Supplementary Information

Protein Flexibility and Conformational Entropy in Ligand Design Targeting the Carbohydrate Recognition Domain of Galectin-3

Carl Diehl¹, Olof Engström^{1,6}, Tamara Delaine^{2,7}, Maria Håkansson³, Samuel Genheden⁴, Kristofer Modig¹, Hakon Leffler⁵, Ulf Ryde⁴, Ulf J. Nilsson², Mikael Akke^{1,*}

¹ Center for Molecular Protein Science, Biophysical Chemistry, Lund University, POBox 124, SE-22100 Lund, Sweden

² Organic Chemistry, Lund University, POBox 124, SE-22100 Lund, Sweden

³ SARomics Biostructures AB, POBox 724, SE-22007 Lund, Sweden

⁴ Theoretical Chemistry, Lund University, POBox 124, SE-22100 Lund, Sweden

⁵ Section MIG, Department of Laboratory Medicine, Lund University, Sölvegatan 23, SE-22362 Lund, Sweden

⁶ Present address: Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden

⁷ Present address: Dermatochemistry and Skin Allergy, Department of Chemistry, University of Gothenburg, SE-41296 Gothenburg, Sweden.

Corresponding author e-mail: mikael.akke@bpc.lu.se

Space group	P2 ₁ 2 ₁ 2 ₁
Resolution (Å)	25.00 - 1.20 (1.23 - 1.20)
Wavelength (Å)	0.90778
Unit cell (Å)	a =35.80, b = 57.69, c = 62.41
Completeness (%)	99.6 (96.9)
No. of observed reflections	274,413
No. of unique reflections	41,094
Mean <i o=""></i>	11.5 (2.2)
R_{merge} (I) (%)	8.1 (65.6)
$R_{cryst}(F)(\%)$	13.8 (32.2)
$R_{free}(F)(\%)$	19.3
No. of amino acids	138
No. of water molecules	232
No. of chloride ions	1
rms deviations from ideal bond lengths (Å)	0.011
Average B-factors protein (Å ²)	17.4
Average B-factors 5-78 ligand (Å ²)	32.9

 Table S1. Summary of quality statistics for the crystal structure of the L2-Gal3 complex.

Table S2a: Mean values, standard deviations and standard error of mean for ¹⁵N backbone amide relaxation rates.

500 MHz	$R_{1}(s^{-1})$	Std	SEM	$R_{2}(s^{-1})$	Std	SEM	{ ¹ H}- ¹⁵ N-NOE	Std	SEM
Аро	2.01	0.11	0.01	9.75	1.08	0.10	0.74	0.06	0.01
Lac	1.82	0.15	0.01	9.53	2.07	0.19	0.69	0.38	0.04
L2	1.90	0.09	0.01	9.92	0.87	0.08	0.76	0.05	0.00
L3	1.92	0.09	0.01	9.75	0.80	0.08	0.77	0.04	0.00
600 MHz	$R_1(s^{-1})$	Std	SEM	$R_{2}(s^{-1})$	Std	SEM	{ ¹ H}- ¹⁵ N-NOE	Std	SEM
600 MHz	$R_1(s^{-1})$	Std	SEM	$R_{2}(s^{-1})$	Std	SEM	{ ¹ H}- ¹⁵ N-NOE	Std	SEM
600 MHz Apo	$R_1(s^{-1})$ 1.63	Std 0.07	SEM 0.01	$R_2 (s^{-1})$ 10.40	Std 1.25	SEM 0.12	{ ¹ H}- ¹⁵ N-NOE 0.79	Std 0.06	SEM 0.01
600 MHz Apo Lac	$R_1(s^{-1})$ 1.63 1.45	Std 0.07 0.09	SEM 0.01 0.01	R ₂ (s ⁻¹) 10.40 10.44	Std 1.25 1.67	SEM 0.12 0.16	{ ¹ H}- ¹⁵ N-NOE 0.79 0.72	Std 0.06 0.35	SEM 0.01 0.03
600 MHz Apo Lac L2	R ₁ (s ⁻¹) 1.63 1.45 1.51	Std 0.07 0.09 0.07	SEM 0.01 0.01 0.01	R ₂ (s ⁻¹) 10.40 10.44 10.63	Std 1.25 1.67 1.02	SEM 0.12 0.16 0.09	{ ¹ H}- ¹⁵ N-NOE 0.79 0.72 0.78	Std 0.06 0.35 0.06	SEM 0.01 0.03 0.01

Table S2b: Mean values, standard deviations and standard error of mean for ¹⁵N side-chain relaxation rates.

500 MHz	$R_1(s^{-1})$	Std	SEM	$R_{2}(s^{-1})$	Std	SEM	${^{1}H}-{^{15}N-NOE}$	Std	SEM
Аро	1.15	0.77	0.31	7.89	4.39	1.79	-0.66	1.84	0.75
Lac	1.52	0.25	0.10	7.84	1.92	0.79	0.56	0.24	0.10
L2	1.62	0.21	0.08	8.54	1.46	0.55	0.63	0.24	0.09
L3	1.62	0.19	0.08	8.52	1.86	0.76	0.61	0.27	0.11
600 MHz	$R_1(s^{-1})$	Std	SEM	$R_2(s^{-1})$	Std	SEM	{ ¹ H}- ¹⁵ N-NOE	Std	SEM
600 MHz Apo	$R_1(s^{-1})$ 0.96	Std 0.56	SEM 0.23	$R_2(s^{-1})$ 8.38	Std 4.19	SEM 1.71	{ ¹ H}- ¹⁵ N-NOE -0.50	Std 1.66	SEM 0.68
600 MHz Apo Lac	R ₁ (s ⁻¹) 0.96 1.23	Std 0.56 0.08	SEM 0.23 0.03	R ₂ (s ⁻¹) 8.38 8.48	Std 4.19 1.82	SEM 1.71 0.74	{ ¹ H}- ¹⁵ N-NOE -0.50 0.58	Std 1.66 0.22	SEM 0.68 0.09
600 MHz Apo Lac L2	R ₁ (s ⁻¹) 0.96 1.23 1.27	Std 0.56 0.08 0.11	SEM 0.23 0.03 0.04	R ₂ (s ⁻¹) 8.38 8.48 9.49	Std 4.19 1.82 1.75	SEM 1.71 0.74 0.66	{ ¹ H}- ¹⁵ N-NOE -0.50 0.58 0.64	Std 1.66 0.22 0.28	SEM 0.68 0.09 0.10

Table S2c: Mean values, standard deviations and standard error of mean for 2 H side-chain methyl relaxation rates. Units in s⁻¹.

