#_______________________________________________________________________ # # Requested by: David C. Powers and Tobias Ritter # Harvard University # Department of Chemistry and Chemical Biology # 12 Oxford Street # Cambridge, MA 02138 # Tel: (617) 496-0750 # Fax: (617) 496-4591 # Email: ritter@chemistry.harvard.edu # # Crystallography by: Douglas M. Ho # Harvard University # Department of Chemistry and Chemical Biology # 12 Oxford Street, B05-B06 # Cambridge, MA 02138 # Tel: (617) 495-0787 # Fax: (617) 496-8783 # Email: ho@chemistry.harvard.edu # # Comments: tr040 = [Pd(C2H3O2)(C13H8N)Cl]2 . C6H5I . CH2Cl2 # = C30H22Cl2N2O4Pd2 . C6H5I . CH2Cl2 # = (Acetato){10-benzo[h]quinolinato)chloro- # palladium(III) Dimer . Iodobenzene . # Dichloromethane Solvate at 193(2) K # # This compound crystallizes as orange prisms # (from dichloromethane / pentane) in the # monoclinic space group C2/c (No. 15) with 4 # formula units per unit cell. # # Due to severe disorder, the Squeeze/Bypass # procedure implemented in Platon was used to # remove the dichloromethane contributions to the # intensity data. Hence, coordinates for that # solvent molecule will not be found in the atoms # list below. (See the _platon_squeeze_details # section at the end of this file for additional # comments.) # # Version date: July 29, 2008 #_______________________________________________________________________ data_tr040 _audit_creation_method SHELXL-97 _chemical_name_systematic ; (Acetato){10-benzo[h]quinolinato)chloropalladium(III) Dimer . Iodobenzene . Dichloromethane Solvate ; _chemical_name_common 'tr040' _chemical_formula_iupac ; [Pd (C2 H3 O2) (C13 H8 N) Cl]2 . (C6 H5 I) . (C H2 Cl2) ; _chemical_formula_moiety ; ((Pd 3+) (C2 H3 O2 1-) (C13 H8 N 1-) (Cl 1-))2, C6 H5 I, C H2 Cl2 ; _chemical_formula_structural ; (Pd (C2 H3 O2) (C13 H8 N) Cl)2 (C6 H5 I) (C H2 Cl2) ; _chemical_formula_analytical ? _chemical_formula_sum 'C37 H29 Cl4 I N2 O4 Pd2' _chemical_formula_weight 1047.12 _chemical_melting_point ? _chemical_compound_source 'chemical synthesis' loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source 'C' 'C' 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'H' 'H' 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'N' 'N' 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'O' 'O' 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Cl' 'Cl' 0.1484 0.1585 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Pd' 'Pd' -0.9988 1.0072 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'I' 'I' -0.4742 1.8119 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting 'Monoclinic' _symmetry_space_group_name_Hall '-C 2yc' _symmetry_space_group_name_H-M 'C 2/c' _symmetry_Int_Tables_number 15 loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, y, -z+1/2' 'x+1/2, y+1/2, z' '-x+1/2, y+1/2, -z+1/2' '-x, -y, -z' 'x, -y, z-1/2' '-x+1/2, -y+1/2, -z' 'x+1/2, -y+1/2, z-1/2' _cell_length_a 16.7605(5) _cell_length_b 17.7508(5) _cell_length_c 14.1762(4) _cell_angle_alpha 90.00 _cell_angle_beta 117.053(2) _cell_angle_gamma 90.00 _cell_volume 3756.13(19) _cell_formula_units_Z 4 _cell_measurement_temperature 193(2) _cell_measurement_reflns_used 5273 _cell_measurement_theta_min 2.29 _cell_measurement_theta_max 22.99 _exptl_crystal_description 