Supplementary Material for
“Local CQR Smoothing: An Efficient and Safe

Alternative to Local Polynomial Regression”

Bo KAI * RuNzge L1 f Hur Zou *

In this supplement note, we derive the asymptotic bias, variance and normality of local
CQR estimator when the variance of error is infinite in Section 1. We further study the
asymptotic behavior of the local CQR estimate at the boundary. Some simulation results

are presented in Section 3.

1 Proof of infinite variance case

Suppose that
Y =m(T) +e,

where € has a density f with mean 0 and variance infinity.
Suppose that ¢, is an interior point of the support of fr(-). Note that the local p-

polynomial CQR estimator is constructed by minimizing

> lzpm{yi—ak—zbj(ti—to)j}K(ti;to)] ) (1.1)
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and the local p-polynomial CQR estimators of m(ty) and m(") (t,) are given by
1< .
m(t) == ar, and m(to) =rlh,, r=1,--p. (1.2)
1=

The following notation is needed to present the asymptotic properties of the local p-
polynomial CQR estimator. Let Sj; be a ¢ x ¢ diagonal matrix with diagonal elements
flex), k=1,---,q, S12 be a ¢ x p matrix with (k, j)-element being f(cx)p;, k=1,---,qand
j=1,-++,p, Sa1 = 57, and Say be a px p matrix with (j, j')-element being > 7 _, f(ck)pjrir,
for 7' =1,--- ,p. Similarly, let ¥1; be a ¢ x ¢ matrix with (k, k’)-element vorp, k, k' =
1,--+,q¢, X12 be a ¢ x p matrix with (k, j)-element being v; >, 7o, k=1,--+ ,qand j =
L.+ ,p, ¥g1 = Xy, and gy be a p x p matrix with (4, j)-element being (31 /) Torr)Vjyj7,
for j,5'=1,---,p. Define

Y1 X
S — Sll 512 : and X — 11 12 .
521 822 E21 E22

Partition S~! into four submatrices as follows

-1
g1 St Stz _ (S (S Hie
Sar S2 (571)21 (571)22

where and hereafter, we use (-);; to denote the left-top ¢ x ¢ submatrix and use (-)2 to

denote the right-bottom p x p submatrix.
Furthermore, let u, = vVnh{a, — m(ty) — ek}, v; = WIvVnh{jlb; — mY(ty)} /4! Let z; =

p J
m v; 7] , .
ti—to)/h, K; = K(x;) and A;;, = + 2L Write 15, = m(t;) — S o m9 (to) (t; —
( 0)/ ( ) K m ; \/n— P ( ) ZJ—O ( 0)(
to)’/j!. Define ;) to be I(e; < ¢p — 1ip) — Tp. let Wy = (wiy, -, wiy,wsy,--- ,ws,)" with

wi, = \/+Th >y Ky, and wi; = \/Lnih S > szfnl*k The asymptotic properties of the

local p-polynomial CQR estimator are based on the following theorem.

Theorem 1.1. Denote 6,, = (T, ,Ugy U1y, 0p) be the minimizer of (1.1). Assume that
frto) >0, fr(-) and mP*2(.) are continuous in a neighborhood of ty, and f(-) is positive

in the neighborhoods of {m.}. If h — 0 and nh — oo, then we have

~

1 -1 * i) 1 —1y -1
Qn—l——fT(tO)S E(WXT) MV N(0, —fT(to)S ST.
Proof. To apply the identity
y
pla =) =prle) = sl <0 =7+ [ - T (13)
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we write

) — ay — Zb t; — to)’

i —ak—Zb (t; —to)! = e +mit

7j=1

(6 — k) +Tip—

(6 —ck)+rip—Dig,

Minimizing (1.1) is equivalent to minimizing

L (0) =

Z{KZ[% o)+ Tip = Air) = pr (e —ck)mp)}}

=1

Using the identity (1.3) and with some straightforward calculations, it follows that

Ly, (‘9) =

where

Bn,k<(9)

=1 k=1
n q A’Lk
+ K; (e <cp—rip+2)—I(e <cp—rip)dz
i=1 k=170
q n Kﬂ]*k p q n sz],r]*k
u 2+ ) v L+ B k(0),
; k<z=1 Vnh ]Z:; ’ ;zzl vVnh ; «0)