	$R_z^{\ a}$	Std	SEM	$R_{\scriptscriptstyle +}{}^{\scriptscriptstyle b}$	Std	SEM	$R_{z2}^{\ c}$	Std	SEM	$R_{\scriptscriptstyle +z}{}^{d}$	Std	SEM
Аро	21.40	9.34	1.13	90.38	26.20	3.18	18.07	8.03	0.97	75.50	24.99	3.03
Lac	21.58	10.77	1.31	90.38	25.52	3.09	18.03	7.74	0.94	75.80	27.06	3.28
L2	21.45	10.62	1.29	88.39	24.25	2.92	18.05	7.33	0.89	73.51	26.65	3.21
L3	21.70	11.74	1.45	90.42	28.04	3.45	16.77	7.23	0.89	72.37	27.68	3.41
^a R(D	z)											
^b R(D) +)											
° R(31	$D_{z}^{2}-2)$											
^d R(D	$_{+}D_{z} + D_{z}$	_z D ₊)										

Table S2d: Mean values, standard deviations and standard error of mean for ${}^{15}N$ R_{2dd} backbone amide relaxation rates.

500 MHz	R_{2dd} (s ⁻¹)	Std	SEM
Аро	6.18	0.53	0.05

Residue	O^2	std	$ au_e$ (ps)	std	R_{ex} (s ⁻¹)	std	O_{s}^{2}	std	O_{f}^{2}	std	τ_{s} (ps)	std
115	0.72	0.01	41	5								
116	0.78	0.01	36	9								
118	0.91	0.01										
119	0.90	0.01			0.5	0.2						
120	0.87	0.01										
122	0.85	0.01	33	13								
125	0.87	0.01					0.95	0.02	0.91	0.02	1290	1257
126	0.79	0.01	26	9	0.4	0.2						
127	0.84	0.01	35	12	0.7	0.2						
129	0.87	0.01	43	18	0.3	0.2						
130	0.87	0.01	32	11	0.3	0.1						
131	0.94	0.01										
132	0.90	0.01										
134	0.90	0.01										
135	0.89	0.01			0.5	0.2						
136	0.89	0.01	46	15								
137	0.89	0.01										
138	0.89	0.01			0.4	0.1						
139	0.87	0.01	34	16	0.7	0.2						
142	0.77	0.01					0.92	0.01	0.84	0.01	842	189
143	0.84	0.01			0.4	0.2						
144	0.91	0.01										
145	0.87	0.01										
146	0.90	0.01										
147	0.87	0.01			0.4	0.2						
148	0.85	0.01										
150	0.88	0.01	36	16								

151	0.86	0.01	36	14	0.7	0.2						
154	0.87	0.01	22	13	0.7	0.1						
155	0.87	0.01			0.5	0.2						
156	0.91	0.01										
157	0.94	0.01										
158	0.96	0.01										
159	0.88	0.01	28	17								
160	0.87	0.02			0.8	0.3						
163	0.90	0.01			0.4	0.2						
164	0.88	0.01	77	22	0.5	0.2						
165	0.82	0.01					0.92	0.01	0.89	0.01	888	292
167	0.91	0.01	73	28								
168	0.82	0.01	49	9								
169	0.79	0.01					0.95	0.02	0.84	0.03	940	636
171	0.89	0.01	54	22								
172	0.91	0.01										
173	0.86	0.01	66	22	6.7	0.3						
174	0.91	0.01			0.5	0.2						
175	0.83	0.01	45	14	0.7	0.2						
176	0.91	0.01										
177	0.86	0.01	29	14	0.5	0.2						
178	0.89	0.01	64	19								
179	0.90	0.01			1.5	0.2						
180	0.82	0.01			0.6	0.1						
181	0.90	0.01			0.8	0.3						
182	0.88	0.01										
183	0.92	0.01			1.3	0.3						
184	0.85	0.01	57	15	0.8	0.2						
185	0.86	0.01			0.8	0.2						

186	0.86	0.03			2.7	0.6
187	0.85	0.01	50	16	0.6	0.2
189	0.84	0.01	40	14	4.5	0.2
190	0.88	0.02	38	23	0.9	0.3
192	0.71	0.01	17	5		
193	0.82	0.01			0.8	0.2
194	0.84	0.02	51	27		
195	0.86	0.01	38	15		
196	0.88	0.01				
198	0.89	0.01				
199	0.88	0.01			0.5	0.2
200	0.89	0.01				
202	0.86	0.01			0.7	0.2
203	0.92	0.01				
204	0.90	0.01			0.5	0.2
205	0.90	0.01	49	16	0.6	0.1
207	0.95	0.02			2.0	0.3
208	0.93	0.01			1.0	0.2
209	0.90	0.01				
210	0.87	0.01			3.4	0.2
212	0.89	0.01			0.6	0.2
213	0.88	0.01			1.0	0.2
214	0.88	0.01	51	17	0.7	0.2
215	0.89	0.01	41	20	1.9	0.2
216	0.85	0.00				
218	0.87	0.01			1.3	0.2
219	0.89	0.01			8.4	0.3
220	0.90	0.01			0.4	0.2
221	0.87	0.01	37	14	0.8	0.2

