
Supplementary Material for

“Local CQR Smoothing: An Efficient and Safe

Alternative to Local Polynomial Regression”

Bo Kai ∗ Runze Li † Hui Zou ‡

In this supplement note, we derive the asymptotic bias, variance and normality of local

CQR estimator when the variance of error is infinite in Section 1. We further study the

asymptotic behavior of the local CQR estimate at the boundary. Some simulation results

are presented in Section 3.

1 Proof of infinite variance case

Suppose that

Y = m(T ) + ε,

where ε has a density f with mean 0 and variance infinity.

Suppose that t0 is an interior point of the support of fT (·). Note that the local p-

polynomial CQR estimator is constructed by minimizing

q∑

k=1

[
n∑

i=1

ρτk

{
yi − ak −

p∑
j=1

bj(ti − t0)
j
}

K(
ti − t0

h
)

]
, (1.1)
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and the local p-polynomial CQR estimators of m(t0) and m(r)(t0) are given by

m̂(t0) =
1

q

q∑

k=1

âk, and m̂(r)(t0) = r!b̂r, r = 1, · · · , p. (1.2)

The following notation is needed to present the asymptotic properties of the local p-

polynomial CQR estimator. Let S11 be a q × q diagonal matrix with diagonal elements

f(ck), k = 1, · · · , q, S12 be a q×p matrix with (k, j)-element being f(ck)µj, k = 1, · · · , q and

j = 1, · · · , p, S21 = ST
12, and S22 be a p×p matrix with (j, j ′)-element being

∑q
k=1 f(ck)µj+j ′ ,

for j, j ′ = 1, · · · , p. Similarly, let Σ11 be a q × q matrix with (k, k′)-element ν0τkk′ , k, k′ =

1, · · · , q, Σ12 be a q× p matrix with (k, j)-element being νj

∑q
k′=1 τkk′ , k = 1, · · · , q and j =

1, · · · , p, Σ21 = ΣT
12, and Σ22 be a p× p matrix with (j, j ′)-element being (

∑q
k,k′=1 τkk′)νj+j ′ ,

for j, j ′ = 1, · · · , p. Define

S =

(
S11 S12

S21 S22

)
, and Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

Partition S−1 into four submatrices as follows

S−1 =

(
S11 S12

S21 S22

)−1

=

(
(S−1)11 (S−1)12

(S−1)21 (S−1)22

)
,

where and hereafter, we use (·)11 to denote the left-top q × q submatrix and use (·)22 to

denote the right-bottom p× p submatrix.

Furthermore, let uk =
√

nh{ak −m(t0) − ck}, vj = hj
√

nh{j!bj −m(j)(t0)}/j!. Let xi =

(ti− t0)/h, Ki = K(xi) and ∆i,k =
uk√
nh

+

p∑
j=1

vjx
j
i√

nh
. Write ri,p = m(ti)−

∑p
j=0 m(j)(t0)(ti−

t0)
j/j!. Define η∗i,k to be I(εi ≤ ck − ri,p) − τk. let W ∗

n = (w∗
11, · · · , w∗

1q, w
∗
21, · · · , w∗

2p)
T with

w∗
1k = 1√

nh

∑n
i=1 Kiη

∗
i,k and w∗

2j = 1√
nh

∑q
k=1

∑n
i=1 Kix

j
iη
∗
i,k. The asymptotic properties of the

local p-polynomial CQR estimator are based on the following theorem.

Theorem 1.1. Denote θ̂n = (û1, · · · , ûq, v̂1, · · · , v̂p) be the minimizer of (1.1). Assume that

fT (t0) > 0, fT (·) and m(p+2)(·) are continuous in a neighborhood of t0, and f(·) is positive

in the neighborhoods of {τk}. If h → 0 and nh →∞, then we have

θ̂n +
1

fT (t0)
S−1E(W ∗

n |T)
L−→ MV N(0,

1

fT (t0)
S−1ΣS−1).

