#_______________________________________________________________________
#
# Requested by: David C. Powers and Tobias Ritter
# Harvard University
# Department of Chemistry and Chemical Biology
# 12 Oxford Street
# Cambridge, MA 02138
# Tel: (617) 496-0750
# Fax: (617) 496-4591
# Email: ritter@chemistry.harvard.edu
#
# Crystallography by: Douglas M. Ho
# Harvard University
# Department of Chemistry and Chemical Biology
# 12 Oxford Street, B05-B06
# Cambridge, MA 02138
# Tel: (617) 495-0787
# Fax: (617) 496-8783
# Email: ho@chemistry.harvard.edu
#
# Comments: tr040 = [Pd(C2H3O2)(C13H8N)Cl]2 . C6H5I . CH2Cl2
# = C30H22Cl2N2O4Pd2 . C6H5I . CH2Cl2
# = (Acetato){10-benzo[h]quinolinato)chloro-
# palladium(III) Dimer . Iodobenzene .
# Dichloromethane Solvate at 193(2) K
#
# This compound crystallizes as orange prisms
# (from dichloromethane / pentane) in the
# monoclinic space group C2/c (No. 15) with 4
# formula units per unit cell.
#
# Due to severe disorder, the Squeeze/Bypass
# procedure implemented in Platon was used to
# remove the dichloromethane contributions to the
# intensity data. Hence, coordinates for that
# solvent molecule will not be found in the atoms
# list below. (See the _platon_squeeze_details
# section at the end of this file for additional
# comments.)
#
# Version date: July 29, 2008
#_______________________________________________________________________
data_tr040
_audit_creation_method SHELXL-97
_chemical_name_systematic
;
(Acetato){10-benzo[h]quinolinato)chloropalladium(III) Dimer
. Iodobenzene . Dichloromethane Solvate
;
_chemical_name_common 'tr040'
_chemical_formula_iupac
;
[Pd (C2 H3 O2) (C13 H8 N) Cl]2 . (C6 H5 I) . (C H2 Cl2)
;
_chemical_formula_moiety
;
((Pd 3+) (C2 H3 O2 1-) (C13 H8 N 1-) (Cl 1-))2, C6 H5 I, C H2 Cl2
;
_chemical_formula_structural
;
(Pd (C2 H3 O2) (C13 H8 N) Cl)2 (C6 H5 I) (C H2 Cl2)
;
_chemical_formula_analytical ?
_chemical_formula_sum 'C37 H29 Cl4 I N2 O4 Pd2'
_chemical_formula_weight 1047.12
_chemical_melting_point ?
_chemical_compound_source 'chemical synthesis'
loop_
_atom_type_symbol
_atom_type_description
_atom_type_scat_dispersion_real
_atom_type_scat_dispersion_imag
_atom_type_scat_source
'C' 'C' 0.0033 0.0016
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
'H' 'H' 0.0000 0.0000
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
'N' 'N' 0.0061 0.0033
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
'O' 'O' 0.0106 0.0060
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
'Cl' 'Cl' 0.1484 0.1585
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
'Pd' 'Pd' -0.9988 1.0072
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
'I' 'I' -0.4742 1.8119
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
_symmetry_cell_setting 'Monoclinic'
_symmetry_space_group_name_Hall '-C 2yc'
_symmetry_space_group_name_H-M 'C 2/c'
_symmetry_Int_Tables_number 15
loop_
_symmetry_equiv_pos_as_xyz
'x, y, z'
'-x, y, -z+1/2'
'x+1/2, y+1/2, z'
'-x+1/2, y+1/2, -z+1/2'
'-x, -y, -z'
'x, -y, z-1/2'
'-x+1/2, -y+1/2, -z'
'x+1/2, -y+1/2, z-1/2'
_cell_length_a 16.7605(5)
_cell_length_b 17.7508(5)
_cell_length_c 14.1762(4)
_cell_angle_alpha 90.00
_cell_angle_beta 117.053(2)
_cell_angle_gamma 90.00
_cell_volume 3756.13(19)
_cell_formula_units_Z 4
_cell_measurement_temperature 193(2)
_cell_measurement_reflns_used 5273
_cell_measurement_theta_min 2.29
_cell_measurement_theta_max 22.99
_exptl_crystal_description 'Prism'
_exptl_crystal_colour 'Orange'
_exptl_crystal_size_max 0.15
_exptl_crystal_size_mid 0.03
_exptl_crystal_size_min 0.03
_exptl_crystal_density_diffrn 1.852
_exptl_crystal_density_method 'not measured'
_exptl_crystal_density_meas ?