Aj
_Z{Ki/ [I(ei§ck—ri,p+z)—I(eigck—r@p)]dz}.
0

=1

Let S, 11 be a ¢ x ¢ diagonal matrix with diagonal elements f(cy)> ., K;/nh, k =

1,--+,q; Sni2 be a ¢ x p matrix with (k, j)-element f(cx) > i, Kl /nh, j =1
be a p x p matrix with (j,j’) element > }_,

We write L, (6) as

- q n Ko, P | a n szzm*k
Ln(e) = ;Uk (; m)—i—ZU] (Z m )

Yy Sn,22
fler) 2o Kﬂ?gﬂl/nh. Denote

Sn,ll
T
Sn,12

Sn,12
Sn,22

Sp =




where R, ;(0) = B, x(0) — E[B,x(0)|T].
By similar arguments, we can show that > ;_, Ee[B,x(#)|T] = 675,60 + 0,(1) and
R, 1(0) = 0,(1). Together with 3" Ka!/nh £, fr(to)p;, and

Sy S
S s frte)S = fr(to) [T 7T

521 822

we have

L (0) = @e?’se + (W70 + 0,(1).

Since the convex function L, () — (W;)70 converges in probability to the convex function

fr(to)

TQTS 0, it follows from the convexity lemma that for any compact set O, the quadratic
approximation to L, (6) holds uniformly for € in any compact set, which leads to

1

o = )

STIW 4 0,(1).

. 1 O
Denote n;x = I(e; < cx)—mr and W,, = (wyy, -+ , Wig, Way, -+ - , wap)T with wyy = \/ﬁ ; Kini

I -
and wy; = \/__h E E K;x]n; k. By the Cramer-Wald theorem, it is easy to see that the
n ,
k=1 i=1

CLT for W,|T holds

W,|T — E[W,|T] .
£, MVN(0,1 . 14
VCLT' [Wn ’T] ( (p+q)x (p‘HI)) ( )

Note that
Cov(m,k,m,kf) = Tkk', COU(Th',k, Uj,k') =0, if i#}J.

and 3" | K2x) /nh L, fr(to)v;, Therefore, Var[W,|T] £, fr(to)X. Combined with (1.4),

)

we have

W,|T -5 MVN(0, fr(to)S).

Moreover, we have Var(wj, — wy|T) = =31, K2Var(ng, — nix) < 3 K2 F(en +
I7ipl) = Fcx)} = 0,(1) and also Var(w}; — wy|T) = 230 K2alVar(3h_y n;y — nix) <
iy K2l max{ F(cx + [rip]) — Flex)} = 0,(1), thus

Var(W; — W,|T) = o,(1).
So by Slutsky’s theorem, conditioning on T, we have
Wi T — B(W;|T) == MVN(0, fr(t,)%).
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Therefore,
1

1
fr(to) fr(to)
This completes the proof. Il

0, + STLE(W?|T) - MV N(0, SIS, (1.5)

The asymptotic properties of local CQR estimators m(t) and m/(t) are two special cases

of the general result.

Theorem 1.2. Under the regqularity conditions in Theorem 1.1, the asymptotic conditional

bias and variance of the local linear CQR estimator m(ty) are given by

Bias(i(ty)|T) = %m”(zﬁo)th + o,(h?), (1.6)
Var((t)|T) %ﬁ]ﬁ(q) + Op(n_1h>' (1.7)

Furthermore, conditioning on T, we have

Vrh{i(te) — mity) — —m"(to)ih?} —=> N (0

. 7o )Rl(q)) . (1.8)

' fr(to)
Proof of Theorem 1.2. The asymptotic normality follows Theorem 1.1 with p = 1. Let us cal-
culate the conditional bias and variance, respectively. Denote by e, the vector that contains
g I’s. When p = 1, S is a diagonal matrix with diagonal elements f(c1), -, f(cg), pa D 1y f(ck).

q

So the asymptotic conditional bias of m(ty) = _ay is

1< 1 1
Bias(m(to)|T) = _ch_'—mmegxl(s_l>llE<an|T)

B S e e )

k 1

- T ZKnp{Hop( )}

By using the fact that

R fr(to)m” (¢
S Kargg = O, 46,1,
=1

we obtain

Bias(i(ty)|T) = %m”(to)ughQ + o, (h?). (1.9)



