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1 Saddlepoint approximation of tail probabilities

References about saddlepoint approximations of the tail probabilities of random variables are abundant
[5, 3, 7, 4]. For completeness of our exposition we here present the derivation of the Lugannani-Rice
formula [5], relying extensively on expositions by Daniels [3] and Woods, Booth and Butler [7].

Let X be a continuous random variable supported on a subset of R. We will assume that its probability
density function (PDF), denoted by fX exists and that its moment generating function (MGF), defined by
ρX(t) =

∫∞
−∞ fX(x)etx dx converges for real t ∈ [a, b] where a < 0 < b. Recall that ρX(it) gives the

characteristic function of X , that is, the Fourier transform of fX and that fX can hence be recovered by the
Fourier inversion formula:

fX(x) =
1

2π

∫ ∞
−∞

e−itxρX(it) dt (1)

=
1

2π

∫ ∞
−∞

eKX(it)−itx dt (2)

=
1

2πi

∫ i∞

−i∞
eKX(t)−tx dt, (3)

where KX(t) = ln ρX(t) denotes the cumulant generating function (CGF) of X . The tail probability or
P-value for a value y (with respect to X), which we will denote by QX(y) can be expressed as

QX(y) = Prob(X ≥ y) =

∫ ∞
y

fX(x) dx (4)

=
1

2πi

∫ ∞
y

∫ i∞

−i∞
eKX(t)−tx dt dx (5)

=
1

2πi

∫ i∞

−i∞

∫ ∞
y

eKX(t)−tx dx dt (6)

=
1

2πi

∫ c+i∞

c−i∞
eKX(t)−ty dt

t
, (7)

where c ∈ (0, b) is a constant introduced to avoid the pole at t = 0.
Let S denote the sum of m independent, identically distributed random variables. We write S =∑m
j=1Xj , where fXj = fX for all j. Our goal is to derive an asymptotic approximation for the tail proba-

bility QS . It can be easily shown that ρS(t) = ρmX(t) and hence by (8)

QS(s) =
1

2πi

∫ c+i∞

c−i∞
emKX(t)−ts dt

t
. (8)
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To produce our approximation we note that the main contributions to the integral (8) occur in the neigh-
borhood of the pole at t = 0 and in the neighborhood of the saddle point t = λ̂ where the exponent
I(t) = mKX(t)− ts has a maximum, that is, where I ′(t) = 0. The saddlepoint condition is thus

s = mK ′X(λ̂), (9)

or alternatively ∫ ∞
−∞

(
x− s

m

)
fX(x)eλ̂x dx = 0. (10)

Let E(X) denote the expectation of X . Daniels [2] has shown that eq. (9) has a unique simple root under
most conditions. The value of λ̂ increases with s, with sgn(λ̂) = sgn(s−mE(X)).

When s� mE(X), the contribution of the pole at t = 0 to (8) is very small and to obtain an asymptotic
approximation to QS one can proceed by expanding I(t) as a Taylor’s series about t = λ̂ and integrating
the resulting integral term-by-term [3]. However, as s gets closer to the mean E(S) = mE(X), such
approximation performs poorly and in fact is unbounded at the mean. The essence of the method of [1] as
applied to QS by Lugannani and Rice [5] is to produce a transformation of the integral (8) that would take
into account the pole and hence to produce an approximation uniformly valid over the whole range of S.

Make a transformation from t to a new variable z by

KN (z)− ẑz = mKX(t)− ts, (11)

where N denotes the Gaussian random variable with PDF fN (x) = φ(x) = exp(−x2/2)/
√

2π and
QN (x) = Φ(x) =

∫∞
x φ(t) dt and s satisfies (9). The value ẑ is chosen so that the minimum of the

left side is equal to the minimum of the right side, which occurs when t = λ̂. Since KN (z) = 1
2z

2, eq. (11)
becomes

1

2
z2 − ẑz = mKX(t)− tmK ′X(λ̂). (12)

To find ẑ, we set z = ẑ and t = λ̂ in (12) to get

−1

2
ẑ2 = m(KX(λ̂)− λ̂K ′X(λ̂)) (13)

or, taking the sign for ẑ to be equal to the sign of λ̂,

ẑ = sgn(λ̂)