'Prism' _exptl_crystal_colour 'Orange' _exptl_crystal_size_max 0.15 _exptl_crystal_size_mid 0.03 _exptl_crystal_size_min 0.03 _exptl_crystal_density_diffrn 1.852 _exptl_crystal_density_method 'not measured' _exptl_crystal_density_meas ? _exptl_crystal_F_000 2040 _exptl_absorpt_coefficient_mu 2.106 _exptl_absorpt_correction_type 'numerical' _exptl_absorpt_correction_T_min 0.7430 _exptl_absorpt_correction_T_max 0.9395 _exptl_absorpt_process_details 'SADABS (Bruker AXS, 2004)' _exptl_special_details ; The compound was crystallized from a dichloromethane / pentane solution as orange prisms. A crystal 0.03 mm x 0.03 mm x 0.15 mm in size was selected, mounted on a nylon loop with Paratone-N oil, and transferred to a Bruker SMART APEX II diffractometer equipped with an Oxford Cryosystems 700 Series Cryostream Cooler and Mo K\a radiation (\l = 0.71073 \%A). A total of 2762 frames were collected at 193(2) K to \q~max~ = 25.00\% with an oscillation range of 0.5\%/frame, and an exposure time of 20 s/frame using the APEX2 suite of software. (Bruker AXS, 2006a) Data were collected to \q~max~ = 25.00\% rather than the routine value of \q~max~ = 27.50\% because the crystal examined did not exhibit usable diffraction beyond 25.00\%. Unit cell refinement on all observed reflections, and data reduction with corrections for Lp and decay were performed using SAINT. (Bruker AXS, 2006b) Scaling and a numerical absorption correction were done using SADABS. (Bruker AXS, 2004) The minimum and maximum transmission factors were 0.7430 and 0.9395, respectively. A total of 37194 reflections were collected, 3313 were unique (R~int~ = 0.0770), and 2701 had I > 2\s(I). Systematic absences were consistent with the compound having crystallized in the monoclinic space group Cc or C2/c. The latter centrosymmetric space group C2/c (No. 15) was selected based on an observed mean |E^2^-1| value of 0.927 (versus the expectation values of 0.968 and 0.736 for centric and noncentric data, respectively). ________________________________________________________________________ Bruker AXS (2004). SADABS. Bruker Analytical X-ray Systems Inc., Madison, Wisconsin, USA. Bruker AXS (2006a). APEX2 v2.1-0. Bruker Analytical X-ray Systems Inc., Madison, Wisconsin, USA. Bruker AXS (2006b). SAINT V7.34A. Bruker Analytical X-ray Systems Inc., Madison, Wisconsin, USA. ________________________________________________________________________ ; _diffrn_ambient_temperature 193(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type 'Mo K\a' _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator 'graphite' _diffrn_measurement_device_type 'Bruker APEX II CCD' _diffrn_measurement_method '\w scans, 2762 0.5\% rotations' _diffrn_detector_area_resol_mean 836.6 _diffrn_standards_number 0 _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% 0 _diffrn_reflns_number 37194 _diffrn_reflns_av_R_equivalents 0.0770 _diffrn_reflns_av_sigmaI/netI 0.0352 _diffrn_reflns_limit_h_min -19 _diffrn_reflns_limit_h_max 19 _diffrn_reflns_limit_k_min -21 _diffrn_reflns_limit_k_max 21 _diffrn_reflns_limit_l_min -16 _diffrn_reflns_limit_l_max 16 _diffrn_reflns_theta_min 1.78 _diffrn_reflns_theta_max 25.00 _diffrn_measured_fraction_theta_max 1.000 _diffrn_reflns_theta_full 25.00 _diffrn_measured_fraction_theta_full 