_exptl_crystal_F_000 2040
_exptl_absorpt_coefficient_mu 2.106
_exptl_absorpt_correction_type 'numerical'
_exptl_absorpt_correction_T_min 0.7430
_exptl_absorpt_correction_T_max 0.9395
_exptl_absorpt_process_details 'SADABS (Bruker AXS, 2004)'
_exptl_special_details
;
The compound was crystallized from a dichloromethane / pentane solution
as orange prisms. A crystal 0.03 mm x 0.03 mm x 0.15 mm in size was
selected, mounted on a nylon loop with Paratone-N oil, and transferred
to a Bruker SMART APEX II diffractometer equipped with an Oxford
Cryosystems 700 Series Cryostream Cooler and Mo K\a radiation (\l =
0.71073 \%A). A total of 2762 frames were collected at 193(2) K to
\q~max~ = 25.00\% with an oscillation range of 0.5\%/frame, and an
exposure time of 20 s/frame using the APEX2 suite of software. (Bruker
AXS, 2006a) Data were collected to \q~max~ = 25.00\% rather than the
routine value of \q~max~ = 27.50\% because the crystal examined did
not exhibit usable diffraction beyond 25.00\%. Unit cell refinement
on all observed reflections, and data reduction with corrections for
Lp and decay were performed using SAINT. (Bruker AXS, 2006b) Scaling
and a numerical absorption correction were done using SADABS. (Bruker
AXS, 2004) The minimum and maximum transmission factors were 0.7430
and 0.9395, respectively. A total of 37194 reflections were collected,
3313 were unique (R~int~ = 0.0770), and 2701 had I > 2\s(I).
Systematic absences were consistent with the compound having crystallized
in the monoclinic space group Cc or C2/c. The latter centrosymmetric
space group C2/c (No. 15) was selected based on an observed mean
|E^2^-1| value of 0.927 (versus the expectation values of 0.968
and 0.736 for centric and noncentric data, respectively).
________________________________________________________________________
Bruker AXS (2004). SADABS. Bruker Analytical X-ray Systems Inc.,
Madison, Wisconsin, USA.
Bruker AXS (2006a). APEX2 v2.1-0. Bruker Analytical
X-ray Systems Inc., Madison, Wisconsin, USA.
Bruker AXS (2006b). SAINT V7.34A. Bruker Analytical
X-ray Systems Inc., Madison, Wisconsin, USA.
________________________________________________________________________
;
_diffrn_ambient_temperature 193(2)
_diffrn_radiation_wavelength 0.71073
_diffrn_radiation_type 'Mo K\a'
_diffrn_radiation_source 'fine-focus sealed tube'
_diffrn_radiation_monochromator 'graphite'
_diffrn_measurement_device_type 'Bruker APEX II CCD'
_diffrn_measurement_method '\w scans, 2762 0.5\% rotations'
_diffrn_detector_area_resol_mean 836.6
_diffrn_standards_number 0
_diffrn_standards_interval_count ?
_diffrn_standards_interval_time ?
_diffrn_standards_decay_% 0
_diffrn_reflns_number 37194
_diffrn_reflns_av_R_equivalents 0.0770
_diffrn_reflns_av_sigmaI/netI 0.0352
_diffrn_reflns_limit_h_min -19
_diffrn_reflns_limit_h_max 19
_diffrn_reflns_limit_k_min -21
_diffrn_reflns_limit_k_max 21
_diffrn_reflns_limit_l_min -16
_diffrn_reflns_limit_l_max 16
_diffrn_reflns_theta_min 1.78
_diffrn_reflns_theta_max 25.00
_diffrn_measured_fraction_theta_max 1.000
_diffrn_reflns_theta_full 25.00
_diffrn_measured_fraction_theta_full 1.000
_reflns_number_total 3313
_reflns_number_gt 2701
_reflns_threshold_expression 'I>2\s(I)'
_computing_data_collection 'APEX2 v2.1-0 (Bruker AXS, 2006a)'
_computing_cell_refinement 'SAINT V7.34A (Bruker AXS, 2006b)'
_computing_data_reduction
;
SAINT V7.34A (Bruker AXS, 2006b), SADABS (Bruker AXS, 2004),
PLATON (Spek, 2003)
;
_computing_structure_solution 'SHELXTL v6.12 (Bruker AXS, 2001)'
_computing_structure_refinement 'SHELXTL v6.12 (Bruker AXS, 2001)'
_computing_molecular_graphics 'SHELXTL v6.12 (Bruker AXS, 2001)'
_computing_publication_material 'SHELXTL v6.12 (Bruker AXS, 2001)'
_refine_special_details
;
Refinement of F^2^ against ALL reflections. The weighted
R-factor wR and goodness of fit S are based on
F^2^, conventional R-factors R are based on
F, with F set to zero for negative F^2^. The
threshold expression of F^2^ > 2\s(F^2^) is used only
for calculating R-factors(gt) etc. and is not relevant to the
choice of reflections for refinement. R-factors based on
F^2^ are statistically about twice as large as those based on
F, and R-factors based on ALL data will be even larger.
The structure was solved by direct methods and refined by full-matrix
least-squares on F^2^ using SHELXTL. (Bruker AXS, 2001) The
asymmetric unit was found to contain a half molecule of the desired
(acetato)(10-benzo[h]quinolinato)chloropalladium(III) dimer
plus a disordered iodobenzene molecule, and an even more severely
disordered solvent molecule that we believe to be dichloromethane.
The palladium(III) dimer resides on Wyckoff position 4e and
possesses crystallographically imposed two-fold symmetry. To the
best of our knowledge, based on various models and occupancy tests,
the chemical formulation for the compound is
[Pd(C~2~H~3~O~2~)(C~13~H~8~N)Cl]~2~ . C~6~H~5~I . CH~2~Cl~2~.