Furthermore, the conditional variance of m(t) is

1 1 1

nth( ) 2 q><1(

1 IZ0) 1
= Ele(Q) + Op(%),

which completes the proof. O

1
S~ IZS )11€q><1+0p(—

Var(m(ty)|T) = —)

(1.10)

Theorem 1.3. Under the reqularity conditions in Theorem 1.1, the asymptotic conditional

bias and variance of m'(to) from local quadratic CQR is given by

Bias(ii (to)| T) = ém’”(to)%hz +0,(h), (1.11)
2
1 1
Var(i! (t)|T) = W%Rm) +0p( ). (1.12)

Furthermore, conditioning on T, we have the following asymptotic normal distribution
A 1 22 L V2
nh? (m/ to —m’ to ”/ to h ) — N <O, —RQ q ) . 1.13
Vil (1 (1) = (1) = " (10) ) (1.13)
Proof of Theorem 1.3. We apply Theorem 1.1 to get the asymptotic normality. Denote by
e, the p-vector (0,0,---,1,0,---,0)T with 1 on the r** position. When p = 2, S;» and S,

have the following forms

i 0
Sip = <0qx1 M2 (f(ck)> ) , Sy = H2 Zk:l f(ck)
" 0 pad gy flex)

Thus,
! 0
——r——
(5_1)22 - (522 - 52151_11512)_1 — 2 Zk—ol f(ck) 1 7
(pa — M%) 2221 f(ck)
01><q

(S7M21 = —(S7 )22 ST = 142

Y

<(M4 — 13) Z:1 f(Ck)>1xq

since Sy; = diag (f(c1), -, f(cq)). By Theorem 1.1

1

 hfr(te) vnh

1 1 1 .
= TRl S flen) van )

6

Bias(i' (to)|T) = ei {(STHaE(WS,|T) + (™1 E(W;,|T)}




Note that

E(wy;|T) = ZKJI Z{F —rip) = Fler)}

Therefore, Bias(r/(ty)|T) is equal to ZZ | Kiziri {1+ 0,(1)}. Still using the fact

nh2

that with p = 2

nhZK:mp —(t°)6 (t°>Z4h3{1+ (1)},

we obtain
1
Bias(i/(t,)|T) = ém'"(to)ﬂh? + o, (h?). (1.14)
H2
Furthermore, the conditional variance of m(ty) is

1 1

1
At _ 1
Var(m/(tp)|T) = 3 A ) el (87185 ) gges —i—op(%),
. 1 125) 1
T k3l fT(to)RQ(Q) +Op(nh3)' (1.15)
which completes the proof. n

2 Asymptotic boundary behavior of local CQR esti-

mators
Back to the general nonparametric regression model
Y =m(T) + o(T)e, (2.1)

Now we study the behavior of the estimator at the boundary of the support of T. Without
loss of generality, assume fr(-) has support on [0,1]. We consider the left boundary point

t = ch, where c is a positive constant. let

,uj(c):/_ooqu(u)du Vj(c):/_ooquz(u)du, j=0,1,2,...

Cc Cc

We first establish asymptotic theory of the local p-polynomial CQR estimators at t = ch,
and then discuss the special case of p =1 and 2.

The following notation is needed to present the asymptotic properties of the local p-
polynomial CQR estimator. Let Sj;(c) be a ¢ x ¢ diagonal matrix with diagonal elements
flep), k =1, ,q, Si2(c) be a ¢ x p matrix with (k, j)-element being f(cx)p;(c), k =
L,---,gand j =1,--- ,p, Sai(c) = STy(c), and Soz(c) be a p X p matrix with (4,5 ’)-element



being > 1 f(er)pjrj(c), for j, 7" =1,---  p. Similarly, Let ¥4;(c) be a ¢ X ¢ matrix with
(k,K')-element vo(c)merr, k, k' =1, q, Z12(c) be a ¢ X p matrix with (k, j)-element being
vi(e) > Tk k=1,-++ ;gand j =1, -+ ,p, Ba(c) = T¥,(c), and Las(c) be a p X p matrix
with (j, j)-element being (377 ) Tiar) Vi (c), for j,j" =1,--- ,p. Define

S(e) = Su(e) Siac) Cand B(0) = Z1i(e) () '
521(6) SQQ(C) ZJ21(0) ZJ22(0)