Proof. To apply the identity

ρτ (x− y)− ρτ (x) = y(I(x ≤ 0)− τ) +

∫ y

0

[I(x ≤ z)− I(x ≤ 0)]dz, (1.3)
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we write

yi − ak −
p∑

j=1

bj(ti − t0)
j = εi + m(ti)− ak −

p∑
j=1

bj(ti − t0)
j

= (εi − ck) + ri,p − uk√
nh

−
p∑

j=1

vjx
j
i√

nh

= (εi − ck) + ri,p −∆i,k ,

Minimizing (1.1) is equivalent to minimizing

Ln(θ) =
n∑

i=1

{
Ki

q∑

k=1

[
ρτk

(
(εi − ck) + ri,p −∆i,k

)− ρτk

(
(εi − ck) + ri,p

)]
}

.

Using the identity (1.3) and with some straightforward calculations, it follows that

Ln(θ) =
n∑

i=1

{
Ki

q∑

k=1

∆i,k [I(εi ≤ ck − ri,p)− τk]

}

+
n∑

i=1

{
Ki

q∑

k=1

∫ ∆i,k

0

[I(εi ≤ ck − ri,p + z)− I(εi ≤ ck − ri,p)] dz

}

=

q∑

k=1

uk

(
n∑

i=1

Kiη
∗
i,k√

nh

)
+

p∑
j=1

vj

(
q∑

k=1

n∑
i=1

Kix
j
iη
∗
i,k√

nh

)
+

q∑

k=1

Bn,k(θ),

where

Bn,k(θ) =
n∑

i=1

{
Ki

∫ ∆i,k

0

[
I(εi ≤ ck − ri,p + z)− I(εi ≤ ck − ri,p)

]
dz

}
.

Let Sn,11 be a q × q diagonal matrix with diagonal elements f(ck)
∑n

i=1 Ki/nh, k =

1, · · · , q; Sn,12 be a q × p matrix with (k, j)-element f(ck)
∑n

i=1 Kix
j
i/nh, j = 1, · · · , p; Sn,22

be a p× p matrix with (j, j ′) element
∑q

k=1 f(ck)
∑n

i=1 Kix
j+j ′
i /nh. Denote

Sn =


Sn,11 Sn,12

ST
n,12 Sn,22


 .

We write Ln(θ) as

Ln(θ) =

q∑

k=1

uk

(
n∑

i=1

Kiη
∗
i,k√

nh

)
+

p∑
j=1

vj

(
q∑

k=1

n∑
i=1

Kix
j
iη
∗
i,k√

nh

)

+

q∑

k=1

Eε[Bn,k(θ)|T] +

q∑

k=1

Rn,k(θ),
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where Rn,k(θ) = Bn,k(θ)− Eε[Bn,k(θ)|T].

By similar arguments, we can show that
∑q

k=1 Eε[Bn,k(θ)|T] = 1
2
θT Snθ + op(1) and

Rn,k(θ) = op(1). Together with
∑n

i=1 Kix
j
i/nh

P−→ fT (t0)µj, and

Sn
P−→ fT (t0)S = fT (t0)


S11 S12

S21 S22


 ,

we have

Ln(θ) =
fT (t0)

2
θT Sθ + (W ∗

n)T θ + op(1).

Since the convex function Ln(θ) − (W ∗
n)T θ converges in probability to the convex function

fT (t0)

2
θT Sθ, it follows from the convexity lemma that for any compact set Θ, the quadratic

approximation to Ln(θ) holds uniformly for θ in any compact set, which leads to

θ̂n = − 1

fT (t0)
S−1W ∗

n + op(1).

