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In all our simulations and analysis we used a common definition of contact maps. A contact

between theith and jth Cα atom of the protein is defined as:

CCCi, j =
1−
(

ri, j
r0

)6

1−
(

ri, j
r0

)10, (1)

whereri, j is the distance between the two atoms andr0 is taken to ber0 = 8.5 Å.1 This defini-

tion of contact map is different from the one commonly used inliterature,1 which is discrete and

wherer0 is intended as a sharp cutoff. In order to be used as collective variables in a metadynamics

simulation, contacts must be defined in terms of a function with continous derivatives. The defini-

tion in Eq. (1) has already been used successfully in studying the folding of small peptides2,3 and
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the interfaces between protein subunits in supramolecularbiological assemblies.4

All-atom simulations

All-atom simulations were carried out using AMBER99SB force field5 and NAMD 2.7b1 code.6

The initial configuration was taken from the structure of theHIV–1–PR dimer (PDB code 1BVG).

The monomer was solvated in a periodic cubic box of 84 Å using 18957 TIP3P water molecules.7

Two chloride ions were added to ensure charge neutrality. A timestep of 2 fs was used. All

bonds were constrained using the SHAKE algorithm,8 with a tolerance of 10−8 Å. Electrostatic

was treated with the Particle Mesh Ewald method,9 using a grid spacing of 1 Å, a direct space

tolerance of 10−6 and an interpolation order equal to 4. The system was pressurized at 1 atm at

300K using a Langevin thermostat with damping coefficient of5 ps−1 and piston for 500 ps.

NVT simulation at room temperature

The NVT run was carried out for 512 ns at 300K using a Langevin thermostat with a damping

coefficient of 5 ps−1. The structure of the monomer appeared stable during the whole NVT simu-

lation. The root mean square fluctuations of the Cα atoms were within 0.5 and 1.5 Å along most of

the chain (Figure S1). Three regions displayed a grater mobility: the C and N termini and fragment

45–55, corresponding toβ2. A partial assembling of the N and C terminal into a beta structure

was also observed (Figure S2, top panel).

In the bottom panel of Figure S2 we monitor the time series of our six sets of native contacts.

In the time scale of the simulation a spontaneous breaking and reforming of the hydrogen-bonds

pattern that stabilizesβ1–β3 occurred. Atomistic details of the interaction betweenβ1 andβ3 are

reported in Figure S3.

We have calculated the RMSD of the monomer in solution from the structure in the dimer along

the first 10 ns of our long NVT run. The RMSD computed on the backbone atoms of all the 99

residues oscillated around 2.2 Å. The RMSD computed only on residues 10 to 90, i.e. excluding
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the flexible termini, oscillated around 1.5 Å.

Unfolding analysis

The unfolding analysis was carried out on a set of 30 trajectories generated starting from the

same equilibrated structure with different initial velocities. The temperature of 700K was enforced

using a Langevin thermostat. All the thermal unfolding runswere simulated for 8 ns. The final

configurations had a RMSD from the native structure that ranged from 11 to 22 Å, calculated on

the Cα atoms.

To identify common events and main unfolding routes, the ensemble of configurations pro-

duced in the unfolding simulations at 700 K was clusterized using the k-means algorithm.10 This

is a simple way to classify a set ofN data in a certain number of clusterk fixed a priori. The

algorithm aims at minimizing theerror squared function:

J =
k

∑
j=1

N

∑
i=1

‖x( j)
i − c j‖

2
, (2)

where‖x( j)
i −c j‖

2 is the distance between a data pointx( j)
i and the cluster centrec j. Here we chose

as distance between two configurationsx1 andx2 the distance in the space of contact maps:

‖x2− x2‖
2 =

6

∑
j=1

1
N j

N j

∑
i=1

(C j
i (1)−C j

i (2))
2
, (3)

where the indexj runs over the six sets of contacts in which we classified the native map,C j
i is

the ith element of this set, as defined in Eq. (1),N j the total number of contacts belonging to this

group.

Two clusters were connected by a link if a transition betweenthem was observed during the

unfolding simulations. To visualize the connectivity among the clusters found, we used Visone.11

The method used to display and organize the network of clusters was the metric multidimensional

scaling. The clustering algorithm used here is based on a choicea priori of the number of clusters
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in which data are organized. We explicitly checked that the sequence of events and the different

unfolding pathways found by our analysis were robust with respect to this choice (Figure S4).

Structure-based potential simulations

Coarse grained simulations of the HIV–1–PR monomer were carried out using the all-atom structure-

based potential introduced in Ref.12 and GROMACS 413 together with PLUMED.14 To build the

topology, the web server of Onuchic research group (http://sbm.ucsd.edu/) was used.

A time step of 0.0005 in reduced unit and the stochastic thermostat of Bussiet al.15 were used.

A thermostat that yields the correct energy fluctuations of the canonical ensemble is crucial in

parallel tempering simulations.16 For the PTMetaD simulation, 16 replicas were distributed with

a geometric progression in a temperature range between 0.969 and 1.057 in unit ofTf = 113.5K.

Exchanges between configurations were attempted every 200 steps. The total simulation time for

each replica was 2·107 steps. As collective variable, we used the total number of native contactsQ

without any discrimination among our six subsets. The ratiobetween the fictitious temperature of

the collective variableT +∆T 17 and that of the simulationT was kept constant across the different

replicas:

γ =
T +∆T

T
= 15. (4)

Gaussians of 1.0 kjoule/mol height and 5.0 width were deposited every 1000 steps. We moni-

tored the convergence of the PTMetaD simulation by calculating at different times the free-energy

difference between folded and unfolded states (Figure S5):

∆F(t) =−
1
β

ln

(

∫ 1
0.5eβ γ

γ−1V (Q,t) dQ
∫ 0.5

0 eβ γ
γ−1V (Q,t)dQ

)

(5)

whereβ = (kBT )−1 andV (Q, t) is the metadynamics bias potential acting at timet on the

collective variableQ. The definition of folded (Q ≥ 0.5) and unfolded (Q < 0.5) is arbitrary.
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Convergence was accelerated by orders of magnitude with respect to standard PT.18

Reweighting procedure

To calculate from the PTMetaD runs the multiple FES as a function of the fraction of native con-

tacts of our six descriptors, we used the reweighting algorithm introduced in Ref.19 This method

is based on the evolution of the biased probability distribution P(RRR, t) during the metadynamics

simulation:

P(RRR, t +∆t) = e−β (V̇ (sss(RRR),t)−〈V̇ (sss,t)〉)∆t P(RRR, t), (6)

whereV̇ (sss(RRR), t) is the time derivative of the bias potential and the average in the exponent is

calculated in the biased ensemble. In the long time limit, the Boltzmann distributionPB(RRR) can be

recovered using a standard umbrella sampling reweighting:

PB(RRR) ∝ eβV (sss(RRR),t) ·P(RRR, t). (7)
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