222	0.89	0.01			0.7	0.2						
223	0.89	0.01										
224	0.89	0.01			0.7	0.3						
225	0.76	0.01	27	8	0.5	0.2						
227	0.87	0.02										
228	0.84	0.01					0.95	0.02	0.89	0.02	1377	1257
229	0.95	0.01	66	44								
230	0.91	0.01										
231	0.91	0.01			0.3	0.2						
232	0.77	0.01					0.93	0.03	0.83	0.04	627	257
233	0.95	0.01										
234	0.89	0.01	52	19								
235	0.91	0.01										
236	0.87	0.01			1.1	0.2						
237	0.93	0.01										
238	0.91	0.01	57	23								
240	0.85	0.01	65	13	0.8	0.2						
241	0.87	0.01										
243	0.92	0.01			0.5	0.3						
244	0.87	0.01			0.2	0.1						
245	0.88	0.01					0.96	0.02	0.92	0.02	1138	1169
246	0.89	0.01										
247	0.89	0.01	23	14								
248	0.89	0.01										
249	0.84	0.01	32	13								
250	0.82	0.01					0.94	0.02	0.87	0.03	903	555

Residue	O^2	std	$ au_{e}$ (ps)	std	$R_{ex}\left(\mathbf{s}^{-1} ight)$	std	O_{s}^{2}	std	O_{f}^{2}	std	$ au_{s}$ (ps)	std
114	0.06	0.01					0.08	0.01	0.73	0.02	587	22
115	0.39	0.01					0.66	0.01	0.60	0.01	2408	489
116	0.78	0.01	38	9								
118	0.89	0.01	48	22								
119	0.80	0.01	45	10								
120	0.85	0.01										
122	0.84	0.01			0.4	0.2						
124	0.04	0.01					0.06	0.01	0.70	0.01	668	18
125	0.86	0.01	32	13	0.3	0.2						
126	0.78	0.01	15	9								
127	0.81	0.01	33	10	1.0	0.2						
129	0.86	0.01										
130	0.83	0.01	43	9	0.4	0.2						
131	0.87	0.02	51	20	0.7	0.3						
132	0.86	0.01			0.5	0.3						
134	0.87	0.01										
135	0.91	0.01										
136	0.88	0.01										
137	0.85	0.01										
138	0.89	0.01										
139	0.85	0.01	61	14	1.9	0.3						
141	0.08	0.02					0.12	0.03	0.69	0.05	483	72
142	0.77	0.01	41	6								
143	0.84	0.01										
144	0.87	0.01	27	17								
145	0.80	0.01	76	11	0.4	0.2						
146	0.89	0.01										

147	0.84	0.01	15	9								
148	0.82	0.01			0.5	0.2						
149	0.88	0.01										
150	0.87	0.01			0.5	0.2						
151	0.85	0.01			1.1	0.2						
154	0.85	0.01	31	12								
155	0.85	0.01			0.5	0.2						
156	0.88	0.01										
157	0.89	0.01										
158	0.91	0.01										
159	0.86	0.01			0.6	0.2						
160	0.86	0.01			0.4	0.2						
163	0.86	0.01	53	24								
164	0.89	0.01	63	24								
167	0.86	0.01	30	17								
168	0.81	0.01	24	10								
169	0.77	0.01					0.93	0.02	0.83	0.02	977	554
171	0.88	0.01										
172	0.87	0.01										
173	0.85	0.01			0.4	0.2						
174	0.87	0.01			0.5	0.2						
175	0.81	0.01			1.0	0.2						
176	0.88	0.01										
177	0.65	0.01					0.81	0.01	0.80	0.01	603	75
178	0.86	0.01	21	11								
179	0.86	0.01			1.4	0.2						
180	0.80	0.01	13	7	0.5	0.1						
181	0.86	0.01										
182	0.83	0.01			0.7	0.2						

183	0.92	0.01										
184	0.83	0.01	17	10	0.5	0.2						
185	0.86	0.01										
186	0.80	0.02	31	18	1.3	0.5						
187	0.82	0.02					0.95	0.02	0.86	0.02	2871	2331
189	0.74	0.01	67	7	3.7	0.2						
190	0.89	0.01										
192	0.66	0.01	12	4	0.3	0.2						
193	0.83	0.01										
194	0.82	0.01										
195	0.85	0.01										
196	0.83	0.01	21	10	0.8	0.2						
198	0.87	0.01										
199	0.90	0.01										
200	0.87	0.01										
201	0.86	0.01	28	12								
202	0.84	0.01			0.4	0.2						
203	0.90	0.01										
204	0.89	0.01										
205	0.87	0.01	39	14	0.4	0.2						
207	0.86	0.01	55	17								
208	0.88	0.01			0.6	0.2						
209	0.87	0.01										
210	0.85	0.01										
212	0.91	0.01										
213	0.85	0.01	20	12	0.5	0.2						
214	0.90	0.01	35	22								
215	0.88	0.01			0.8	0.2						
216	0.84	0.01										

218	0.89	0.01			0.6	0.3						
219	0.88	0.02	32	21	6.8	0.4						
220	0.85	0.01			0.6	0.2						
222	0.88	0.01										
223	0.86	0.01										
224	0.87	0.01	40	26								
225	0.60	0.01					0.79	0.01	0.76	0.01	603	70
227	0.75	0.02	57	12	0.7	0.4						
228	0.86	0.01										
229	0.91	0.01										
230	0.90	0.01										
231	0.86	0.01	29	15	1.1	0.2						
232	0.77	0.01	53	8								
233	0.90	0.01			0.6	0.2						
234	0.85	0.01			0.5	0.2						
235	0.88	0.01										
236	0.86	0.01	43	14								
237	0.92	0.01										
238	0.89	0.01										
240	0.87	0.01										
241	0.88	0.01										
243	0.93	0.01										
244	0.85	0.01										
245	0.80	0.01	58	9								
246	0.86	0.01										
247	0.86	0.01										
248	0.88	0.01			0.4	0.2						
249	0.73	0.01	58	7								