√
(2m(λ̂K ′X(λ̂)−KX(λ̂)) (14)

= sgn(λ̂)

√
(2(λ̂s−mKX(λ̂)). (15)

The transformation (12) maps the region [0, λ̂] in t-space into the region [0, ẑ] in z-space. The local
behavior of mKX(t) − tmK ′X(λ̂), which vanishes at t = 0 and has zero derivative at t = λ̂ is reproduced
by 1

2z
2 − ẑz with similar behavior at z = 0 and z = ẑ. Let u = z − ẑ. Then,

1

2
u2 = mKX(t)− ts−mKX(λ̂) + λ̂s. (16)

Expanding mKX(t)− ts about t = λ̂ we have

1

2
u2 =

1

2
mK ′′X(λ̂)v2 +

1

6
mK ′′′X(λ̂)v3 + . . . (17)

=
1

2
mK ′′X(λ̂)v2

(
1 + α3v + α4v

2 + . . .
)

(18)
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where v = t− λ̂ and αn =
2K

(n)
X (λ̂)

n!K′′
X(λ̂)

. Hence,

u =

√
mK ′′X(λ̂)v

(
1 + α3v + α4v

2 + . . .
)1/2

. (19)

It follows that du/dv and dv/du are nonzero for all v ∈ [0, λ̂] and u ∈ [0, ẑ], respectively. Since KX is
analytic in the region of interest, u(v) and v(u) are analytic over the same intervals. Obviously, the same
conclusion follows for z as a function of t and t as a function of z. By the inverse function theorem, the
transformation t↔ z can be extended to a bijection between complex neighborhoods of [0, λ̂] and [0, ẑ].

The integral (8) now transforms (using Cauchy’s theorem) into

QS(s) =
1

2πi

∫ d+i∞

d−i∞
eKN (z)−zẑ

(
1

t

dt

dz

)
dz, (20)

where d > 0. For small t, we can write

z ≈ z|t=0 + t
dz

dt

∣∣∣
t=0

= t
dz

dt

∣∣∣
t=0

. (21)

When λ̂ 6= 0 and hence ẑ 6= 0, differentiating (12) we obtain

dz

dt
=
mK ′X(t)−mK ′X(λ̂)

z − ẑ
, (22)

while when λ̂ = 0, (19) implies dz/dt = du/dv ≈
√
mK ′′X(0) when t is small. Thus,

dz

dt

∣∣∣
t=0

=

{
1
ẑ (s−mE(X)) if λ̂ 6= 0,√
mK ′′X(0) if λ̂ = 0

(23)

and therefore, for small t, z ≈ Ct where C is a constant. Let

U(z) =

(
1

t

dt

dz
− 1

z

)
. (24)

By expanding mKX(t) − ts about t = 0, it can be shown that, limz→0 U(z) < ∞ and, since dt/dz is
analytic, U(z) is analytic in the neighborhood of z = 0 that includes ẑ. Therefore, we can rewrite the
integral (20) as

QS(s) =
1

2πi

∫ d+i∞

d−i∞
eKN (z)−zẑ dz

z
(25)

+
1

2πi

∫ d+i∞

d−i∞
eKN (z)−zẑ U(z) dz. (26)

The singularity has now been isolated into (25), which, by comparing with (8), we recognize to equal Φ(ẑ).
On the other hand, U(z) can be expanded as a Taylor’s series around the saddlepoint z = ẑ and integrated
to obtain an asymptotic series for (26). For the first-order approximation, that is, the leading behavior, we
only take the constant term at ẑ. Let

ŷ = t
dz

dt

∣∣∣
t=λ̂

= λ̂
du

dv

∣∣∣
v=0

= λ̂

√
mK ′′X(λ̂). (27)

Then, U(ẑ) = 1/ŷ − 1/ẑ and the integral (26) becomes

U(ẑ)
1

2πi

∫ ẑ+i∞

ẑ−i∞
eKN (z)−zẑ dz =

(
1

ŷ
− 1

ẑ

)
φ(ẑ). (28)

Thus, we have obtained the Lugananni-Rice formula:

Prob(S ≥ s) = Φ(ẑ) +

(
1

ŷ
− 1

ẑ

)
φ(ẑ), (29)

with ẑ(s) given by (9) and (15).
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2 SaddleSum implementation