Denote ηi,k = I(εi ≤ ck)−τk and Wn = (w11, · · · , w1q, w21, · · · , w2p)
T with w1k =

1√
nh

n∑
i=1

Kiηi,k

and w2j =
1√
nh

q∑

k=1

n∑
i=1

Kix
j
iηi,k. By the Cramer-Wald theorem, it is easy to see that the

CLT for Wn|T holds

Wn|T− E[Wn|T]√
V ar[Wn|T]

L−→ MV N(0, I(p+q)×(p+q)). (1.4)

Note that

Cov(ηi,k, ηi,k′) = τkk′ , Cov(ηi,k, ηj,k′) = 0, if i 6= j.

and
∑n

i=1 K2
i x

j
i/nh

P−→ fT (t0)νj, Therefore, V ar[Wn|T]
P−→ fT (t0)Σ. Combined with (1.4),

we have

Wn|T L−→ MV N(0, fT (t0)Σ).

Moreover, we have V ar(w∗
1k − w1k|T) = 1

nh

∑n
i=1 K2

i V ar(η∗i,k − ηi,k) ≤ 1
nh

∑n
i=1 K2

i {F (ck +

|ri,p|) − F (ck)} = op(1) and also V ar(w∗
2j − w2j|T) = 1

nh

∑n
i=1 K2

i x
j
iV ar(

∑q
k=1 η∗i,k − ηi,k) ≤

q2

nh

∑n
i=1 K2

i x
j
i maxk{F (ck + |ri,p|)− F (ck)} = op(1), thus

V ar(W ∗
n −Wn|T) = op(1).

So by Slutsky’s theorem, conditioning on T, we have

W ∗
n |T− E(W ∗

n |T)
L−→ MV N(0, fT (t0)Σ).
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Therefore,

θ̂n +
1

fT (t0)
S−1E(W ∗

n |T)
L−→ MV N(0,

1

fT (t0)
S−1ΣS−1). (1.5)

This completes the proof.

The asymptotic properties of local CQR estimators m̂(t) and m̂′(t) are two special cases

of the general result.

Theorem 1.2. Under the regularity conditions in Theorem 1.1, the asymptotic conditional

bias and variance of the local linear CQR estimator m̂(t0) are given by

Bias(m̂(t0)|T) =
1

2
m′′(t0)µ2h

2 + op(h
2), (1.6)

V ar(m̂(t0)|T) =
1

nh

ν0

fT (t0)
R1(q) + op(

1

nh
). (1.7)

Furthermore, conditioning on T, we have

√
nh{m̂(t0)−m(t0)− 1

2
m′′(t0)µ2h

2} L−→ N

(
0,

ν0

fT (t0)
R1(q)

)
. (1.8)

Proof of Theorem 1.2. The asymptotic normality follows Theorem 1.1 with p = 1. Let us cal-

culate the conditional bias and variance, respectively. Denote by eq×1 the vector that contains

q 1’s. When p = 1, S is a diagonal matrix with diagonal elements f(c1), · · · , f(cq), µ2

∑q
k=1 f(ck).

So the asymptotic conditional bias of m̂(t0) = 1
q

∑q
k=1 âk is

Bias(m̂(t0)|T) =
1

q

q∑

k=1

ck − 1

q ·
√

nh

1

fT (t0)
eT

q×1(S
−1)11E(W ∗

1n|T)

=
1

q

q∑

k=1

ck − 1

q · nh

1

fT (t0)

n∑
i=1

Ki

q∑

k=1

1

f(ck)
{F (ck − ri,p)− F (ck)}

=
1

nh

1

fT (t0)

n∑
i=1

Kiri,p{1 + op(1)}.

By using the fact that

1

nh

n∑
i=1

Kiri,p =
fT (t0)m

′′(t0)
2

µ2h
2{1 + op(1)},

we obtain

Bias(m̂(t0)|T) =
1

2
m′′(t0)µ2h

2 + op(h
2). (1.9)
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Furthermore, the conditional variance of m̂(t0) is

V ar(m̂(t0)|T) =
1

nh

1

fT (t0)

1

q2
eT

q×1(S
−1ΣS−1)11eq×1 + op(

1

nh
)

=
1

nh

ν0

fT (t0)
R1(q) + op(

1

nh
), (1.10)

which completes the proof.