1.000 _reflns_number_total 3313 _reflns_number_gt 2701 _reflns_threshold_expression 'I>2\s(I)' _computing_data_collection 'APEX2 v2.1-0 (Bruker AXS, 2006a)' _computing_cell_refinement 'SAINT V7.34A (Bruker AXS, 2006b)' _computing_data_reduction ; SAINT V7.34A (Bruker AXS, 2006b), SADABS (Bruker AXS, 2004), PLATON (Spek, 2003) ; _computing_structure_solution 'SHELXTL v6.12 (Bruker AXS, 2001)' _computing_structure_refinement 'SHELXTL v6.12 (Bruker AXS, 2001)' _computing_molecular_graphics 'SHELXTL v6.12 (Bruker AXS, 2001)' _computing_publication_material 'SHELXTL v6.12 (Bruker AXS, 2001)' _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2\s(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. The structure was solved by direct methods and refined by full-matrix least-squares on F^2^ using SHELXTL. (Bruker AXS, 2001) The asymmetric unit was found to contain a half molecule of the desired (acetato)(10-benzo[h]quinolinato)chloropalladium(III) dimer plus a disordered iodobenzene molecule, and an even more severely disordered solvent molecule that we believe to be dichloromethane. The palladium(III) dimer resides on Wyckoff position 4e and possesses crystallographically imposed two-fold symmetry. To the best of our knowledge, based on various models and occupancy tests, the chemical formulation for the compound is [Pd(C~2~H~3~O~2~)(C~13~H~8~N)Cl]~2~ . C~6~H~5~I . CH~2~Cl~2~. All of the nonhydrogen atoms were refined with anisotropic displacement coefficients. The hydrogen atoms were assigned isotropic displacement coefficients U(H) = 1.2U(C) or 1.5U(C~methyl~), and their coordinates were allowed to ride on their respective carbons. The disordered iodobenzene molecule was treated with a two-site model [I(1), C(13), C(14), C(15), C(16), C(17), C(18)] and [I(1*), C(13*), C(14*), C(15*), C(16*), C(17*), C(18*)] with refined site occupancy factors of 0.466(3) and 0.034(3), respectively. That two-site model also included rigid bond, similar U~ij~, common plane, and distance restraints. The benzene rings were treated as idealized regular hexagons with C-C = 1.39 \%A. Attempts to model the dichloromethane were without success. The best discrete-atom model for the disordered dichloromethane converged to wR(F^2^) = 0.0860. However, due to nonsensical bond distances and angles, and unjustifiable occupancy factors, that discrete-atom model for the dichloromethane was ultimately abandoned in favor of the solvent-free model contained in this CIF file. The dichloromethane contributions to the intensity data were removed by the Squeeze/Bypass procedure (van der Sluis & Spek, 1990) implemented in Platon (Spek, 2003). The refinement converged to R(F) = 0.0336, wR(F^2^) = 0.0761, and S = 1.075 for 2701 reflections with I > 2\s(I), and R(F) = 0.0491, wR(F^2^) = 0.0804, and S = 1.075 for 3313 unique reflections, 285 parameters, and 246 restraints. The maximum |\D/\s| in the final cycle of least-squares was 0.001, and the residual peaks on the final difference-Fourier map ranged from -0.816 to 0.355 e\%A^-3^. Scattering factors were taken from the International Tables for Crystallography, Volume C. (Maslen et al., 1992, and Creagh & McAuley, 1992) ________________________________________________________________________ R(F ) = R1 = \S ||F~o~|-|F~c~|| / \S|F~o~|, wR(F ^2^) = wR2 = [ \S w (F~o~^2^-F~c~^2^)^2^ / \S w (F~o~^2^)^2^ ]^1/2^, and S = Goodness-of-fit on F ^2^ = [ \S w (F~o~^2^-F~c~^2^)^2^ / (n-p) ]^1/2^, where n is the number of reflections and p is the number of parameters refined. ________________________________________________________________________ Bruker AXS (2001). SHELXTL v6.12. Bruker Analytical X-ray Systems Inc., Madison, Wisconsin, USA. Creagh, D. C. & McAuley, W. J. (1992). International Tables for Crystallography: Mathematical, Physical and Chemical Tables, Vol C, edited by A. J. C. Wilson, pp. 206-222. Dordrecht, The Netherlands: Kluwer. Maslen, E. N., Fox, A. G. & O'Keefe, M. A. (1992). International Tables for Crystallography: Mathematical, Physical and Chemical Tables, Vol C, edited by A. J. C. Wilson, pp. 476-516. Dordrecht, The Netherlands: Kluwer. Spek, A. L. (2003). Journal of Applied Crystallography, 36, 7-13. van der Sluis, P. & Spek, A. L. (1990). Acta Crystallographica, Section A, 46, 194-201. ________________________________________________________________________ ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'w=1/[\s^2^(Fo^2^)+(0.0413P)^2^+2.5903P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment constr _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 3313 _refine_ls_number_parameters 285 _refine_ls_number_restraints 246 _refine_ls_R_factor_all 0.0491 _refine_ls_R_factor_gt 0.0336 _refine_ls_wR_factor_ref 0.0804 _refine_ls_wR_factor_gt 0.0761 _refine_ls_goodness_of_fit_ref 1.075 _refine_ls_restrained_S_all 1.045 _refine_ls_shift/su_max 0.001 _refine_ls_shift/su_mean 0.000 _refine_diff_density_max 0.355 _refine_diff_density_min -0.816 _refine_diff_density_rms 0.089 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Pd1 Pd 0.473230(19) 0.289712(16) 0.64956(2) 0.02014(11) Uani 1 1 d . . . N1 N 0.5336(2) 0.38728(17) 0.6464(2) 0.0257(7) Uani 1 1 d . . . C2 C 0.6177(3) 0.3971(2) 0.6600(3) 0.0258(9) Uani 1 1 d . . . H2 H 0.6555 0.3548 0.6709 0.031 Uiso 1 1 calc R . . C3 C 0.6494(3) 0.4696(2) 0.6582(3) 0.0321(10) Uani 1 1 d . . . H3 H 0.7091 0.4761 0.6685 0.039 Uiso 1 1 calc R . . C4 C 0.5959(3) 0.5313(2) 0.6417(3) 0.0314(10) Uani 1 1 d . . . H4 H 0.6185 0.5803 0.6410 0.038 Uiso 1 1 calc R . . C4A C 0.5076(3) 0.5224(2) 0.6260(3) 0.0268(9) Uani 1 1 d . . . C5 C 0.4436(3) 0.5808(2) 0.6064(3) 0.0339(10) Uani 1 1 d . . . H5 H 0.4612 0.6316 0.6062 0.041 Uiso 1 1 calc R . . C6 C 0.3583(3) 0.5662(2) 0.5879(3) 0.0345(10) Uani 1 1 d . . . H6 H 0.3178 0.6069 0.5747 0.041 Uiso 1 1 calc R . . C6A C 0.3277(3) 0.4908(2) 0.5878(3) 0.0281(9) Uani 1 1 d . . . C7 C 0.2409(3) 0.4708(2) 0.5682(3) 0.0348(10) Uani 1 1 d . . . H7 H 0.1972 0.5089 0.5546 0.042 Uiso 1 1 calc R . . C8 C 0.2181(3) 0.3956(3) 0.5686(3) 0.0352(10) Uani 1 1 d . . . H8 H 0.1585 0.3827 0.5536 0.042 Uiso 1 1 calc R . . C9 C 0.2820(3) 0.3386(2) 0.5908(3) 0.0285(9) Uani 1 1 d . . . H9 H 0.2656 0.2873 0.5903 0.034 Uiso 1 1 calc R . . C10 C 0.3675(2) 0.3569(2) 0.6130(3) 0.0213(8) Uani 1 1 d . . . C10A C 0.3902(3) 0.4322(2) 0.6090(3) 0.0239(8) Uani 1 1 d . . . C10B C 0.4786(2) 0.4479(2) 0.6282(3) 0.0221(8) Uani 1 1 d . . . O1 O 0.40346(18) 0.19591(14) 0.6515(2) 0.0291(6) Uani 1 1 d . . . O2 O 0.41012(18) 0.22246(15) 0.8092(2) 0.0278(6) Uani 