As mentioned in the main text, our SaddleSum algorithm approximates term P-values by first solving eq. (9)
for λ̂ using Newton’s method and then using the Lugananni-Rice formula (29). The key step is estimation
of λ̂. Since the moment-generating function ρ of the underlying space W is not known, we estimate it (and
its derivatives) using w. Given sufficiently many weights (n >> 1), the results can be quite accurate (see
below). One limitation of this approach is that our approximation can only accept scores not greater than
m times maximal weight (λ̂ becomes infinite at this bound). Thus, the approximation can be inaccurate for
very large scores, causing a larger than usual relative error in P-values (Fig. S6). However, occurence of
such extreme scores is rarely seen in practice.

Theoretically, Lugananni-Rice formula is valid over the whole range of the distribution, for small and
large scores and both near the mean and in the tails [5]. However, the form (29) becomes numerically unsta-
ble close to the mean of the distribution (i.e. when λ̂ is close to 0). Alternative asymptotic approximations
exist that are numerically stable near the mean [3]. For SaddleSum, we were mainly interested in the tail
probabilities and we therefore decided not to attempt to approximate the P-values of the scores smaller than
one standard deviation from the mean (SaddleSum returns P-value of 1 for all such scores). Terms with such
scores are never significant in the context of enrichment analysis.

When processing a terms database, we retain previously computed values of λ̂ with associated scores
and parameters for Lugananni-Rice formula in a sorted array. Since λ̂ and the P-value are monotonic with
respect to the score, using binary search we can certify for many terms that their P-value is larger than
a given cutoff and hence eliminate them without running Newton’s method. Furthermore, binary search
provides a bracket for λ̂ and hence Newton’s method usually converges in very few iteration. We use the
bracketed version of Newton’s method recommended in the Numerical Recipes book [6] (Section 9.4). This
combines the classical Newton’s method with bisection and has guaranteed global convergence.

We show evaluations of SaddleSum performance against some theoretically well-characterized distribu-
tions in Fig. S5 and S6. It can be seen that the relative error between the SaddleSum approximation and the
theoretical P-value is generally very small except for extremely large scores, when P-values are very small.
In the context of the enrichment analysis, this discrepancy is not important because such terms will be eval-
uated as highly significant even if the P-value is off by few orders of magnitude. To further illustrate the
quality of our approximation, we have computed the Kullback-Leibler (KL) divergences (relative entropies)
between the tail distribution implied by SaddleSum and the theoretical distribution. Prior to computation
of KL divergence, both distributions were normalized over the region where SaddleSum is valid (i.e. the
tail with scores larger than one standard deviation over the mean). All KL divergence values are extremely
small and are comparable between distributions.

Fig. S7 shows relative errors of SaddleSum compared to the empirical distributions using the same
weights and term sizes as for Fig. S1 and S2. In this case however, in agreement with the null model
of SaddleSum, we sampled weights with replacement. Our results indicate that, except for small m with
weights coming from network flow simulations, the relative error of the SaddleSum is similar to that obtained
in comparison with well-characterized distributions.
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Figure S1: Accuracy of reported P-values from simulations using weights from 100 results of protein network infor-
mation flow simulations. Each graph shows empirical P-values associated with reported P-value cutoffs for investi-
gated enrichment methods, obtained from queries of decoy term datasets with fixed size terms. The curves for GAGE
are omitted from the plots for term sizes 5, 15 and 25 because all reported P-values were greater than 10−2. The
graph for m = 500 misses the results for mHG because we could not finish the simulation runs within any reasonable
amount of time.
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Figure S2: Accuracy of reported P-values from simulations using weights from 136 microarrays. Each graph
shows empirical P-values associated with reported P-value cutoffs for investigated enrichment methods, obtained
from queries of decoy term datasets with fixed size terms. For SaddleSum, T-profiler and GAGE, full lines indicate
the results where negative weights were set to 0, while dashed lines show the results using all weights.
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Figure S3: Additional examples of sets of top-five GO terms retrieved by evaluated methods (refer to Fig. 2B for full
explanation.) The upper two panels show the enrichment results using the weights from outputs of ITM Probe emitting
mode with human proteins APOA1 (apolipoprotein A-I, a major protein component of high density lipoprotein in
plasma) and PPP2R2A (phosphatase 2 regulatory subunit B) as sources. The lower two panels show the results using
weights from microarrays investigating mast cell activation (GSM73587) and malaria response (GSM63320).
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Figure S4: Distributions of weights for examples from Fig. 2 and Fig. S3. Network examples are shown on the left,
microarray on the right.
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Figure S5: P-values (left) and relative errors (right) for SaddleSum approximations of sums of i.i.d. continuous
random variables that are characterized theoretically. In each case 10000 weights were randomly sampled from a
distribution and used as input to SaddleSum. The P-values from SaddleSum were compared with P-values from
theoretical distributions of the sum of m numbers. Kullback-Leibler divergences (DKL) between the approximated
tails of distributions are shown in parentheses for each m. Top: Gaussian (standard normal) weights – sum follows
normal distribution. Middle: squared Gaussian weights – sum follows Chi-squared distribution. Bottom: weights
from exponential distribution – sum follows Erlang distribution.



