Supporting Information

Feng et al. 10.1073/pnas.1009078107

SI Materials and Methods

Gastrin Response to Bombesin. After an overnight fast, mice were injected with bombesin ($50 \mu g/kg$ body weight; Bachem) as an i.p. bolus. Blood was sampled from the retro-orbital sinus before and 30–45 min after injection.

Gastric Acid Secretion. Acid output was measured by the pylorus ligation method (1). To determine the stimulated acid production, either gastrin-17 (1 mg/kg body weight; Sigma-Aldrich) or histamine dihydrochloride (10 mg/kg body weight; Sigma-Aldrich) was administrated (subcutaneous bolus, 1% wt) immediately after pylorus ligation, and gastric acid was collected at 90 min. Gastric juice was titrated to pH 7.0 with 0.01 N NaOH and expressed as nEq H⁺ secreted per hour.

Immunohistochemistry. Stomachs were immersed in 4% (wt/vol) paraformaldehyde in PBS overnight, impregnated with 30% glucose, frozen in Tissue-tech, and sectioned ($5 \mu m$). Gastrin was detected using a rabbit anti-human gastrin primary antibody (1:500 dilution overnight; Dako Cytomation) and Alexa 594 goat

anti-rabbit secondary antibody. Parietal cell H⁺/K⁺ ATPase was detected using a mouse monoclonal IgG against amino acid residues 1–13 or 15–28 located on the cytoplasmic side of the β subunit of H⁺/K⁺ ATPase (1:1,000 dilution; Affinity BioReagents) and detected using Alexa 594 goat anti-mouse IgG (1:500 dilutions; Invitrogen). For double immunoreactivity to calcium-sensing receptor (CaR) and gastrin, stomachs were similarly fixed and paraffin-embedded; 5-µm sections underwent antigen retrieval as described previously (2). The sections were blocked with 3% BSA in PBS blocking buffer for 30 min and then incubated with primary antibodies, including mouse monoclonal anti-human CaR directed at amino acids 214-235 of the extracellular domain of CaR (Affinity Bioreagents) at 1:500 dilution and rabbit polyclonal anti-human gastrin (Dako Cytomation) at 1:500 dilution for 48 h. The sections were then incubated with goat anti-mouse Alexa 488 (Molecular Probes) or goat anti-rabbit Alexa 594 (Molecular Probes) at a dilution of 1:1,000 for 1 h at room temperature. Specimens were analyzed using a Zeiss LSM510 confocal microscope.

- Shay H, Sun DC, Gruenstein M (1954) A quantitative method for measuring spontaneous gastric secretion in the rat. *Gastroenterology* 26:906–913.
- Goebel SU, et al. (2000) Expression of the calcium-sensing receptor in gastrinomas. J Clin Endocrinol Metab 85:4131–4137.

Fig. S1. The gastric bodies of CaR wild type (WT; CaR^{+/+}PTH^{-/-}), heterozygous (CaR^{+/-}PTH^{-/-}), and null (CaR^{-/-}PTH^{-/-}) littermates are histologically indistinguishable. *Upper* shows H&E, and *Lower* is H⁺/K⁺ ATPase immunohistochemical stains of representative paraffin-embedded and frozen sections, respectively, from the gastric body of mice with the indicated genotypes.

Fig. S2. The sweet T1R2/3 and amino acid T1R1/3 receptor heterodimers do not mediate peptone-stimulated gastrin release. Mice, with homozygous deletions of both T1R2 and T1R3 genes, and their WT littermates were fasted overnight and gavaged with a 1.5% body weight bolus of 8% peptone. Plasma gastrin levels were measured by RIA just before and 30 min after gavage. Results are expressed as the percent change (mean \pm SE) in secretion relative to basal secretion (n = 8 mice). ns, nonsignificant.

Fig. S3. Bombesin significantly stimulates gastrin secretion in CaR WT (CaR^{+/+} PTH^{-/-}) and null (CaR^{-/-} PTH^{-/-}) littermates. (*A*) Mice, fasted overnight, were s.c. injected the following morning with the amphibian homolog of gastrin-releasing peptide, bombesin (50 μ g/kg). Plasma gastrin was measured by RIA just before (open bars) and 30 min after injection (filled bar). (*B*) The same data are presented as percent increase over basal. **P* < 0.05, stimulated vs. basal (*n* = 10 mice). ns, nonsignificant.

Fig. S4. CaR-null (CaR^{-/-}PTH^{-/-}) mice have markedly reduced basal gastric acid secretion and elevated gastric secretion pH compared with WT (CaR^{+/+}PTH^{-/-}) littermates but an equivalent gastric acid secretory response to gastrin and histamine. (A) Basal gastric acid secretion (n = 6 mice). **P < 0.01 relative to CaR-null $(CaR^{-/-}PTH^{-/-})$ littermates. (B) pH of luminal gastric secretion in pylorus-ligated stomachs from mice with the indicated CaR genotypes (n = 6 mice). *P < 0.05 relative to both CaR^{+/+}PTH^{-/-} and CaR^{+/-}PTH^{-/-} littermates. (C) Gastrin and histamine-stimulated gastric acid secretion in WT (CaR^{+/+}PTH^{-/-}; open bars) vs. null (CaR^{-/-}PTH^{-/-}; closed bars) littermates (n = 6 mice). ns, nonsignificant.

Table S1.	High Ca ²⁺	^t diet does not significantly	y elevate	plasma Ca²⁺	regardless of	CaR genotype
			/			

	Genotype					
Diet	CaR ^{-/-} PTH ^{-/-}	CaR ^{+/-} PTH ^{-/-}	CaR ^{+/+} PTH ^{-/-}	CaR ^{+/+} PTH ^{+/+}		
Normal Ca ²⁺ diet (rat chow) Ca ²⁺ (total plasma, mmol/L)	1.66 ± 0.04	1.64 ± 0.05	1.72 ± 0.07	2.35 ± 0.02*		
High Ca ²⁺ diet Ca ²⁺ (total plasma, mmol/L)	1.76 ± 0.09	1.68 ± 0.05	1.71 ± 0.05	NA		
Fasting gastrin (pmol/L)	$\begin{array}{l} 43 \pm 5^{\dagger} \\ 44 \pm 5^{\dagger} \end{array}$	86 ± 8	63 ± 17	64 ± 9		
Meal-stimulated gastrin (pmol/L)		161 ± 24	175 ± 21	180 ± 85		

The CaR-null (CaR^{-/-}PTH^{-/-}) genotype but not total plasma Ca²⁺ determines the gastrin response to meal stimulation. Mice were maintained on a high Ca^{2+} and vitamin D diet for 2 mo. Meal stimulation consisted of ad libitum normal rat chow (n = 4 mice/group; data are presented as the mean \pm SE). *P < 0.01; CaR^{+/+}PTH^{+/+} vs. CaR^{+/+}PTH^{-/-}, CaR^{+/-}PTH^{-/-}, or CaR^{-/-}PTH^{-/-}. *P < 0.01; CaR^{-/-}PTH^{-/-} vs. CaR^{+/+}PTH^{+/+}, CaR^{+/+}PTH^{-/-}, or CaR^{+/-}PTH^{-/-}.