1 1 d . . . C11 C 0.3813(3) 0.1848(2) 0.7252(3) 0.0268(9) Uani 1 1 d . . . C12 C 0.3136(3) 0.1243(3) 0.7060(4) 0.0447(12) Uani 1 1 d . . . H12A H 0.3127 0.1116 0.7727 0.067 Uiso 1 1 calc R . . H12B H 0.3295 0.0795 0.6778 0.067 Uiso 1 1 calc R . . H12C H 0.2542 0.1422 0.6548 0.067 Uiso 1 1 calc R . . Cl1 Cl 0.42523(7) 0.27189(6) 0.46247(7) 0.0316(2) Uani 1 1 d . . . I1 I 0.83654(11) 0.26770(13) 0.69580(10) 0.0574(6) Uani 0.466(3) 1 d PDU A -1 C13 C 0.7552(3) 0.2519(3) 0.5360(4) 0.043(2) Uani 0.466(3) 1 d PGDU A -1 C14 C 0.6662(4) 0.2319(3) 0.5022(5) 0.0335(19) Uani 0.466(3) 1 d PGDU A -1 H14 H 0.6436 0.2262 0.5523 0.040 Uiso 0.466(3) 1 calc PR A -1 C15 C 0.6103(3) 0.2201(4) 0.3951(5) 0.041(2) Uani 0.466(3) 1 d PGDU A -1 H15 H 0.5495 0.2063 0.3720 0.049 Uiso 0.466(3) 1 calc PR A -1 C16 C 0.6434(5) 0.2283(4) 0.3219(4) 0.045(3) Uani 0.466(3) 1 d PGDU A -1 H16 H 0.6052 0.2203 0.2487 0.053 Uiso 0.466(3) 1 calc PR A -1 C17 C 0.7324(5) 0.2484(5) 0.3557(5) 0.0429(19) Uani 0.466(3) 1 d PGDU A -1 H17 H 0.7551 0.2541 0.3056 0.052 Uiso 0.466(3) 1 calc PR A -1 C18 C 0.7883(4) 0.2602(4) 0.4628(6) 0.040(2) Uani 0.466(3) 1 d PGDU A -1 H18 H 0.8492 0.2739 0.4859 0.048 Uiso 0.466(3) 1 calc PR A -1 I1* I 0.6454(16) 0.2020(15) 0.326(2) 0.074(5) Uani 0.034(3) 1 d PDU A -2 C13* C 0.737(2) 0.2581(18) 0.459(2) 0.043(3) Uani 0.034(3) 1 d PGDU A -2 C14* C 0.813(3) 0.290(4) 0.459(5) 0.043(3) Uani 0.034(3) 1 d PGDU A -2 H14* H 0.8229 0.2852 0.3985 0.051 Uiso 0.034(3) 1 calc PR A -2 C15* C 0.875(4) 0.328(5) 0.548(6) 0.044(4) Uani 0.034(3) 1 d PGDU A -2 H15* H 0.9269 0.3490 0.5486 0.053 Uiso 0.034(3) 1 calc PR A -2 C16* C 0.861(4) 0.334(4) 0.637(5) 0.045(5) Uani 0.034(3) 1 d PGDU A -2 H16* H 0.9027 0.3598 0.6982 0.054 Uiso 0.034(3) 1 calc PR A -2 C17* C 0.784(5) 0.302(5) 0.637(4) 0.044(4) Uani 0.034(3) 1 d PGDU A -2 H17* H 0.7747 0.3069 0.6977 0.053 Uiso 0.034(3) 1 calc PR A -2 C18* C 0.723(4) 0.265(4) 0.548(3) 0.042(3) Uani 0.034(3) 1 d PGDU A -2 H18* H 0.6707 0.2430 0.5475 0.051 Uiso 0.034(3) 1 calc PR A -2 loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Pd1 0.02469(17) 0.02083(16) 0.01770(17) -0.00042(12) 0.01208(12) -0.00107(13) N1 0.0334(19) 0.0273(18) 0.0188(17) 0.0012(13) 0.0140(15) 0.0007(15) C2 0.028(2) 0.033(2) 0.020(2) -0.0043(17) 0.0149(17) -0.0048(18) C3 0.036(2) 0.037(3) 0.029(2) -0.0014(19) 0.019(2) -0.009(2) C4 0.044(3) 0.029(2) 0.023(2) -0.0017(18) 0.017(2) -0.014(2) C4A 0.043(3) 0.024(2) 0.0153(19) 0.0009(16) 0.0146(18) -0.0045(18) C5 0.054(3) 0.024(2) 0.027(2) 0.0002(18) 0.022(2) -0.003(2) C6 0.049(3) 0.029(2) 0.030(2) 0.0023(18) 0.021(2) 0.006(2) C6A 0.035(2) 0.028(2) 0.019(2) 0.0015(16) 0.0101(18) 0.0061(18) C7 0.036(3) 0.039(3) 0.026(2) 0.0015(19) 0.0115(19) 0.013(2) C8 0.025(2) 0.048(3) 0.034(2) -0.001(2) 0.014(2) 0.0016(19) C9 0.031(2) 0.030(2) 0.025(2) 0.0003(17) 0.0133(18) -0.0005(18) C10 0.028(2) 0.023(2) 0.0170(19) -0.0016(15) 0.0132(16) 0.0004(16) C10A 0.031(2) 0.029(2) 0.0148(19) 0.0018(16) 0.0127(17) 0.0036(17) C10B 0.029(2) 0.028(2) 0.0097(19) -0.0001(15) 0.0087(16) -0.0008(17) O1 0.0357(16) 0.0299(16) 0.0231(14) -0.0039(12) 0.0145(13) -0.0058(12) O2 0.0309(16) 0.0310(16) 0.0261(15) -0.0019(12) 0.0170(13) -0.0020(12) C11 0.025(2) 0.026(2) 0.029(2) 0.0038(18) 0.0125(18) -0.0004(17) C12 0.047(3) 0.042(3) 