All of the nonhydrogen atoms were refined with anisotropic displacement
coefficients. The hydrogen atoms were assigned isotropic displacement
coefficients U(H) = 1.2U(C) or 1.5U(C~methyl~), and
their coordinates were allowed to ride on their respective carbons. The
disordered iodobenzene molecule was treated with a two-site model [I(1),
C(13), C(14), C(15), C(16), C(17), C(18)] and [I(1*), C(13*), C(14*),
C(15*), C(16*), C(17*), C(18*)] with refined site occupancy factors of
0.466(3) and 0.034(3), respectively. That two-site model also included
rigid bond, similar U~ij~, common plane, and distance restraints. The
benzene rings were treated as idealized regular hexagons with C-C =
1.39 \%A. Attempts to model the dichloromethane were without success.
The best discrete-atom model for the disordered dichloromethane converged
to wR(F^2^) = 0.0860. However, due to nonsensical bond
distances and angles, and unjustifiable occupancy factors, that
discrete-atom model for the dichloromethane was ultimately abandoned
in favor of the solvent-free model contained in this CIF file. The
dichloromethane contributions to the intensity data were removed by the
Squeeze/Bypass procedure (van der Sluis & Spek, 1990) implemented in
Platon (Spek, 2003). The refinement converged to R(F) =
0.0336, wR(F^2^) = 0.0761, and S = 1.075 for 2701
reflections with I > 2\s(I), and R(F) =
0.0491, wR(F^2^) = 0.0804, and S = 1.075 for 3313
unique reflections, 285 parameters, and 246 restraints. The maximum
|\D/\s| in the final cycle of least-squares was 0.001, and the residual
peaks on the final difference-Fourier map ranged from -0.816 to 0.355
e\%A^-3^. Scattering factors were taken from the International Tables
for Crystallography, Volume C. (Maslen et al., 1992, and
Creagh & McAuley, 1992)
________________________________________________________________________
R(F ) = R1 =
\S ||F~o~|-|F~c~|| / \S|F~o~|,
wR(F ^2^) = wR2 =
[ \S w (F~o~^2^-F~c~^2^)^2^ /
\S w (F~o~^2^)^2^ ]^1/2^, and
S = Goodness-of-fit on F ^2^ =
[ \S w (F~o~^2^-F~c~^2^)^2^ /
(n-p) ]^1/2^, where n is the number of reflections
and p is the number of parameters refined.
________________________________________________________________________
Bruker AXS (2001). SHELXTL v6.12. Bruker Analytical
X-ray Systems Inc., Madison, Wisconsin, USA.
Creagh, D. C. & McAuley, W. J. (1992). International Tables for
Crystallography: Mathematical, Physical and Chemical Tables, Vol C,
edited by A. J. C. Wilson, pp. 206-222. Dordrecht, The Netherlands:
Kluwer.
Maslen, E. N., Fox, A. G. & O'Keefe, M. A. (1992). International
Tables for Crystallography: Mathematical, Physical and Chemical
Tables, Vol C, edited by A. J. C. Wilson, pp. 476-516. Dordrecht,
The Netherlands: Kluwer.
Spek, A. L. (2003). Journal of Applied Crystallography, 36, 7-13.
van der Sluis, P. & Spek, A. L. (1990). Acta Crystallographica,
Section A, 46, 194-201.
________________________________________________________________________
;
_refine_ls_structure_factor_coef Fsqd
_refine_ls_matrix_type full
_refine_ls_weighting_scheme calc
_refine_ls_weighting_details
'w=1/[\s^2^(Fo^2^)+(0.0413P)^2^+2.5903P] where P=(Fo^2^+2Fc^2^)/3'
_atom_sites_solution_primary direct
_atom_sites_solution_secondary difmap
_atom_sites_solution_hydrogens geom
_refine_ls_hydrogen_treatment constr
_refine_ls_extinction_method none
_refine_ls_extinction_coef ?
_refine_ls_number_reflns 3313
_refine_ls_number_parameters 285
_refine_ls_number_restraints 246
_refine_ls_R_factor_all 0.0491
_refine_ls_R_factor_gt 0.0336
_refine_ls_wR_factor_ref 0.0804
_refine_ls_wR_factor_gt 0.0761
_refine_ls_goodness_of_fit_ref 1.075
_refine_ls_restrained_S_all 1.045
_refine_ls_shift/su_max 0.001
_refine_ls_shift/su_mean 0.000
_refine_diff_density_max 0.355
_refine_diff_density_min -0.816
_refine_diff_density_rms 0.089
loop_
_atom_site_label
_atom_site_type_symbol
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
_atom_site_U_iso_or_equiv
_atom_site_adp_type
_atom_site_occupancy
_atom_site_symmetry_multiplicity
_atom_site_calc_flag
_atom_site_refinement_flags
_atom_site_disorder_assembly
_atom_site_disorder_group
Pd1 Pd 0.473230(19) 0.289712(16) 0.64956(2) 0.02014(11) Uani 1 1 d . . .
N1 N 0.5336(2) 0.38728(17) 0.6464(2) 0.0257(7) Uani 1 1 d . . .
C2 C 0.6177(3) 0.3971(2) 0.6600(3) 0.0258(9) Uani 1 1 d . . .
H2 H 0.6555 0.3548 0.6709 0.031 Uiso 1 1 calc R . .
C3 C 0.6494(3) 0.4696(2) 0.6582(3) 0.0321(10) Uani 1 1 d . . .
H3 H 0.7091 0.4761 0.6685 0.039 Uiso 1 1 calc R . .