Residue	O^2	std	$ au_{e}\left(\mathrm{ps} ight)$	std	$R_{ex}(s^{-1})$	std	O_{s}^{2}	std	O_{f}^{2}	std	$ au_{s}$ (ps)	std
114	0.64	0.02					0.76	0.03	0.84	0.02	527	128
115	0.68	0.01					0.89	0.01	0.77	0.01	980	137
116	0.76	0.00	34	6								
118	0.87	0.01					0.96	0.02	0.91	0.02	929	424
119	0.87	0.00										
120	0.86	0.00										
122	0.82	0.01	28	6	0.3	0.1						
125	0.87	0.00			0.7	0.1						
126	0.81	0.00	22	6								
127	0.81	0.01	21	7	1.2	0.1						
129	0.85	0.01					0.97	0.04	0.88	0.04	1000	559
130	0.86	0.01			0.9	0.1						
131	0.91	0.01			0.3	0.1						
132	0.87	0.01										
133	0.89	0.00			0.2	0.1						
134	0.87	0.01	21	9								
135	0.85	0.01					0.95	0.01	0.89	0.01	2252	1452
136	0.85	0.01					0.96	0.01	0.89	0.01	2858	2591
137	0.87	0.01										
139	0.84	0.01	33	9	1.6	0.1						
142	0.76	0.00	37	4	0.6	0.1						
143	0.85	0.01	18	8								
144	0.88	0.00			0.6	0.1						
145	0.88	0.01			0.2	0.1						
146	0.89	0.00			0.2	0.1						
147	0.89	0.01										

Table S3c:	Backbone	modelfree	order	parameters	for I	L2-Gal	3 from	¹⁵ N re	laxation	rates.	

148	0.85	0.00										
149	0.87	0.01	28	8								
150	0.87	0.00										
151	0.87	0.01	20	10	0.3	0.1						
154	0.87	0.00	19	8	0.5	0.1						
155	0.86	0.01	21	10	0.5	0.1						
156	0.90	0.00										
157	0.89	0.01	33	13	0.3	0.1						
158	0.89	0.01			0.8	0.1						
159	0.89	0.01										
160	0.85	0.00			0.5	0.1						
163	0.88	0.01	39	13	0.5	0.2						
164	0.88	0.01	23	11	0.7	0.1						
167	0.85	0.01					0.98	0.01	0.87	0.01	2705	1759
168	0.80	0.00	14	4	0.6	0.1						
169	0.81	0.00	28	5								
170	0.88	0.00			0.3	0.1						
171	0.87	0.01			0.3	0.1						
172	0.86	0.01	34	10	0.6	0.1						
173	0.86	0.01	23	12	0.2	0.1						
174	0.88	0.01			0.3	0.1						
175	0.84	0.00			0.5	0.1						
176	0.91	0.00										
177	0.86	0.01	19	12								
178	0.87	0.00	37	7								
179	0.84	0.01	20	6	1.6	0.1						
180	0.83	0.00			0.4	0.1						
181	0.86	0.00										
182	0.85	0.01			0.4	0.1						

183	0.88	0.00			0.9	0.1
184	0.83	0.00	19	7	0.7	0.1
185	0.87	0.00				
186	0.81	0.01	18	11	1.2	0.1
187	0.86	0.01			0.8	0.1
189	0.79	0.01	13	8	4.9	0.2
190	0.85	0.01	37	8	0.9	0.1
192	0.65	0.01	16	2	0.7	0.1
193	0.82	0.01	20	7		
194	0.85	0.01	39	11		
195	0.83	0.00	31	7	0.6	0.1
196	0.83	0.01	25	6	0.9	0.1
198	0.86	0.00	27	7		
199	0.88	0.01	17	9		
200	0.87	0.00				
201	0.87	0.01	21	8		
202	0.85	0.01	19	7	0.3	0.1
203	0.90	0.01	32	15		
204	0.88	0.01	17	9	0.7	0.1
207	0.89	0.01			2.1	0.1
208	0.89	0.01			1.2	0.1
209	0.88	0.00			0.3	0.1
210	0.87	0.01	20	12	1.6	0.2
211	0.88	0.01			5.0	0.1
212	0.89	0.00	18	10		
213	0.87	0.00			0.8	0.1
214	0.89	0.00	22	11		
215	0.88	0.01			1.5	0.2
216	0.83	0.00			0.5	0.1

218	0.89	0.00			1.0	0.1						
219	0.91	0.00			5.6	0.1						
220	0.88	0.01	30	12	0.4	0.1						
222	0.90	0.00										
223	0.85	0.01			0.7	0.1						
224	0.83	0.01	26	11	1.5	0.1						
225	0.72	0.01	20	4	1.5	0.1						
227	0.79	0.01	47	6	0.9	0.2						
228	0.82	0.01	15	7	0.5	0.1						
229	0.88	0.00			1.0	0.1						
230	0.88	0.01					0.98	0.00	0.90	0.01	1478	1533
231	0.88	0.01	15	8	0.7	0.1						
232	0.77	0.01	35	5	0.2	0.1						
233	0.91	0.01	52	10	0.5	0.1						
234	0.88	0.00										
235	0.87	0.01	22	12	0.5	0.1						
236	0.87	0.00										
237	0.91	0.00										
238	0.88	0.00										
239	0.86	0.00										
240	0.88	0.00	16	7								
241	0.85	0.01					0.97	0.01	0.87	0.00	4027	2907
243	0.88	0.02					0.95	0.02	0.93	0.01	1387	2372
244	0.78	0.02					0.91	0.02	0.86	0.01	5345	2265
245	0.85	0.01					0.94	0.01	0.90	0.01	1298	315
246	0.87	0.00										
247	0.82	0.00					0.95	0.01	0.87	0.01	1765	990
248	0.88	0.00	25	7								
249	0.79	0.01					0.96	0.07	0.83	0.07	433	263