Theorem 1.3. Under the regularity conditions in Theorem 1.1, the asymptotic conditional

bias and variance of m̂′(t0) from local quadratic CQR is given by

Bias(m̂′(t0)|T) =
1

6
m′′′(t0)

µ4

µ2

h2 + op(h
2), (1.11)

V ar(m̂′(t0)|T) =
1

nh3

ν2

µ2
2fT (t0)

R2(q) + op(
1

nh3
). (1.12)

Furthermore, conditioning on T, we have the following asymptotic normal distribution

√
nh3

(
m̂′(t0)−m′(t0)− 1

6
m′′′(t0)

µ4

µ2

h2

)
L−→ N

(
0,

ν2

µ2
2fT (t0)

R2(q)

)
. (1.13)

Proof of Theorem 1.3. We apply Theorem 1.1 to get the asymptotic normality. Denote by

er the p-vector (0, 0, · · · , 1, 0, · · · , 0)T with 1 on the rth position. When p = 2, S12 and S22

have the following forms

S12 =

(
0q×1 µ2

(
f(ck)

)
q×1

)
, S22 =


µ2

∑q
k=1 f(ck) 0

0 µ4

∑q
k=1 f(ck)


 .

Thus,

(S−1)22 = (S22 − S21S
−1
11 S12)

−1 =




1

µ2

∑q
k=1 f(ck)

0

0
1

(µ4 − µ2
2)

∑q
k=1 f(ck)


 ,

(S−1)21 = −(S−1)22S21S
−1
11 =




01×q( µ2

(µ4 − µ2
2)

∑q
k=1 f(ck)

)
1×q


 ,

since S11 = diag (f(c1), · · · , f(cq)). By Theorem 1.1

Bias(m̂′(t0)|T) = − 1

hfT (t0)

1√
nh

eT
1

{
(S−1)21E(W ∗

1n|T) + (S−1)22E(W ∗
2n|T)

}

= − 1

hfT (t0)

1

µ2

∑q
k=1 f(ck)

1√
nh

E(w∗
21|T).
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Note that

E(w∗
2j|T) =

1√
nh

n∑
i=1

Kix
j
i

q∑

k=1

{F (ck − ri,p)− F (ck)}

Therefore, Bias(m̂′(t0)|T) is equal to 1
·nh2

1
fT (t0)

∑n
i=1 Kixiri,p{1 + op(1)}. Still using the fact

that with p = 2
1

nh

n∑
i=1

Kixiri,p =
fT (t0)m

′′′(t0)
6

µ4

µ2

h3{1 + op(1)},

we obtain

Bias(m̂′(t0)|T) =
1

6
m′′′(t0)

µ4

µ2

h2 + op(h
2). (1.14)

Furthermore, the conditional variance of m̂(t0) is

V ar(m̂′(t0)|T) =
1

nh3

1

fT (t0)
eT
1 (S−1ΣS−1)22e1 + op(

1

nh3
),

=
1

nh3

ν2

µ2
2fT (t0)

R2(q) + op(
1

nh3
). (1.15)

which completes the proof.

2 Asymptotic boundary behavior of local CQR esti-

mators

Back to the general nonparametric regression model

Y = m(T ) + σ(T )ε, (2.1)

Now we study the behavior of the estimator at the boundary of the support of T . Without

loss of generality, assume fT (·) has support on [0, 1]. We consider the left boundary point

t = ch, where c is a positive constant. let

µj(c) =

∫ ∞

−c

ujK(u)du νj(c) =

∫ ∞

−c

ujK2(u)du, j = 0, 1, 2, . . .

We first establish asymptotic theory of the local p-polynomial CQR estimators at t = ch,

and then discuss the special case of p = 1 and 2.