C4 C 0.5959(3) 0.5313(2) 0.6417(3) 0.0314(10) Uani 1 1 d . . .
H4 H 0.6185 0.5803 0.6410 0.038 Uiso 1 1 calc R . .
C4A C 0.5076(3) 0.5224(2) 0.6260(3) 0.0268(9) Uani 1 1 d . . .
C5 C 0.4436(3) 0.5808(2) 0.6064(3) 0.0339(10) Uani 1 1 d . . .
H5 H 0.4612 0.6316 0.6062 0.041 Uiso 1 1 calc R . .
C6 C 0.3583(3) 0.5662(2) 0.5879(3) 0.0345(10) Uani 1 1 d . . .
H6 H 0.3178 0.6069 0.5747 0.041 Uiso 1 1 calc R . .
C6A C 0.3277(3) 0.4908(2) 0.5878(3) 0.0281(9) Uani 1 1 d . . .
C7 C 0.2409(3) 0.4708(2) 0.5682(3) 0.0348(10) Uani 1 1 d . . .
H7 H 0.1972 0.5089 0.5546 0.042 Uiso 1 1 calc R . .
C8 C 0.2181(3) 0.3956(3) 0.5686(3) 0.0352(10) Uani 1 1 d . . .
H8 H 0.1585 0.3827 0.5536 0.042 Uiso 1 1 calc R . .
C9 C 0.2820(3) 0.3386(2) 0.5908(3) 0.0285(9) Uani 1 1 d . . .
H9 H 0.2656 0.2873 0.5903 0.034 Uiso 1 1 calc R . .
C10 C 0.3675(2) 0.3569(2) 0.6130(3) 0.0213(8) Uani 1 1 d . . .
C10A C 0.3902(3) 0.4322(2) 0.6090(3) 0.0239(8) Uani 1 1 d . . .
C10B C 0.4786(2) 0.4479(2) 0.6282(3) 0.0221(8) Uani 1 1 d . . .
O1 O 0.40346(18) 0.19591(14) 0.6515(2) 0.0291(6) Uani 1 1 d . . .
O2 O 0.41012(18) 0.22246(15) 0.8092(2) 0.0278(6) Uani 1 1 d . . .
C11 C 0.3813(3) 0.1848(2) 0.7252(3) 0.0268(9) Uani 1 1 d . . .
C12 C 0.3136(3) 0.1243(3) 0.7060(4) 0.0447(12) Uani 1 1 d . . .
H12A H 0.3127 0.1116 0.7727 0.067 Uiso 1 1 calc R . .
H12B H 0.3295 0.0795 0.6778 0.067 Uiso 1 1 calc R . .
H12C H 0.2542 0.1422 0.6548 0.067 Uiso 1 1 calc R . .
Cl1 Cl 0.42523(7) 0.27189(6) 0.46247(7) 0.0316(2) Uani 1 1 d . . .
I1 I 0.83654(11) 0.26770(13) 0.69580(10) 0.0574(6) Uani 0.466(3) 1 d PDU A -1
C13 C 0.7552(3) 0.2519(3) 0.5360(4) 0.043(2) Uani 0.466(3) 1 d PGDU A -1
C14 C 0.6662(4) 0.2319(3) 0.5022(5) 0.0335(19) Uani 0.466(3) 1 d PGDU A -1
H14 H 0.6436 0.2262 0.5523 0.040 Uiso 0.466(3) 1 calc PR A -1
C15 C 0.6103(3) 0.2201(4) 0.3951(5) 0.041(2) Uani 0.466(3) 1 d PGDU A -1
H15 H 0.5495 0.2063 0.3720 0.049 Uiso 0.466(3) 1 calc PR A -1
C16 C 0.6434(5) 0.2283(4) 0.3219(4) 0.045(3) Uani 0.466(3) 1 d PGDU A -1
H16 H 0.6052 0.2203 0.2487 0.053 Uiso 0.466(3) 1 calc PR A -1
C17 C 0.7324(5) 0.2484(5) 0.3557(5) 0.0429(19) Uani 0.466(3) 1 d PGDU A -1
H17 H 0.7551 0.2541 0.3056 0.052 Uiso 0.466(3) 1 calc PR A -1
C18 C 0.7883(4) 0.2602(4) 0.4628(6) 0.040(2) Uani 0.466(3) 1 d PGDU A -1
H18 H 0.8492 0.2739 0.4859 0.048 Uiso 0.466(3) 1 calc PR A -1
I1* I 0.6454(16) 0.2020(15) 0.326(2) 0.074(5) Uani 0.034(3) 1 d PDU A -2
C13* C 0.737(2) 0.2581(18) 0.459(2) 0.043(3) Uani 0.034(3) 1 d PGDU A -2
C14* C 0.813(3) 0.290(4) 0.459(5) 0.043(3) Uani 0.034(3) 1 d PGDU A -2
H14* H 0.8229 0.2852 0.3985 0.051 Uiso 0.034(3) 1 calc PR A -2
C15* C 0.875(4) 0.328(5) 0.548(6) 0.044(4) Uani 0.034(3) 1 d PGDU A -2
H15* H 0.9269 0.3490 0.5486 0.053 Uiso 0.034(3) 1 calc PR A -2
C16* C 0.861(4) 0.334(4) 0.637(5) 0.045(5) Uani 0.034(3) 1 d PGDU A -2
H16* H 0.9027 0.3598 0.6982 0.054 Uiso 0.034(3) 1 calc PR A -2
C17* C 0.784(5) 0.302(5) 0.637(4) 0.044(4) Uani 0.034(3) 1 d PGDU A -2