Residue	O^2	std	$ au_{e}\left(\mathrm{ps} ight)$	std	R_{ex} (s ⁻¹)	std	O^2_{s}	std	O_{f}^{2}	std	$ au_{s}$ (ps)	std
115	0.72	0.00	36	4								
116	0.72	0.01					0.90	0.01	0.80	0.01	1168	181
118	0.85	0.01					0.96	0.01	0.89	0.01	2470	1453
119	0.87	0.01										
120	0.84	0.01	29	6	0.4	0.1						
122	0.81	0.00			1.1	0.1						
125	0.89	0.00										
126	0.76	0.01	9	4	0.9	0.1						
127	0.81	0.01	23	6	1.6	0.1						
129	0.85	0.00			0.6	0.1						
130	0.83	0.01	12	6	1.6	0.1						
131	0.88	0.01	43	14	1.0	0.2						
132	0.87	0.01			0.4	0.1						
134	0.88	0.00	23	10								
135	0.85	0.01					0.97	0.01	0.88	0.01	2007	777
136	0.86	0.01					0.97	0.01	0.89	0.01	1652	995
137	0.87	0.01			0.3	0.1						
139	0.86	0.01			1.5	0.2						
142	0.75	0.00	25	4	1.3	0.1						
143	0.85	0.00										
144	0.89	0.00			0.4	0.1						
145	0.88	0.00										
146	0.88	0.01			0.5	0.1						
147	0.87	0.01			0.5	0.1						
148	0.83	0.00	10	6	0.3	0.1						
149	0.86	0.01	16	6	0.3	0.1						

Table S3d: Backbone modelfree order parameters for L3 from ¹⁵ N relaxation rates	•
---	---

150	0.84	0.01	14	9	0.8	0.1						
151	0.84	0.00			1.1	0.1						
154	0.87	0.00	15	7	0.4	0.1						
155	0.83	0.01			1.1	0.1						
157	0.91	0.00	24	15								
158	0.90	0.01			0.9	0.2						
159	0.88	0.00										
160	0.87	0.01			0.7	0.2						
163	0.88	0.01	27	13	0.4	0.2						
164	0.87	0.01	17	10	0.9	0.1						
167	0.84	0.01					0.96	0.01	0.87	0.01	1725	625
168	0.79	0.00	18	4	1.0	0.1						
169	0.81	0.00	23	6								
171	0.87	0.00	14	9								
172	0.88	0.00										
173	0.88	0.01	28	12								
174	0.87	0.01			0.9	0.1						
175	0.81	0.00			1.2	0.1						
176	0.86	0.01			1.0	0.1						
177	0.84	0.01			0.9	0.1						
179	0.82	0.01			2.2	0.1						
180	0.82	0.00	12	4	0.4	0.1						
181	0.85	0.01	21	8	1.0	0.1						
182	0.82	0.01	14	6	1.4	0.1						
183	0.89	0.01	27	10	0.4	0.1						
184	0.82	0.01	10	6	1.1	0.1						
185	0.86	0.01	30	9								
186	0.81	0.01	33	8	1.3	0.2						
187	0.87	0.00	17	8								

189	0.82	0.01	14	5	3.8	0.1
190	0.83	0.01	22	7	1.4	0.1
192	0.64	0.01	11	3	1.0	0.1
193	0.81	0.00			0.9	0.1
194	0.81	0.01	38	8	1.0	0.2
195	0.83	0.01			1.1	0.1
196	0.81	0.01	13	5	1.3	0.1
198	0.87	0.00				
199	0.88	0.01	22	10	0.3	0.1
200	0.88	0.00				
201	0.86	0.01	13	6	0.3	0.1
202	0.85	0.01			0.4	0.1
203	0.89	0.01			0.4	0.1
204	0.88	0.01			0.9	0.2
207	0.86	0.01			2.5	0.2
208	0.87	0.01			1.9	0.1
209	0.82	0.01			1.4	0.1
210	0.84	0.01	19	6	2.6	0.2
212	0.87	0.01	42	9	0.3	0.1
213	0.87	0.00			0.5	0.1
214	0.90	0.00	28	11		
215	0.86	0.01	16	9	1.9	0.1
216	0.83	0.00	19	5		
219	0.87	0.01			6.0	0.2
220	0.87	0.01			0.8	0.1
222	0.87	0.00			0.6	0.1
223	0.86	0.01			0.7	0.1
224	0.86	0.01			0.9	0.2
225	0.74	0.01	13	4	1.0	0.1

227	0.77	0.01	28	8	1.9	0.2						
228	0.83	0.00	47	7								
229	0.90	0.01	43	9	0.5	0.1						
230	0.89	0.00										
231	0.88	0.00			0.5	0.1						
232	0.75	0.00	28	5	0.8	0.1						
233	0.90	0.00	34	12	0.8	0.1						
234	0.85	0.01	17	5	0.6	0.1						
235	0.87	0.00			0.8	0.1						
236	0.87	0.00										
237	0.91	0.01	32	15	0.2	0.1						
238	0.88	0.01	28	12								
240	0.88	0.00										
241	0.86	0.01					0.98	0.02	0.88	0.02	3957	1950
243	0.88	0.01					0.94	0.01	0.94	0.01	1350	912
244	0.87	0.00	18	10								
245	0.88	0.00										
246	0.86	0.00	30	6	0.4	0.1						
247	0.88	0.00										
248	0.86	0.01	21	11	0.6	0.1						
249	0.78	0.01	25	5	0.5	0.1						
250	0.80	0.01	21	5	0.8	0.1						

Table S3e: Side-chain modelfree order parameters for apo-Gal3 from ¹⁵N relaxation rates.