The following notation is needed to present the asymptotic properties of the local p-

polynomial CQR estimator. Let S11(c) be a q × q diagonal matrix with diagonal elements

f(ck), k = 1, · · · , q, S12(c) be a q × p matrix with (k, j)-element being f(ck)µj(c), k =

1, · · · , q and j = 1, · · · , p, S21(c) = ST
12(c), and S22(c) be a p× p matrix with (j, j ′)-element
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being
∑q

k=1 f(ck)µj+j ′(c), for j, j ′ = 1, · · · , p. Similarly, Let Σ11(c) be a q × q matrix with

(k, k′)-element ν0(c)τkk′ , k, k′ = 1, · · · , q, Σ12(c) be a q × p matrix with (k, j)-element being

νj(c)
∑q

k′=1 τkk′ , k = 1, · · · , q and j = 1, · · · , p, Σ21(c) = ΣT
12(c), and Σ22(c) be a p×p matrix

with (j, j ′)-element being (
∑q

k,k′=1 τkk′)νj+j ′(c), for j, j ′ = 1, · · · , p. Define

S(c) =

(
S11(c) S12(c)

S21(c) S22(c)

)
, and Σ(c) =

(
Σ11(c) Σ12(c)

Σ21(c) Σ22(c)

)
.

Partition S−1(c) into four submatrices as follows

S−1(c) =

(
S11(c) S12(c)

S21(c) S22(c)

)−1

=

(
(S−1(c))11 (S−1(c))12

(S−1(c))21 (S−1(c))22

)
,

where and hereafter, we use (·)11 to denote the left-top q × q submatrix and use (·)22 to

denote the right-bottom p× p submatrix.

Furthermore, let uk =
√

nh{ak − m(t) − σ(t)ck}, vj = hj
√

nh{j!bj − m(j)(t)}/j!. Let

xi = (ti − t)/h, Ki = K(xi) and ∆i,k =
uk√
nh

+

p∑
j=1

vjx
j
i√

nh
. Write di,k = ck[σ(ti)− σ(t)] + ri,p

with ri,p = m(ti)−
∑p

j=0 m(j)(t)(ti− t)j/j!. Define η∗i,k to be I(εi ≤ ck− di,k

σ(ti)
)− τk. let W ∗

n =

(w∗
11, · · · , w∗

1q, w
∗
21, · · · , w∗

2p)
T with w∗

1k = 1√
nh

∑n
i=1 Kiη

∗
i,k and w∗

2j = 1√
nh

∑q
k=1

∑n
i=1 Kix

j
iη
∗
i,k.

Theorem 2.1. Denote θ̂n = (û1, · · · , ûq, v̂1, · · · , v̂p) be the minimizer of (1.1). Assume that

fT (0+) > 0, fT (·),m(p+1)(·) and σ2(·) are right continuous at the point 0, and f(·) is positive

in the neighborhoods of {τk}. If h → 0 and nh →∞, then we have

θ̂n +
σ(0+)

fT (0+)
S−1(c)E(W ∗

n |T)
L−→ MV N(0,

σ2(0+)

fT (0+)
S−1(c)Σ(c)S−1(c)).

The proof is quite similar to the one for interior points, so we omit it here. Now let’s

look at the asymptotic behavior of local CQR estimators m̂(t) and m̂′(t) at the boundary.

