2* Δ , *nab2*-

T178A/S180A, and *nab2-T178E/S180E*. Total RNA was isolated from wild type, *slt2* Δ , *nab-T178A/S180A*, and *nab2-T178E/S180E* cells grown at 23°C or after a 1 hr shift to 42°C. RNA was end-labeled with ³²pCp and T4 RNA ligase, and digested with RNase A and RNase T1 to remove non-poly(A⁺) tracks. Resulting stretches of poly(A⁺) were then resolved by denaturing urea-polyacrylamide gel electrophoresis and visualized by autoradiography. The position of the 70 nucleotide (nt) typical poly(A⁺) tail length is marked on the left.

Supplementary Figure 2: **Differential localization of NPC-associated proteins during heat shock.** Mlp2-GFP is localized in discrete intranuclear foci after shifting to growth at 42°C. Nup49-GFP and Nup60-GFP are localized to the nuclear rim during growth at 25°C and 42°C. Left column shows direct GFP fluorescence, and right column shows DIC.

Supplementary Figure 3: Formation of intranuclear Nab2-GFP foci is dependent on Mlp1. Yeast null mutants expressing Nab2-GFP were shifted from growth at 30°C to 42°C for 1 hr. Intranuclear foci formation was evaluated by direct fluorescence microscopy.

Supplementary Figure 4: **Production of heat shock proteins is not affected in** *mlp1* Δ **cells.** Wild type (lanes 1-2), *nup42* Δ (lane 3-4), *mlp1* Δ (lane 5-6), and *gfd1* Δ (lane 7-8) cells were grown at 23°C, shifted to 42°C for 15 min, and labeled with ³⁵S methionine for

an additional 15 min. Cell lysates were separated by SDS-PAGE and proteins were visualized by autoradiography. Asterisks at the right indicate proteins induced upon heat shock (Hsp104, Hsp82, and Hsp70s respectively.)

Supplemental Figure 5: **The nab2-T178E/S180E protein binds Mex67-Mtr2.** 6x-HIS-Mtr2/Mex67 was bound in batch to Ni²⁺ agarose beads at 4°C, and divided equally into nine tubes. Purified recombinant wild type Nab2 (lanes 1-3), nab2-T178A/S180A (lanes 4-6), or nab2-T178E/S180E (lanes 7-9) protein was added to individual tubes in decreasing amounts of 0.5µg, 0.25µg, and 0.1µg. Samples were incubated for 1 hr at 4°C. Beads were washed, and boiled in SDS sample buffer to elute bound proteins. Mex67 was detected by Coomassie stained SDS-PAGE (A), and Nab2 was detected by immunoblotting (B).

Alcazar-Roman, A. R., Tran, E. J., Guo, S. and Wente, S. R. (2006). Inositol hexakisphosphate and Gle1 activate the DEAD-box protein Dbp5 for nuclear mRNA export. *Nat. Cell Biol.* **8**, 711-716.

Ghaemmaghami, S., Huh, W. K., Bower, K., Howson, R. W., Belle, A., Dephoure, N., O'Shea, E. K. and Weissman, J. S. (2003). Global analysis of protein expression in yeast. *Nature* **425**, 671-672.

Green, D. M., Marfatia, K. A., Crafton, E. B., Zhang, X., Cheng, X. and Corbett, A. H. (2002). Nab2p is required for poly(A) RNA export in *Saccharomyces*

cerevisiae and is regulated by arginine methylation via Hmt1p. *J. Biol. Chem.* **277**, 7752-7760.

Huh, W. K., Falvo, J. V., Gerke, L. C., Carroll, A. S., Howson, R. W.,

Weissman, J. S. and O'Shea, E. K. (2003). Global analysis of protein localization in budding yeast. *Nature* **425**, 686-691.

Lee, D. C. and Aitchison, J. D. (1999). Kap104p-mediated nuclear import.

Nuclear localization signals in mRNA-binding proteins and the role of Ran and RNA. *J. Biol. Chem.* **274**, 29031-29037.

Marfatia, K. A., Crafton, E. B., Green, D. M. and Corbett, A. H. (2003).

Domain analysis of the *Saccharomyces cerevisiae* heterogeneous nuclear ribonucleoprotein, Nab2p. Dissecting the requirements for Nab2p-facilitated poly(A) RNA export. *J. Biol. Chem.* **278**, 6731-6740.

Winzeler, E. A., Shoemaker, D. D., Astromoff, A., Liang, H., Anderson, K.,

Andre, B., Bangham, R., Benito, R., Boeke, J. D., Bussey, H. et al. (1999). Functional characterization of the *S. cerevisiae* genome by gene deletion and parallel analysis. *Science* 285, 901-906.

Supplemental Figure 1

Supplemental Figure 2

Supplemental Figure 3

Western Blot