Residue	O^2	std	$ au_{e}$ (ps)	std	R_{ex} (s ⁻¹)	std	O_{s}^{2}	std	O_{f}^{2}	std	$ au_{s}$ (ps)	std
129	0.59	0.03	71	13								
162	0.91	0.03			7.2	0.7						
168	0.73	0.01	73	8	0.8	0.2						
181	0.03	0.02	48	15	1.7	0.5						
183	0.03	0.00	23	1	9.2	0.1						
224	0.90	0.02			1.9	0.3						

Table S3f: Side-chain modelfree order parameters for lac-Gal3 from ¹⁵N relaxation rates.

Residue	O^2	std	$ au_{e}$ (ps)	std	$R_{ex}\left(\mathbf{s}^{-1} ight)$	std	$O^2_{\ s}$	std	$O^2_{\ f}$	std	$ au_{s}$ (ps)	std
129	0.41	0.04					0.60	0.05	0.69	0.03	901	148
162	0.87	0.01			1.5	0.2						
168	0.68	0.01					0.82	0.02	0.83	0.01	814	112
181	0.91	0.02	88	56								
186	0.79	0.02	34	19								
224	0.88	0.01	44	16	0.7	0.2						

Table S3g: Side-chain modelfree order parameters for L2-Gal3 from ¹⁵N relaxation rates.

Residue	O^2	std	$ au_{e}$ (ps)	std	R_{ex} (s ⁻¹)	std	O_{s}^{2}	std	O_{f}^{2}	std	τ_{s} (ps)	std
129	0.57	0.01	75	5								
144	0.83	0.03			1.9	0.5						
162	0.88	0.01	39	10	1.3	0.2						
168	0.74	0.01	61	4	1.0	0.1						
181	0.93	0.01			0.7	0.1						
186	0.85	0.01			1.8	0.2						
224	0.89	0.01	42	10	1.6	0.1						

Residue	O^2	std	$ au_{e}$ (ps)	std	R_{ex} (s ⁻¹)	std	O_{s}^{2}	std	O_{f}^{2}	std	$ au_{s}$ (ps)	std
129	0.53	0.02					0.72	0.02	0.74	0.01	571	86
162	0.88	0.01			2.0	0.1						
168	0.75	0.01	74	4	0.3	0.1						
181	0.93	0.01			0.9	0.1						
186	0.83	0.01			1.9	0.1						
224	0.88	0.01			2.1	0.1						

Table S3h: Side-chain modelfree order parameters for L3-Gal3 from ¹⁵N relaxation rates.

Table S3i: Side-chain modelfree order parameters for apo-Gal3 from ²H relaxation rates.

std

Residue	Atom	O^2	std	$ au_{e}$ (ps)	std	τ_{c} (ns)
114	1	0.51	0.02	44	2	
114	2	0.48	0.01	30	1	
115	1	0.22	0.00	27	0	
115	2	0.44	0.01	50	1	
116	1	0.46	0.01	77	1	
120	1	0.63	0.03	33	2	
126	2	0.77	0.05	81	5	
126	1	0.78	0.03	70	3	
127	1	0.25	0.01	87	1	
130	1	0.48	0.01	6	0	
131	1	0.51	0.01	32	1	
132	1	0.38	0.01	14	1	
132	2	0.67	0.02	31	1	
134	1	0.82	0.02	27	2	
135	2	0.38	0.01	38	1	
137	2	0.55	0.01	66	1	

138	1	1.00	0.10	139	12		
138	2	0.90	0.03	27	2		
142	1	0.92	0.05	68	4		
145	1	0.77	0.02	16	2		
145	2	0.78	0.02	33	2		
146	1	0.83	0.01	43	1		
147	1	0.52	0.08	61	5	4.2	0.8
147	2	0.28	0.01	70	2		
170	1	0.41	0.02	72	2		
170	2	0.49	0.01	70	1		
171	2	0.85	0.02	27	2		
172	2	0.87	0.03	23	2		
172	1	0.82	0.05	61	4		
175	2	0.96	0.04	29	3		
189	2	0.79	0.05	32	3	5.9	0.4
200	1	0.78	0.02	14	1		
200	2	0.80	0.02	24	2		
202	2	0.69	0.06	44	5		
202	1	0.52	0.01	29	1		
203	2	0.62	0.02	38	2		
204	1	0.88	0.03	35	2		
204	2	0.91	0.03	19	2		
211	1	0.85	0.02	37	2		
212	1	0.97	0.03	39	2		
213	1	0.94	0.05	67	4		
216	1	0.91	0.02	36	2		
218	1	0.74	0.06	55	6		
225	1	0.76	0.02	51	2		
225	2	0.76	0.02	45	1		

228	2	0.62	0.03	56	3		
228	1	0.61	0.03	65	3		
231	1	0.71	0.02	24	1		
231	2	0.89	0.03	17	2		
234	1	0.71	0.04	21	3		
234	2	0.68	0.06	40	5		
236	2	0.82	0.02	23	2		
240	1	0.57	0.01	17	1		
242	1	0.42	0.04	32	4		
243	2	0.68	0.04	46	2	5.3	0.4
245	1	0.68	0.03	84	4		
248	2	0.62	0.02	56	2		
249	1	0.45	0.01	13	0		
250	1	0.38	0.01	17	0		
250	2	0.55	0.01	39	1		

 Table S3j: Side-chain modelfree order parameters for lac-Gal3 from ²H relaxation rates.