0.051(3) -0.003(2) 0.027(2) -0.016(2) Cl1 0.0417(6) 0.0350(6) 0.0201(5) -0.0027(4) 0.0157(5) -0.0058(5) I1 0.0523(7) 0.0621(10) 0.0438(6) -0.0085(5) 0.0095(5) 0.0074(6) C13 0.045(4) 0.035(4) 0.049(4) 0.006(4) 0.021(4) 0.006(4) C14 0.043(4) 0.031(4) 0.044(4) 0.008(3) 0.035(3) 0.003(4) C15 0.049(4) 0.038(4) 0.045(4) 0.001(4) 0.031(3) 0.003(4) C16 0.058(5) 0.037(6) 0.046(5) 0.002(5) 0.030(4) -0.010(5) C17 0.051(5) 0.043(4) 0.049(4) 0.002(4) 0.035(4) 0.002(4) C18 0.042(5) 0.034(4) 0.053(4) 0.007(3) 0.030(4) 0.001(4) I1* 0.086(7) 0.055(8) 0.064(6) 0.004(6) 0.021(6) -0.017(7) C13* 0.049(5) 0.037(4) 0.050(4) 0.005(4) 0.029(4) 0.001(4) C14* 0.048(6) 0.038(5) 0.050(5) 0.005(5) 0.029(5) 0.004(5) C15* 0.046(7) 0.039(7) 0.052(7) 0.006(7) 0.027(6) 0.004(7) C16* 0.048(8) 0.042(8) 0.049(7) 0.005(8) 0.024(7) 0.003(7) C17* 0.045(7) 0.041(7) 0.049(6) 0.005(6) 0.024(6) 0.006(7) C18* 0.045(6) 0.037(5) 0.051(5) 0.007(5) 0.027(5) 0.004(5) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Pd1 C10 2.000(4) . ? Pd1 N1 2.016(3) . ? Pd1 O1 2.042(3) . ? Pd1 O2 2.133(3) 2_656 ? Pd1 Cl1 2.4167(10) . ? Pd1 Pd1 2.5672(5) 2_656 ? N1 C2 1.344(5) . ? N1 C10B 1.362(5) . ? C2 C3 1.397(6) . ? C2 H2 0.9500 . ? C3 C4 1.367(6) . ? C3 H3 0.9500 . ? C4 C4A 1.401(6) . ? C4 H4 0.9500 . ? C4A C10B 1.414(5) . ? C4A C5 1.425(6) . ? C5 C6 1.356(6) . ? C5 H5 0.9500 . ? C6 C6A 1.433(6) . ? C6 H6 0.9500 . ? C6A C7 1.396(6) . ? C6A C10A 1.408(5) . ? C7 C8 1.389(6) . ? C7 H7 0.9500 . ? C8 C9 1.401(6) . ? C8 H8 0.9500 . ? C9 C10 1.360(5) . ? C9 H9 0.9500 . ? C10 C10A 1.398(5) . ? C10A C10B 1.407(5) . ? O1 C11 1.275(5) . ? O2 C11 1.254(5) . ? O2 Pd1 2.133(3) 2_656 ? C11 C12 1.494(6) . ? C12 H12A 0.9800 . ? C12 H12B 0.9800 . ? C12 H12C 0.9800 . ? I1 C13 2.064(5) . ? C13 C14 1.3900 . ? C13 C18 1.3900 . ? C14 C15 1.3900 . ? C14 H14 0.9500 . ? C15 C16 1.3900 . ? C15 H15 0.9500 . ? C16 C17 1.3900 . ? C16 H16 0.9500 . ? C17 C18 1.3900 . ? C17 H17 0.9500 . ? C18 H18 0.9500 . ? I1* C13* 2.067(15) . ? C13* C14* 1.3900 . ? C13* C18* 1.3900 . ? C14* C15* 1.3900 . ? C14* H14* 0.9500 . ? C15* C16* 1.3900 . ? C15* H15* 0.9500 . ? C16* C17* 1.3900 . ? C16* H16* 0.9500 . ? C17* C18* 1.3900 . ? C17* H17* 0.9500 . ? C18* H18* 0.9500 . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C10 Pd1 N1 82.88(14) . . ? C10 Pd1 O1 92.55(13) . . ? N1 Pd1 O1 175.39(12) . . ? C10 Pd1 O2 177.37(13) . 2_656 ? N1 Pd1 O2 94.61(12) . 2_656 ? O1 Pd1 O2 89.94(11) . 2_656 ? C10 Pd1 Cl1 88.88(10) . . ? N1 Pd1 Cl1 90.48(9) . . ? O1 Pd1 Cl1 90.06(8) . . ? O2 Pd1 Cl1 91.94(7) 2_656 . ? C10 Pd1 Pd1 96.24(10) . 2_656 ? N1 Pd1 Pd1 95.66(8) . 2_656 ? O1 Pd1 Pd1 84.18(7) . 2_656 ? O2 Pd1 Pd1 83.19(7) 2_656 2_656 ? Cl1 Pd1 Pd1 172.44(2) . 2_656 ? C2 N1 C10B 119.9(3) . . ? C2 N1 Pd1 127.8(3) . . ? C10B N1 Pd1 112.3(2) . . ? N1 C2 C3 120.0(4) . . ? N1 C2 H2 120.0 . . ? C3 C2 H2 120.0 . . ? C4 C3 C2 121.0(4) . . ? C4 C3 H3 119.5 . . ? C2 C3 H3 119.5 . . ? C3 C4 C4A 120.0(4) . . ? C3 C4 H4 120.0 . . ? C4A C4 H4 120.0 . . ? C4 C4A C10B 116.8(4) . . ? C4 C4A C5 126.5(4) . . ? C10B C4A C5 116.6(4) . . ? C6 C5 C4A 122.2(4) . . ? C6 C5 H5 118.9 . . ? C4A C5 H5 118.9 . . ? C5 C6 C6A 121.6(4) . . ? C5 C6 H6 119.2 . . ? C6A C6 H6 119.2 . . ? C7 C6A C10A 117.5(4) . . ? C7 C6A C6 125.2(4) . . ? C10A C6A C6 117.3(4) . . ? C8 C7 C6A 