H17* H 0.7747 0.3069 0.6977 0.053 Uiso 0.034(3) 1 calc PR A -2
C18* C 0.723(4) 0.265(4) 0.548(3) 0.042(3) Uani 0.034(3) 1 d PGDU A -2
H18* H 0.6707 0.2430 0.5475 0.051 Uiso 0.034(3) 1 calc PR A -2
loop_
_atom_site_aniso_label
_atom_site_aniso_U_11
_atom_site_aniso_U_22
_atom_site_aniso_U_33
_atom_site_aniso_U_23
_atom_site_aniso_U_13
_atom_site_aniso_U_12
Pd1 0.02469(17) 0.02083(16) 0.01770(17) -0.00042(12) 0.01208(12) -0.00107(13)
N1 0.0334(19) 0.0273(18) 0.0188(17) 0.0012(13) 0.0140(15) 0.0007(15)
C2 0.028(2) 0.033(2) 0.020(2) -0.0043(17) 0.0149(17) -0.0048(18)
C3 0.036(2) 0.037(3) 0.029(2) -0.0014(19) 0.019(2) -0.009(2)
C4 0.044(3) 0.029(2) 0.023(2) -0.0017(18) 0.017(2) -0.014(2)
C4A 0.043(3) 0.024(2) 0.0153(19) 0.0009(16) 0.0146(18) -0.0045(18)
C5 0.054(3) 0.024(2) 0.027(2) 0.0002(18) 0.022(2) -0.003(2)
C6 0.049(3) 0.029(2) 0.030(2) 0.0023(18) 0.021(2) 0.006(2)
C6A 0.035(2) 0.028(2) 0.019(2) 0.0015(16) 0.0101(18) 0.0061(18)
C7 0.036(3) 0.039(3) 0.026(2) 0.0015(19) 0.0115(19) 0.013(2)
C8 0.025(2) 0.048(3) 0.034(2) -0.001(2) 0.014(2) 0.0016(19)
C9 0.031(2) 0.030(2) 0.025(2) 0.0003(17) 0.0133(18) -0.0005(18)
C10 0.028(2) 0.023(2) 0.0170(19) -0.0016(15) 0.0132(16) 0.0004(16)
C10A 0.031(2) 0.029(2) 0.0148(19) 0.0018(16) 0.0127(17) 0.0036(17)
C10B 0.029(2) 0.028(2) 0.0097(19) -0.0001(15) 0.0087(16) -0.0008(17)
O1 0.0357(16) 0.0299(16) 0.0231(14) -0.0039(12) 0.0145(13) -0.0058(12)
O2 0.0309(16) 0.0310(16) 0.0261(15) -0.0019(12) 0.0170(13) -0.0020(12)
C11 0.025(2) 0.026(2) 0.029(2) 0.0038(18) 0.0125(18) -0.0004(17)
C12 0.047(3) 0.042(3) 0.051(3) -0.003(2) 0.027(2) -0.016(2)
Cl1 0.0417(6) 0.0350(6) 0.0201(5) -0.0027(4) 0.0157(5) -0.0058(5)
I1 0.0523(7) 0.0621(10) 0.0438(6) -0.0085(5) 0.0095(5) 0.0074(6)
C13 0.045(4) 0.035(4) 0.049(4) 0.006(4) 0.021(4) 0.006(4)
C14 0.043(4) 0.031(4) 0.044(4) 0.008(3) 0.035(3) 0.003(4)
C15 0.049(4) 0.038(4) 0.045(4) 0.001(4) 0.031(3) 0.003(4)
C16 0.058(5) 0.037(6) 0.046(5) 0.002(5) 0.030(4) -0.010(5)
C17 0.051(5) 0.043(4) 0.049(4) 0.002(4) 0.035(4) 0.002(4)
C18 0.042(5) 0.034(4) 0.053(4) 0.007(3) 0.030(4) 0.001(4)
I1* 0.086(7) 0.055(8) 0.064(6) 0.004(6) 0.021(6) -0.017(7)
C13* 0.049(5) 0.037(4) 0.050(4) 0.005(4) 0.029(4) 0.001(4)
C14* 0.048(6) 0.038(5) 0.050(5) 0.005(5) 0.029(5) 0.004(5)
C15* 0.046(7) 0.039(7) 0.052(7) 0.006(7) 0.027(6) 0.004(7)
C16* 0.048(8) 0.042(8) 0.049(7) 0.005(8) 0.024(7) 0.003(7)
C17* 0.045(7) 0.041(7) 0.049(6) 0.005(6) 0.024(6) 0.006(7)
C18* 0.045(6) 0.037(5) 0.051(5) 0.007(5) 0.027(5) 0.004(5)
_geom_special_details
;
All esds (except the esd in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell esds are taken
into account individually in the estimation of esds in distances, angles
and torsion angles; correlations between esds in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell esds is used for estimating esds involving l.s. planes.
;
loop_
_geom_bond_atom_site_label_1
_geom_bond_atom_site_label_2
_geom_bond_distance
_geom_bond_site_symmetry_2
_geom_bond_publ_flag
Pd1 C10 2.000(4) . ?