Residue	Atom	O^2	std	$ au_{e}$ (ps)	std	τ_{c} (ns)	std
113	2	0.02	0.00	9	0		
114	1	0.45	0.02	46	2		
114	2	0.42	0.01	35	1		
115	1	0.20	0.00	27	1		
115	2	0.40	0.01	51	1		
116	2	0.44	0.01	80	2		
120	1	0.63	0.03	38	3		
126	2	0.66	0.04	95	6		
126	1	0.66	0.03	74	4		
127	2	0.24	0.01	87	2		
130	1	0.44	0.01	5	1		

131	1	0.48	0.01	33	1		
132	1	0.34	0.01	15	1		
132	2	0.65	0.01	33	2		
134	1	0.77	0.08	27	4	7.7	0.9
135	2	0.35	0.01	40	1		
137	2	0.51	0.01	67	2		
138	1	0.75	0.10	179	19		
138	2	0.83	0.03	34	3		
142	1	0.87	0.05	74	6		
145	1	0.73	0.02	17	2		
145	2	0.72	0.02	32	2		
146	1	0.77	0.01	46	1		
147	1	0.27	0.01	75	2		
147	2	0.28	0.01	71	2		
156	1	0.87	0.06	97	9		
170	1	0.36	0.01	74	2		
170	2	0.45	0.01	78	2		
171	2	0.76	0.02	28	2		
172	1	0.80	0.02	24	3		
172	2	0.74	0.03	62	4		
175	2	0.90	0.04	28	4		
189	2	0.58	0.01	41	1		
200	1	0.71	0.02	15	2		
200	2	0.77	0.02	25	2		
202	1	0.54	0.05	54	7		
202	2	0.51	0.01	30	2		
203	2	0.65	0.11	36	6	6.9	1.5
204	1	0.83	0.03	38	3		
204	2	0.83	0.02	23	2		

211	1	0.82	0.02	39	2		
212	1	0.86	0.03	40	3		
213	1	0.82	0.04	70	5		
216	1	0.87	0.02	37	2		
218	1	0.69	0.05	54	7		
219	2	0.71	0.09	100	14		
225	1	0.70	0.02	53	3		
225	2	0.71	0.02	44	2		
228	2	0.63	0.03	54	4		
228	1	0.56	0.02	65	4		
231	1	0.87	0.07	13	5	5.9	0.5
231	2	0.84	0.03	21	2		
234	1	0.65	0.03	18	4		
234	2	0.63	0.06	45	7		
236	1	0.52	0.01	15	2		
236	2	0.78	0.02	21	2		
240	1	0.55	0.01	16	1		
242	2	0.65	0.03	33	4		
242	1	0.45	0.05	35	6		
243	2	0.45	0.01	57	1		
245	1	0.72	0.03	82	5		
248	2	0.55	0.02	58	2		
249	1	0.43	0.01	13	1		
250	1	0.35	0.00	18	1		
250	2	0.51	0.01	40	1		

Residue	Atom	O^2	std	$ au_e$ (ps)	std	$ au_{c}$ (ns)	std
113	2	0.01	0.00	8	0		
114	1	0.47	0.01	46	1		
114	2	0.42	0.01	32	1		
115	1	0.21	0.00	26	0		
115	2	0.40	0.01	52	1		
116	1	0.44	0.01	85	2		
120	1	0.57	0.02	36	2		
126	2	0.67	0.03	87	4		
126	1	0.69	0.02	79	2		
127	2	0.26	0.01	85	1		
130	1	0.50	0.02	4	1	6.8	0.3
131	1	0.49	0.01	31	1		
132	1	0.39	0.01	13	1		
132	2	0.65	0.02	33	1		
134	1	0.83	0.07	24	3	7.1	0.6
135	2	0.32	0.00	40	1		
137	2	0.49	0.01	64	1		
138	2	0.82	0.02	30	2		
142	1	0.83	0.03	66	3		
145	1	0.73	0.02	15	2		
145	2	0.70	0.02	33	2		
146	1	0.81	0.02	30	2		
147	1	0.29	0.01	72	2		
147	2	0.55	0.08	56	5	4.0	0.6
155	2	0.82	0.04	79	4		
156	1	0.82	0.05	90	6		
170	1	0.41	0.02	68	2		

171	2	0.77	0.02	22	2		
172	1	0.82	0.03	23	2		
172	2	0.72	0.03	58	3		
189	2	0.73	0.04	34	2	6.0	0.4
200	1	0.67	0.01	15	1		
200	2	0.77	0.01	24	1		
202	2	0.55	0.01	26	1		
203	2	0.56	0.02	41	2		
204	1	0.82	0.02	38	1		
204	2	0.82	0.02	20	2		
211	1	0.78	0.02	40	1		
212	1	0.88	0.02	41	2		
213	1	0.84	0.03	69	3		
216	1	0.88	0.02	36	1		
218	1	0.70	0.04	61	5		
219	2	0.75	0.06	77	7		
225	2	0.71	0.01	47	1		
228	2	0.62	0.02	55	3		
228	1	0.53	0.02	75	3		
231	1	0.63	0.01	26	1		
231	2	0.80	0.02	20	2		
234	1	0.68	0.03	12	3		
236	1	0.53	0.01	15	1		
236	2	0.80	0.02	24	1		
240	1	0.55	0.01	16	1		
240	2	0.63	0.01	43	1		
242	2	0.61	0.03	35	3		
242	1	0.69	0.07	56	7		
243	2	0.46	0.01	55	1		

245	1	0.73	0.03	97	4		
248	2	0.55	0.01	57	1		
249	1	0.43	0.00	11	0		
250	1	0.48	0.02	10	1	5.5	0.3
250	2	0.50	0.01	40	1		

 Table S31: Side-chain modelfree order parameters for L3-Gal3 from ²H relaxation rates.