11

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Range

10-300

10-276

10-252

10-228

10-204

10-180

10-156

10-132

10-108

10-84

10-60

10-36

10-12

P
-v

a
lu

e

Bernoulli weights (p=0.3)

m=50

m=100

m=500

m=1000

m=10000

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Range

�20

0

20

40

60

80

100

120

140

160

R
e
la

ti
v
e
 E

rr
o
r

Bernoulli weights (p=0.3)

m=50 (DKL=1.76e-03)

m=100 (DKL=9.57e-04)

m=500 (DKL=2.23e-04)

m=1000 (DKL=1.12e-04)

m=10000 (DKL=1.18e-05)

0.0 0.2 0.4 0.6 0.8 1.0
Range

10-202

10-187

10-172

10-157

10-142

10-127

10-112

10-97

10-82

10-67

10-52

10-37

10-22

10-7

P
-v

a
lu

e

Bernoulli weights (p=0.01)

m=50

m=100

m=500

m=1000

m=10000

0.0 0.2 0.4 0.6 0.8 1.0
Range

0

100

200

300

400

500

600

700

800

900

R
e
la

ti
v
e
 E

rr
o
r

Bernouilli weights (p=0.01)

m=50 (DKL=2.52e-03)

m=100 (DKL=2.29e-03)

m=500 (DKL=1.64e-03)

m=1000 (DKL=1.33e-03)

m=10000 (DKL=2.11e-04)

0.0 0.2 0.4 0.6 0.8 1.0
Range

10-294

10-271

10-248

10-225

10-202

10-179

10-156

10-133

10-110

10-87

10-64

10-41

10-18

P
-v

a
lu

e

Bernoulli weights (p=0.001)

m=50

m=100

m=500

m=1000

m=10000

0.0 0.2 0.4 0.6 0.8 1.0
Range

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

R
e
la

ti
v
e
 E

rr
o
r

Bernouilli weights (p=0.001)

m=50 (DKL=6.56e-04)

m=100 (DKL=1.16e-03)

m=500 (DKL=1.76e-03)

m=1000 (DKL=3.13e-03)

m=10000 (DKL=1.58e-03)

Figure S6: P-values (left) and relative errors (right) for SaddleSum approximations of sums of i.i.d. Bernoulli ({0, 1})
random variables with different parameter p. Such sums follow binomial distribution. In each case 10000 weights
were randomly sampled from a distribution and used as input to SaddleSum. The P-values from SaddleSum were
compared with P-values from the binomial distribution. Kullback-Leibler divergences between the approximated tails
of distributions are shown in parenthesis for each m. Top: p = 0.3. Middle: p = 0.01. Bottom: p = 0.001. The
dramatic increase in relative error is caused by λ̂ instability at extreme scores, see Section 2 of this material.
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Figure S7: Relative error of P-values reported by SaddleSum from simulations using weights from 100 results of
protein network information flow simulations (left) and from 136 microarrays (right). These are the same query sets
as evaluated in Fig. S1 and Fig. S2 but in this case the weights are drawn with replacement. Each sample size m is
shown in different color. Full lines indicate the results where negative weights were set to 0, while dashed lines show
the results using all weights.