Pd1 N1 2.016(3) . ?
Pd1 O1 2.042(3) . ?
Pd1 O2 2.133(3) 2_656 ?
Pd1 Cl1 2.4167(10) . ?
Pd1 Pd1 2.5672(5) 2_656 ?
N1 C2 1.344(5) . ?
N1 C10B 1.362(5) . ?
C2 C3 1.397(6) . ?
C2 H2 0.9500 . ?
C3 C4 1.367(6) . ?
C3 H3 0.9500 . ?
C4 C4A 1.401(6) . ?
C4 H4 0.9500 . ?
C4A C10B 1.414(5) . ?
C4A C5 1.425(6) . ?
C5 C6 1.356(6) . ?
C5 H5 0.9500 . ?
C6 C6A 1.433(6) . ?
C6 H6 0.9500 . ?
C6A C7 1.396(6) . ?
C6A C10A 1.408(5) . ?
C7 C8 1.389(6) . ?
C7 H7 0.9500 . ?
C8 C9 1.401(6) . ?
C8 H8 0.9500 . ?
C9 C10 1.360(5) . ?
C9 H9 0.9500 . ?
C10 C10A 1.398(5) . ?
C10A C10B 1.407(5) . ?
O1 C11 1.275(5) . ?
O2 C11 1.254(5) . ?
O2 Pd1 2.133(3) 2_656 ?
C11 C12 1.494(6) . ?
C12 H12A 0.9800 . ?
C12 H12B 0.9800 . ?
C12 H12C 0.9800 . ?
I1 C13 2.064(5) . ?
C13 C14 1.3900 . ?
C13 C18 1.3900 . ?
C14 C15 1.3900 . ?
C14 H14 0.9500 . ?
C15 C16 1.3900 . ?
C15 H15 0.9500 . ?
C16 C17 1.3900 . ?
C16 H16 0.9500 . ?
C17 C18 1.3900 . ?
C17 H17 0.9500 . ?
C18 H18 0.9500 . ?
I1* C13* 2.067(15) . ?
C13* C14* 1.3900 . ?
C13* C18* 1.3900 . ?
C14* C15* 1.3900 . ?
C14* H14* 0.9500 . ?
C15* C16* 1.3900 . ?
C15* H15* 0.9500 . ?
C16* C17* 1.3900 . ?
C16* H16* 0.9500 . ?
C17* C18* 1.3900 . ?
C17* H17* 0.9500 . ?
C18* H18* 0.9500 . ?
loop_
_geom_angle_atom_site_label_1
_geom_angle_atom_site_label_2
_geom_angle_atom_site_label_3
_geom_angle
_geom_angle_site_symmetry_1
_geom_angle_site_symmetry_3
_geom_angle_publ_flag
C10 Pd1 N1 82.88(14) . . ?
C10 Pd1 O1 92.55(13) . . ?
N1 Pd1 O1 175.39(12) . . ?
C10 Pd1 O2 177.37(13) . 2_656 ?
N1 Pd1 O2 94.61(12) . 2_656 ?
O1 Pd1 O2 89.94(11) . 2_656 ?
C10 Pd1 Cl1 88.88(10) . . ?
N1 Pd1 Cl1 90.48(9) . . ?
O1 Pd1 Cl1 90.06(8) . . ?
O2 Pd1 Cl1 91.94(7) 2_656 . ?
C10 Pd1 Pd1 96.24(10) . 2_656 ?
N1 Pd1 Pd1 95.66(8) . 2_656 ?
O1 Pd1 Pd1 84.18(7) . 2_656 ?
O2 Pd1 Pd1 83.19(7) 2_656 2_656 ?
Cl1 Pd1 Pd1 172.44(2) . 2_656 ?
C2 N1 C10B 119.9(3) . . ?
C2 N1 Pd1 127.8(3) . . ?
C10B N1 Pd1 112.3(2) . . ?
N1 C2 C3 120.0(4) . . ?
N1 C2 H2 120.0 . . ?
C3 C2 H2 120.0 . . ?
C4 C3 C2 121.0(4) . . ?
C4 C3 H3 119.5 . . ?
C2 C3 H3 119.5 . . ?
C3 C4 C4A 120.0(4) . . ?
C3 C4 H4 120.0 . . ?
C4A C4 H4 120.0 . . ?
C4 C4A C10B 116.8(4) . . ?
C4 C4A C5 126.5(4) . . ?
C10B C4A C5 116.6(4) . . ?
C6 C5 C4A 122.2(4) . . ?
C6 C5 H5 118.9 . . ?
C4A C5 H5 118.9 . . ?
C5 C6 C6A 121.6(4) . . ?
C5 C6 H6 119.2 . . ?
C6A C6 H6 119.2 . . ?
C7 C6A C10A 117.5(4) . . ?
C7 C6A C6 125.2(4) . . ?
C10A C6A C6 117.3(4) . . ?
C8 C7 C6A 120.4(4) . . ?
C8 C7 H7 119.8 . . ?
C6A C7 H7 119.8 . . ?
C7 C8 C9 120.8(4) . . ?
C7 C8 H8 119.6 . . ?
C9 C8 H8 119.6 . . ?
C10 C9 C8 119.7(4) . . ?
C10 C9 H9 120.2 . . ?
C8 C9 H9 120.2 . . ?
C9 C10 C10A 119.9(3) . . ?