120.4(4) . . ? C8 C7 H7 119.8 . . ? C6A C7 H7 119.8 . . ? C7 C8 C9 120.8(4) . . ? C7 C8 H8 119.6 . . ? C9 C8 H8 119.6 . . ? C10 C9 C8 119.7(4) . . ? C10 C9 H9 120.2 . . ? C8 C9 H9 120.2 . . ? C9 C10 C10A 119.9(3) . . ? C9 C10 Pd1 129.3(3) . . ? C10A C10 Pd1 110.8(3) . . ? C10 C10A C10B 117.6(3) . . ? C10 C10A C6A 121.6(4) . . ? C10B C10A C6A 120.7(4) . . ? N1 C10B C10A 116.2(3) . . ? N1 C10B C4A 122.2(3) . . ? C10A C10B C4A 121.5(4) . . ? C11 O1 Pd1 121.3(2) . . ? C11 O2 Pd1 117.9(2) . 2_656 ? O2 C11 O1 124.4(4) . . ? O2 C11 C12 119.3(4) . . ? O1 C11 C12 116.2(4) . . ? C11 C12 H12A 109.5 . . ? C11 C12 H12B 109.5 . . ? H12A C12 H12B 109.5 . . ? C11 C12 H12C 109.5 . . ? H12A C12 H12C 109.5 . . ? H12B C12 H12C 109.5 . . ? C14 C13 C18 120.0 . . ? C14 C13 I1 118.9(3) . . ? C18 C13 I1 121.1(3) . . ? C15 C14 C13 120.0 . . ? C15 C14 H14 120.0 . . ? C13 C14 H14 120.0 . . ? C14 C15 C16 120.0 . . ? C14 C15 H15 120.0 . . ? C16 C15 H15 120.0 . . ? C17 C16 C15 120.0 . . ? C17 C16 H16 120.0 . . ? C15 C16 H16 120.0 . . ? C16 C17 C18 120.0 . . ? C16 C17 H17 120.0 . . ? C18 C17 H17 120.0 . . ? C17 C18 C13 120.0 . . ? C17 C18 H18 120.0 . . ? C13 C18 H18 120.0 . . ? C14* C13* C18* 120.0 . . ? C14* C13* I1* 119.8(10) . . ? C18* C13* I1* 120.2(10) . . ? C15* C14* C13* 120.0 . . ? C15* C14* H14* 120.0 . . ? C13* C14* H14* 120.0 . . ? C16* C15* C14* 120.0 . . ? C16* C15* H15* 120.0 . . ? C14* C15* H15* 120.0 . . ? C15* C16* C17* 120.0 . . ? C15* C16* H16* 120.0 . . ? C17* C16* H16* 120.0 . . ? C18* C17* C16* 120.0 . . ? C18* C17* H17* 120.0 . . ? C16* C17* H17* 120.0 . . ? C17* C18* C13* 120.0 . . ? C17* C18* H18* 120.0 . . ? C13* C18* H18* 120.0 . . ? loop_ _geom_torsion_atom_site_label_1 _geom_torsion_atom_site_label_2 _geom_torsion_atom_site_label_3 _geom_torsion_atom_site_label_4 _geom_torsion _geom_torsion_site_symmetry_1 _geom_torsion_site_symmetry_2 _geom_torsion_site_symmetry_3 _geom_torsion_site_symmetry_4 _geom_torsion_publ_flag C10 Pd1 N1 C2 -176.9(3) . . . . ? O2 Pd1 N1 C2 3.9(3) 2_656 . . . ? Cl1 Pd1 N1 C2 -88.1(3) . . . . ? Pd1 Pd1 N1 C2 87.5(3) 2_656 . . . ? C10 Pd1 N1 C10B 3.2(2) . . . . ? O2 Pd1 N1 C10B -176.0(2) 2_656 . . . ? Cl1 Pd1 N1 C10B 92.0(2) . . . . ? Pd1 Pd1 N1 C10B -92.4(2) 2_656 . . . ? C10B N1 C2 C3 1.7(5) . . . . ? Pd1 N1 C2 C3 -178.2(3) . . . . ? N1 C2 C3 C4 -0.6(6) . . . . ? C2 C3 C4 C4A -0.2(6) . . . . ? C3 C4 C4A C10B 0.0(5) . . . . ? C3 C4 C4A C5 -178.9(4) . . . . ? C4 C4A C5 C6 177.3(4) . . . . ? C10B C4A C5 C6 -1.6(6) . . . . ? C4A C5 C6 C6A 0.4(6) . . . . ? C5 C6 C6A C7 -179.2(4) . . . . ? C5 C6 C6A C10A 0.8(6) . . . . ? C10A C6A C7 C8 -0.9(6) . . . . ? C6 C6A C7 C8 179.1(4) . . . . ? C6A C7 C8 C9 1.4(6) . . . . ? C7 C8 C9 C10 0.5(6) . . . . ? C8 C9 C10 C10A -2.9(6) . . . . ? C8 C9 C10 Pd1 179.0(3) . . . . ? N1 Pd1 C10 C9 175.9(4) . . . . ? O1 Pd1 C10 C9 -4.7(3) . . . . ? Cl1 Pd1 C10 C9 85.3(3) . . . . ? Pd1 Pd1 C10 C9 -89.1(3) 2_656 . . . ? N1 Pd1 C10 C10A -2.3(2) . . . . ? O1 Pd1 C10 C10A 177.1(3) . . . . ? Cl1 Pd1 C10 C10A -92.9(2) . . . . ? Pd1 Pd1 C10 C10A 92.6(2) 2_656 . . . ? C9 C10 C10A C10B -177.3(3) . . . . ? Pd1 C10 C10A C10B 1.1(4) . . . . ? C9 C10 C10A C6A 3.4(6) . . . . ? Pd1 C10 C10A C6A -178.1(3) . . . . ? C7 C6A C10A C10 -1.5(6) . . . . ? C6 C6A C10A C10 178.5(3) . . . . ? C7 C6A