Residue	Atom	O^2	std	$ au_{e}$ (ps)	std	$ au_{c}$ (ns)	std
113	2	0.01	0.00	9	0		
114	1	0.51	0.01	45	1		
114	2	0.47	0.01	30	1		
115	1	0.21	0.00	26	0		
115	2	0.44	0.01	49	1		
116	1	0.53	0.02	96	2		
120	1	0.56	0.02	36	2		
126	2	0.75	0.03	86	4		
126	1	0.63	0.02	73	3		
127	2	0.25	0.01	87	1		
130	1	0.47	0.00	4	0		
131	1	0.54	0.01	30	1		
132	1	0.43	0.03	9	2	6.4	0.5
132	2	0.73	0.02	27	2		
134	1	0.78	0.02	26	1		
135	2	0.35	0.01	40	1		
137	2	0.55	0.01	59	1		
138	2	0.87	0.03	28	2		
142	1	0.84	0.04	73	4		
145	1	0.75	0.02	17	2		
145	2	0.74	0.02	32	2		

146	1	0.91	0.02	40	2		
147	1	0.26	0.01	72	2		
147	2	0.27	0.01	70	2		
155	2	0.79	0.04	93	4		
156	1	0.98	0.06	78	5		
170	1	0.57	0.08	63	4	5.3	0.8
170	2	0.54	0.01	73	1		
171	2	0.82	0.02	27	2		
172	2	0.65	0.04	67	5		
189	2	0.64	0.01	36	1		
200	1	0.73	0.01	12	1		
200	2	0.77	0.02	24	1		
202	1	0.75	0.05	41	6		
202	2	0.58	0.01	27	1		
203	2	0.57	0.02	42	2		
204	1	0.89	0.02	32	2		
204	2	0.83	0.02	23	2		
211	1	0.83	0.02	33	2		
212	1	0.90	0.02	43	2		
213	1	0.84	0.03	72	3		
216	1	0.88	0.02	39	2		
218	1	0.83	0.06	46	5		
219	2	0.81	0.08	71	9		
228	2	0.62	0.03	60	3		
228	1	0.65	0.02	63	3		
231	1	0.65	0.01	21	1		
231	2	0.84	0.02	18	2		
234	1	0.72	0.03	23	3		
234	2	0.69	0.05	31	5		

236	1	0.64	0.05	8	3	6.5	
236	2	0.83	0.02	20	2		
240	1	0.54	0.01	17	1		
242	1	0.88	0.08	38	7		
245	1	0.98	0.03	73	3		
248	2	0.59	0.01	54	1		
249	1	0.45	0.00	11	0		
250	1	0.38	0.00	16	1		
250	2	0.56	0.01	38	1		

0.5

Figure S1a: Atom coordinate RMSD between each lactose-bound state and the apo state, plotted versus residue number. Secondary structure elements are indicated at the top of the graph. Residues within 5 Å of the ligand are highlighted by grey bars.

Figure S1b: Atom coordinate RMSD between each L2-bound state and the apo state, plotted versus residue number. Secondary structure elements are indicated at the top of the graph. Residues within 5 Å of the ligand are highlighted by grey bars.

Figure S1c: Atom coordinate RMSD between each L2-bound state and the apo state, plotted versus residue number. Secondary structure elements are indicated at the top of the graph. Residues within 5 Å of the ligand are highlighted by grey bars.

Figure S2a: ¹⁵N R₁ relaxation rates for all backbone amides at 500 (circles) and 600 MHz (squares). (black) apo Gal3, (red) lac-Gal3, (green) L2-Gal3, and (blue) L3-Gal3.

Figure S2b: ¹⁵N R₂ relaxation rates for all backbone amides at 500 (circles) and 600 MHz (squares). (black) apo Gal3, (red) lac-Gal3, (green) L2-Gal3, and (blue) L3-Gal3.

Figure S2c: {¹H}-¹⁵N NOE for all backbone amides at 500 (circles) and 600 MHz (squares). (black) apo Gal3, (red) lac-Gal3, (green) L2-Gal3, and (blue) L3-Gal3.

Figure S2d: ¹⁵N R₁ relaxation rates for all sidechain arginines and tryptophanes at 500 (circles) and 600 MHz (squares). (black) apo Gal3, (red) lac-Gal3, (green) L2-Gal3, and (blue) L3-Gal3.

Figure S2d: ¹⁵N R₂ relaxation rates for all sidechain arginines and tryptophanes at 500 (circles) and 600 MHz (squares). (black) apo Gal3, (red) lac-Gal3, (green) L2-Gal3, and (blue) L3-Gal3.

Figure S2e: {¹H}-¹⁵N NOE for all sidechain arginines and tryptophanes at 500 (circles) and 600 MHz (squares). (black) apo Gal3, (red) lac-Gal3, (green) L2-Gal3, and (blue) L3-Gal3.

Figure S2f: $R(D_z)$ relaxation rates for methyl groups at 600 MHz. (black) apo Gal3, (red) lac-Gal3, (green) L2-Gal3, and (blue) L3-Gal3.

Figure S2g: R(D₊) relaxation rates for methyl groups at 600 MHz. (black) apo Gal3, (red) lac-Gal3, (green) L2-Gal3, and (blue) L3-Gal3.

Figure S2h: R($3D_z$ - 2) relaxation rates for methyl groups at 600 MHz. (black) apo Gal3, (red) lac-

Figure S2i: $R(D_+D_z + D_zD_+)$ relaxation rates for methyl groups at 600 MHz. (black) apo Gal3, (red) lac-Gal3, (green) L2-Gal3, and (blue) L3-Gal3.

Figure S3: ¹⁵N R_{2dd} relaxation rates for backbone amides in apo-Gal3 at 500 MHz. (black) experimental rates, and (red) theoretical rates calculated from modelfree parameters.