Partition S~!(c) into four submatrices as follows

sy - (@) Sel@) " _ (7@ (5D
521(0) SQQ(C) ’

where and hereafter, we use (-);; to denote the left-top ¢ x ¢ submatrix and use (+)g to
denote the right-bottom p x p submatrix.
Furthermore, let uy = vVnh{a, — m(t) — o(t)er}, v; = hvVnh{jlb; — mU(t)}/j!. Let
J :
7= (ti—t)/h, K = K(z;) and A, = \;% + ; 7\)/]5_; Write di, = cxlo(t:) — o(t)] + 74
with 7, = m(t;) = Y20_o mI(t)(t; — )7 /j1. Define . to be I(e; < ¢, — %) — 73 let W* =
(Wi, Wiy, why, - - 7w;p)T with wi, = \/+Th Yoy Kinjp and ws; = \/%Th >, legnz*k

Theorem 2.1. Denote 0, = (g, -+ ,Ug, V1, -+ ,0p) be the minimizer of (1.1). Assume that
fr(04) > 0, fr(:),m®*V(.) and 02(-) are right continuous at the point 0, and f(-) is positive
in the neighborhoods of {my}. If h — 0 and nh — oo, then we have

A o(0+) o?(0+)
Ot 00 Fr(0+)

The proof is quite similar to the one for interior points, so we omit it here. Now let’s

ST (e)E(W?|T) = MV N(0

ST )B(0)5 7 (e))-

look at the asymptotic behavior of local CQR estimators m(t) and 7/ (t) at the boundary.

Theorem 2.2. Under the regularity conditions in Theorem 2.1, if the error distribution
1s symmetric, then the asymptotic conditional bias and variance of the local linear CQR

estimator m(t) are given by

Bias(i(t)|T) = %a(c)m"(o—l—)hz + 0,(h2), (2.2)
Var(®/T) = 207 Ry (g) 40,0 (23)

() —mlenle) |y () — 2n(pa(n(e) + pn(e)

T ) = @ale) — i) - Tnle)ma(e) — ()}




Furthermore, conditioning on T, we have

Vnh{m(t) — m(t) — %a(c)m”(0+)h2} LN <o, %R@) . (2.4)

Proof of Theorem 2.2. The asymptotic normality follows Theorem 2.1 with p = 1. Let us
calculate the conditional bias and variance, respectively. Denote by e,»1 the vector that

contains ¢ 1’s. The asymptotic conditional bias of m(t) = 1 1 agis

Bias(m(t)|T) = ;ck—q.\l/%;(fo?ﬁ ax1 0)STLE(W;|T)

Note that the error is symmetric, thus > {_, ¢x = 0, and similarly we can show that

Bl T) = 1) MO o o) k=1
and .
B(whIT) = (3 Ao G o1 + 1),
Therefore, )
Bias(in(O[T) = —— (L, 05 E(WT)
Luz(e) = m(s(€) g o 2
= 2 palepmte) o)™ o)
= %a(c)m"(0+)h2 + 0, (h?).

Furthermore, the conditional variance of m(ty) is

Var(i()|T) = ;hjggg LSS e + oy )
1 02(00) k(Ow(e) — () + pm(e) s
- nth<o ) Tio(ima(c) — 1B(0)1 B0+ o)
190, 1
which completes the proof. Il

From Theorem 2.2, it can be seen that the leading team of the asymptotic bias of the local
linear CQR estimator is the same as that of the local linear LS estimator. This relationship
is the same as that when x is an interior point. Furthermore, the relationship between the
asymptotic variances of the local CQR and that of LS estimators at boundary is also the same
as that for interior points, i.e., they are different by the factor Ry. Thus, Theorem 2.2 clearly
indicates that the local CQR estimator shares the property of the automatical boundary

correction, a nice property of local linear least squares estimator.
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Theorem 2.3. Under the reqularity conditions in Theorem 2.1, if the error distribution is
symmetric, then the asymptotic conditional bias and variance of the local quadratic CQR

estimator m'(t) are given by

Bias(m/(t)|T) = %a*(c)m”(0+)h2 + 0,(h?), (2.6)
Var(at(0/T) = -5 k) + a2, 27)

where a*(c) and b*(c) are constants that depend only on ¢ and the kernel K.