C10A C10B 179.2(3) . . . . ? C6 C6A C10A C10B -0.7(5) . . . . ? C2 N1 C10B C10A 176.6(3) . . . . ? Pd1 N1 C10B C10A -3.5(4) . . . . ? C2 N1 C10B C4A -2.0(5) . . . . ? Pd1 N1 C10B C4A 177.9(3) . . . . ? C10 C10A C10B N1 1.6(5) . . . . ? C6A C10A C10B N1 -179.1(3) . . . . ? C10 C10A C10B C4A -179.8(3) . . . . ? C6A C10A C10B C4A -0.5(5) . . . . ? C4 C4A C10B N1 1.2(5) . . . . ? C5 C4A C10B N1 -179.8(3) . . . . ? C4 C4A C10B C10A -177.3(3) . . . . ? C5 C4A C10B C10A 1.7(5) . . . . ? C10 Pd1 O1 C11 -71.3(3) . . . . ? O2 Pd1 O1 C11 107.9(3) 2_656 . . . ? Cl1 Pd1 O1 C11 -160.2(3) . . . . ? Pd1 Pd1 O1 C11 24.7(3) 2_656 . . . ? Pd1 O2 C11 O1 -16.3(5) 2_656 . . . ? Pd1 O2 C11 C12 166.1(3) 2_656 . . . ? Pd1 O1 C11 O2 -11.0(5) . . . . ? Pd1 O1 C11 C12 166.7(3) . . . . ? C18 C13 C14 C15 0.0 . . . . ? I1 C13 C14 C15 -179.3(4) . . . . ? C13 C14 C15 C16 0.0 . . . . ? C14 C15 C16 C17 0.0 . . . . ? C15 C16 C17 C18 0.0 . . . . ? C16 C17 C18 C13 0.0 . . . . ? C14 C13 C18 C17 0.0 . . . . ? I1 C13 C18 C17 179.2(4) . . . . ? C18* C13* C14* C15* 0.0 . . . . ? I1* C13* C14* C15* 179.9(5) . . . . ? C13* C14* C15* C16* 0.0 . . . . ? C14* C15* C16* C17* 0.0 . . . . ? C15* C16* C17* C18* 0.0 . . . . ? C16* C17* C18* C13* 0.0 . . . . ? C14* C13* C18* C17* 0.0 . . . . ? I1* C13* C18* C17* -179.9(5) . . . . ? loop_ _exptl_crystal_face_index_h _exptl_crystal_face_index_k _exptl_crystal_face_index_l _exptl_crystal_face_perp_dist 1 0 -1 0.075 -1 0 1 0.075 1 1 0 0.015 -1 -1 0 0.015 1 -1 0 0.015 -1 1 0 0.015 # SQUEEZE RESULTS (APPEND TO CIF) # Note: Data are Listed for all Voids in the P1 Unit Cell # i.e. Centre of Gravity, Solvent Accessible Volume, # Recovered number of Electrons in the Void and # Details about the Squeezed Material loop_ _platon_squeeze_void_nr _platon_squeeze_void_average_x _platon_squeeze_void_average_y _platon_squeeze_void_average_z _platon_squeeze_void_volume _platon_squeeze_void_count_electrons _platon_squeeze_void_content 1 0.000 0.500 -0.022 317 101 ' ' 2 0.500 0.000 0.016 317 101 ' ' _platon_squeeze_details ; The Squeeze/Bypass procedure yielded total void volumes and electron counts of 639.4 \%A^3^ and 203 e, respectively. For Z = 4, this gives V~l~ = 159.8 \%A^3^ and 51 e. These values may be compared to the expectation values of V~l~ = 186.5 \%A^3^ and 94 e, V~l~ = 192.1 \%A^3^ and 42 e, and V~l~ = 106.8 \%A^3^ and 42 e for iodobenzene, pentane and dichloromethane, respectively. The void volume observed, i.e., 159.8 \%A^3^, is too small to accommodate iodobenzene or pentane. Hence, the Squeeze/Bypass results suggest that, of these three possibilities, dichloromethane is the probable solvent in the lattice. Note 1. The researchers have indicated that dichloromethane resonances were observed in their NMR spectrum for the compound. Note 2. In a parallel test, the iodobenzene site was squeezed out yielding V~l~ = 191.9 \%A^3^ and 91 e. These observed values are in excellent agreement with the expectation values of V~l~ = 186.5 \%A^3^ and 94 e. Hence, that parallel test gives us confidence that the iodobenzene site is indeed occupied by an iodobenzene molecule, and that the void volume calculated for the solvent site, i.e., 159.8 \%A^3^, is indeed probably reliable enough to exclude iodobenzene and pentane as argued above. ;