C9 C10 Pd1 129.3(3) . . ?
C10A C10 Pd1 110.8(3) . . ?
C10 C10A C10B 117.6(3) . . ?
C10 C10A C6A 121.6(4) . . ?
C10B C10A C6A 120.7(4) . . ?
N1 C10B C10A 116.2(3) . . ?
N1 C10B C4A 122.2(3) . . ?
C10A C10B C4A 121.5(4) . . ?
C11 O1 Pd1 121.3(2) . . ?
C11 O2 Pd1 117.9(2) . 2_656 ?
O2 C11 O1 124.4(4) . . ?
O2 C11 C12 119.3(4) . . ?
O1 C11 C12 116.2(4) . . ?
C11 C12 H12A 109.5 . . ?
C11 C12 H12B 109.5 . . ?
H12A C12 H12B 109.5 . . ?
C11 C12 H12C 109.5 . . ?
H12A C12 H12C 109.5 . . ?
H12B C12 H12C 109.5 . . ?
C14 C13 C18 120.0 . . ?
C14 C13 I1 118.9(3) . . ?
C18 C13 I1 121.1(3) . . ?
C15 C14 C13 120.0 . . ?
C15 C14 H14 120.0 . . ?
C13 C14 H14 120.0 . . ?
C14 C15 C16 120.0 . . ?
C14 C15 H15 120.0 . . ?
C16 C15 H15 120.0 . . ?
C17 C16 C15 120.0 . . ?
C17 C16 H16 120.0 . . ?
C15 C16 H16 120.0 . . ?
C16 C17 C18 120.0 . . ?
C16 C17 H17 120.0 . . ?
C18 C17 H17 120.0 . . ?
C17 C18 C13 120.0 . . ?
C17 C18 H18 120.0 . . ?
C13 C18 H18 120.0 . . ?
C14* C13* C18* 120.0 . . ?
C14* C13* I1* 119.8(10) . . ?
C18* C13* I1* 120.2(10) . . ?
C15* C14* C13* 120.0 . . ?
C15* C14* H14* 120.0 . . ?
C13* C14* H14* 120.0 . . ?
C16* C15* C14* 120.0 . . ?
C16* C15* H15* 120.0 . . ?
C14* C15* H15* 120.0 . . ?
C15* C16* C17* 120.0 . . ?
C15* C16* H16* 120.0 . . ?
C17* C16* H16* 120.0 . . ?
C18* C17* C16* 120.0 . . ?
C18* C17* H17* 120.0 . . ?
C16* C17* H17* 120.0 . . ?
C17* C18* C13* 120.0 . . ?
C17* C18* H18* 120.0 . . ?
C13* C18* H18* 120.0 . . ?
loop_
_geom_torsion_atom_site_label_1
_geom_torsion_atom_site_label_2
_geom_torsion_atom_site_label_3
_geom_torsion_atom_site_label_4
_geom_torsion
_geom_torsion_site_symmetry_1
_geom_torsion_site_symmetry_2
_geom_torsion_site_symmetry_3
_geom_torsion_site_symmetry_4
_geom_torsion_publ_flag
C10 Pd1 N1 C2 -176.9(3) . . . . ?
O2 Pd1 N1 C2 3.9(3) 2_656 . . . ?
Cl1 Pd1 N1 C2 -88.1(3) . . . . ?
Pd1 Pd1 N1 C2 87.5(3) 2_656 . . . ?
C10 Pd1 N1 C10B 3.2(2) . . . . ?
O2 Pd1 N1 C10B -176.0(2) 2_656 . . . ?
Cl1 Pd1 N1 C10B 92.0(2) . . . . ?
Pd1 Pd1 N1 C10B -92.4(2) 2_656 . . . ?
C10B N1 C2 C3 1.7(5) . . . . ?
Pd1 N1 C2 C3 -178.2(3) . . . . ?
N1 C2 C3 C4 -0.6(6) . . . . ?
C2 C3 C4 C4A -0.2(6) . . . . ?
C3 C4 C4A C10B 0.0(5) . . . . ?
C3 C4 C4A C5 -178.9(4) . . . . ?
C4 C4A C5 C6 177.3(4) . . . . ?
C10B C4A C5 C6 -1.6(6) . . . . ?
C4A C5 C6 C6A 0.4(6) . . . . ?
C5 C6 C6A C7 -179.2(4) . . . . ?
C5 C6 C6A C10A 0.8(6) . . . . ?
C10A C6A C7 C8 -0.9(6) . . . . ?
C6 C6A C7 C8 179.1(4) . . . . ?
C6A C7 C8 C9 1.4(6) . . . . ?
C7 C8 C9 C10 0.5(6) . . . . ?
C8 C9 C10 C10A -2.9(6) . . . . ?
C8 C9 C10 Pd1 179.0(3) . . . . ?
N1 Pd1 C10 C9 175.9(4) . . . . ?
O1 Pd1 C10 C9 -4.7(3) . . . . ?
Cl1 Pd1 C10 C9 85.3(3) . . . . ?
Pd1 Pd1 C10 C9 -89.1(3) 2_656 . . . ?
N1 Pd1 C10 C10A -2.3(2) . . . . ?
O1 Pd1 C10 C10A 177.1(3) . . . . ?
Cl1 Pd1 C10 C10A -92.9(2) . . . . ?