Furthermore, conditioning on T, we have

b*(c)o?(0+)

VA0 () — g (@00 ¥ (0.7 FEE

Rz(q)) : (2.8)

Proof of Theorem 2.3. We apply Theorem 2.1 to get the asymptotic normality. Denote by
e, the p-vector (0,0,---,1,0,---,0)7 with 1 on the 7** position. When p = 2, we have

E(wy|T) = f(ck)fT(O(;(?:)(OHm(c)hi”{l +op()} k=1, g,
and ,
By ) = (3 1 G s @ 1 0,(0) = 1.2
Therefore,
Bias(it(0|T) = —- 2O L or g1y, pws ) + (57 E(W5,|T))

hfr(0+) vk !

1
= ga"‘(c)m’”(O—i—)h2 + 0,(h?).

Furthermore, the conditional variance of m/(t) is

A 1 U2<O+) T/o—1vo—1 1
Var(m/(t)|T) %fT(O+)61 (ST XS )aser + op(%),
1 b*(c)o?(0+) 1
= R —). 2.9
nhg fT(O+) 2(Q) +Op<nh3) ( )
This completes the proof. O

From Theorem 2.3, it can be seen that the asymptotic bias of local CQR estimator at
boundary is of order A%, and its asymptotic variance is of order 1/nh?. Thus, the orders of
the asymptotic bias and variance are the same as those of local quadratic regression. Thus,

the local quadratic CQR estimator possesses the property of automatic boundary correction.
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3 Simulation studies

In this section, we provide two simulation examples. The first example is to demonstrate
the performance of local CQR estimate when the error follows a Cauchy distribution. The
second one is to compare the boundary behavior of the local CQR estimator and the local

least squares estimator.

Example 1 (Infinite error variance). We generated 400 data set, each consisting of n = 200

observations, from
Y = sin(27) + 2exp(—16T2) + 0.5¢, (3.1)

where T follows N (0, 1). In our simulation, the error € follows the Cauchy distribution. Thus,
the error variance is infinite. For the local polynomial CQR. estimator, we consider ¢ = 5, 9
and 19, and estimate m(-) and m/(-) over [—1.5,1.5]. The mean and standard deviation of
RASE over 400 simulations are summarized in Table 1. To see how the proposed estimate
behaves at a typical point, Table 1 also depicts the biases and standard deviations of m(t)
and 7/(t) at t = 0.75. In Table 1, CQRs5, CQRy and CQRg correspond to the local CQR
estimate with ¢ = 5, 9 and 19, respectively. From the Table 1, we can see that the RASE
of local CQR estimate is much less than that of local LS estimate. This is because the local
LS estimator is not a consistent estimator for the regression function, while the local CQR
estimator is. This is also evidenced from the standard deviation of the local estimator at
t =0.75.

Table 1: Simulation Results for Example 1

m m
RASE t =0.75 RASE t=0.75
Mean(SD) Bias Std Mean(SD) Bias Std
Cauchy

LS — -0.0881  7.8740 — 5.1324  87.7494
CQRs5 10228.96(125981.63) -0.0241  0.2965 14386.19(160902.10)  0.0716  1.5997
CQRy 4798.64(51545.41)  -0.0713  0.9690 14243.84 15891353y 0.0686  1.6133
CQR19 1120.90(12889.99)  -0.0929  1.2995 14224.16(150441.06)  0.0727  1.6064

Example 2. We generated 400 data set, each consisting of n = 200 observations, from

Y = sin(27) + 2exp(—16T2) + 0.5¢, (3.2)
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where T follows N(0,1). In our simulation, the error € follows 0.95N (0, 1) + 0.05N (0, 10?).
Figure 1 depicts the 400 estimated coefficient functions of CQRg for all 400 simulations.
Results for CQR5 and CQR4g is similar, so we opt not to present here. Figure 2 depicts the
plots of estimate of the regression function and its derivative based on a typical data set.
From Figures 1 and 2, it can be clearly seen that the local CQR estimator improve over the

local least squares estimator for both interior and boundary points.

(a) m(x) with 400 ms(z) (b) m(x) with 400 e ro(z)

Figure 1: (a) and (c) are plots of 400 local least squares estimators of m(-) and m/(-) over
400 simulation, respectively. (b) and (d) are plots of 400 local CQR estimators of m(-) and

m’(+), respectively.
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(b) Mmcqro()

(c) iy s(x) (d) g rel(®)

Figure 2: (a) and (c) are plots of a typical local least squares estimators of m(-) and m/(-),
respectively. (b) and (d) are plots of a typical local CQR estimators of m(-) and m/(-),

respectively.
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