Pd1 Pd1 C10 C10A 92.6(2) 2_656 . . . ?
C9 C10 C10A C10B -177.3(3) . . . . ?
Pd1 C10 C10A C10B 1.1(4) . . . . ?
C9 C10 C10A C6A 3.4(6) . . . . ?
Pd1 C10 C10A C6A -178.1(3) . . . . ?
C7 C6A C10A C10 -1.5(6) . . . . ?
C6 C6A C10A C10 178.5(3) . . . . ?
C7 C6A C10A C10B 179.2(3) . . . . ?
C6 C6A C10A C10B -0.7(5) . . . . ?
C2 N1 C10B C10A 176.6(3) . . . . ?
Pd1 N1 C10B C10A -3.5(4) . . . . ?
C2 N1 C10B C4A -2.0(5) . . . . ?
Pd1 N1 C10B C4A 177.9(3) . . . . ?
C10 C10A C10B N1 1.6(5) . . . . ?
C6A C10A C10B N1 -179.1(3) . . . . ?
C10 C10A C10B C4A -179.8(3) . . . . ?
C6A C10A C10B C4A -0.5(5) . . . . ?
C4 C4A C10B N1 1.2(5) . . . . ?
C5 C4A C10B N1 -179.8(3) . . . . ?
C4 C4A C10B C10A -177.3(3) . . . . ?
C5 C4A C10B C10A 1.7(5) . . . . ?
C10 Pd1 O1 C11 -71.3(3) . . . . ?
O2 Pd1 O1 C11 107.9(3) 2_656 . . . ?
Cl1 Pd1 O1 C11 -160.2(3) . . . . ?
Pd1 Pd1 O1 C11 24.7(3) 2_656 . . . ?
Pd1 O2 C11 O1 -16.3(5) 2_656 . . . ?
Pd1 O2 C11 C12 166.1(3) 2_656 . . . ?
Pd1 O1 C11 O2 -11.0(5) . . . . ?
Pd1 O1 C11 C12 166.7(3) . . . . ?
C18 C13 C14 C15 0.0 . . . . ?
I1 C13 C14 C15 -179.3(4) . . . . ?
C13 C14 C15 C16 0.0 . . . . ?
C14 C15 C16 C17 0.0 . . . . ?
C15 C16 C17 C18 0.0 . . . . ?
C16 C17 C18 C13 0.0 . . . . ?
C14 C13 C18 C17 0.0 . . . . ?
I1 C13 C18 C17 179.2(4) . . . . ?
C18* C13* C14* C15* 0.0 . . . . ?
I1* C13* C14* C15* 179.9(5) . . . . ?
C13* C14* C15* C16* 0.0 . . . . ?
C14* C15* C16* C17* 0.0 . . . . ?
C15* C16* C17* C18* 0.0 . . . . ?
C16* C17* C18* C13* 0.0 . . . . ?
C14* C13* C18* C17* 0.0 . . . . ?
I1* C13* C18* C17* -179.9(5) . . . . ?
loop_
_exptl_crystal_face_index_h
_exptl_crystal_face_index_k
_exptl_crystal_face_index_l
_exptl_crystal_face_perp_dist
1 0 -1 0.075
-1 0 1 0.075
1 1 0 0.015
-1 -1 0 0.015
1 -1 0 0.015
-1 1 0 0.015
# SQUEEZE RESULTS (APPEND TO CIF)
# Note: Data are Listed for all Voids in the P1 Unit Cell
# i.e. Centre of Gravity, Solvent Accessible Volume,
# Recovered number of Electrons in the Void and
# Details about the Squeezed Material
loop_
_platon_squeeze_void_nr
_platon_squeeze_void_average_x
_platon_squeeze_void_average_y
_platon_squeeze_void_average_z
_platon_squeeze_void_volume
_platon_squeeze_void_count_electrons
_platon_squeeze_void_content
1 0.000 0.500 -0.022 317 101 ' '
2 0.500 0.000 0.016 317 101 ' '
_platon_squeeze_details
;
The Squeeze/Bypass procedure yielded total void volumes and electron
counts of 639.4 \%A^3^ and 203 e, respectively. For Z = 4, this
gives V~l~ = 159.8 \%A^3^ and 51 e. These values may be compared to
the expectation values of V~l~ = 186.5 \%A^3^ and 94 e, V~l~ = 192.1
\%A^3^ and 42 e, and V~l~ = 106.8 \%A^3^ and 42 e for iodobenzene,
pentane and dichloromethane, respectively. The void volume observed,
i.e., 159.8 \%A^3^, is too small to accommodate iodobenzene or pentane.
Hence, the Squeeze/Bypass results suggest that, of these three
possibilities, dichloromethane is the probable solvent in the lattice.
Note 1. The researchers have indicated that dichloromethane resonances
were observed in their NMR spectrum for the compound.
Note 2. In a parallel test, the iodobenzene site was squeezed out
yielding V~l~ = 191.9 \%A^3^ and 91 e. These observed values are in
excellent agreement with the expectation values of V~l~ = 186.5 \%A^3^
and 94 e. Hence, that parallel test gives us confidence that the
iodobenzene site is indeed occupied by an iodobenzene molecule, and
that the void volume calculated for the solvent site, i.e., 159.8 \%A^3^,
is indeed probably reliable enough to exclude iodobenzene and pentane
as argued above.
;