Theorem 2.2. Under the regularity conditions in Theorem 2.1, if the error distribution

is symmetric, then the asymptotic conditional bias and variance of the local linear CQR

estimator m̂(t) are given by

Bias(m̂(t)|T) =
1

2
a(c)m′′(0+)h2 + op(h

2), (2.2)

V ar(m̂(t)|T) =
1

nh

b(c)σ2(0+)

fT (0+)
R1(q) + op(

1

nh
). (2.3)

where a(c) =
µ2

2(c)− µ1(c)µ3(c)

µ0(c)µ2(c)− µ2
1(c)

and b(c) =
µ2

2(c)ν0(c)− 2µ1(c)µ2(c)ν1(c) + µ2
1(c)ν2(c)

{µ0(c)µ2(c)− µ2
1(c)}2

.
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Furthermore, conditioning on T, we have

√
nh{m̂(t)−m(t)− 1

2
a(c)m′′(0+)h2} L−→ N

(
0,

b(c)σ2(0+)

fT (0+)
R1(q)

)
. (2.4)

Proof of Theorem 2.2. The asymptotic normality follows Theorem 2.1 with p = 1. Let us

calculate the conditional bias and variance, respectively. Denote by eq×1 the vector that

contains q 1’s. The asymptotic conditional bias of m̂(t) = 1
q

∑q
k=1 âk is

Bias(m̂(t)|T) =
1

q
σ(t)

q∑

k=1

ck − 1

q ·
√

nh

σ(0+)

fT (0+)
(eT

q×1 0)S−1E(W ∗
n |T)

Note that the error is symmetric, thus
∑q

k=1 ck = 0, and similarly we can show that

E(w∗
1k|T) = f(ck)

fT (0+)m′′(0+)

2σ(0+)
µ2(c)h

2{1 + op(1)} k = 1, · · · , q,

and

E(w∗
21|T) = {

q∑

k=1

f(ck)}fT (0+)m′′(0+)

2σ(0+)
µ3(c)h

2{1 + op(1)}.

Therefore,

Bias(m̂(t)|T) = − 1

q ·
√

nh

σ(t0)

fT (t0)
(eT

q×1 0)S−1E(W ∗
n |T)

=
1

2

µ2
2(c)− µ1(c)µ3(c)

µ0(c)µ2(c)− µ2
1(c)

m′′(0+)h2 + op(h
2)

=
1

2
a(c)m′′(0+)h2 + op(h

2).

Furthermore, the conditional variance of m̂(t0) is

V ar(m̂(t)|T) =
1

nh

σ2(0+)

fT (0+)

1

q2
eT

q×1(S
−1ΣS−1)11eq×1 + op(

1

nh
)

=
1

nh

σ2(0+)

fT (0+)

µ2
2(c)ν0(c)− 2µ1(c)µ2(c)ν1(c) + µ2

1(c)ν2(c)

{µ0(c)µ2(c)− µ2
1(c)}2

R1(q) + op(
1

nh
)

=
1

nh

b(c)σ2(0+)

fT (0+)
R1(q) + op(

1

nh
), (2.5)

which completes the proof.

From Theorem 2.2, it can be seen that the leading team of the asymptotic bias of the local

linear CQR estimator is the same as that of the local linear LS estimator. This relationship

is the same as that when x is an interior point. Furthermore, the relationship between the

asymptotic variances of the local CQR and that of LS estimators at boundary is also the same

as that for interior points, i.e., they are different by the factor R2. Thus, Theorem 2.2 clearly

indicates that the local CQR estimator shares the property of the automatical boundary

correction, a nice property of local linear least squares estimator.
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Theorem 2.3. Under the regularity conditions in Theorem 2.1, if the error distribution is

symmetric, then the asymptotic conditional bias and variance of the local quadratic CQR

estimator m̂′(t) are given by

Bias(m̂′(t)|T) =
1

2
a∗(c)m′′(0+)h2 + op(h

2), (2.6)

V ar(m̂′(t)|T) =
1

nh3

b∗(c)σ2(0+)

fT (0+)
R2(q) + op(

1

nh3
), (2.7)

where a∗(c) and b∗(c) are constants that depend only on c and the kernel K.

Furthermore, conditioning on T, we have

√
nh3{m̂′(t)−m(t)− 1

6
a∗(c)m′′′(0+)h2} L−→ N

(
0,

b∗(c)σ2(0+)

fT (0+)
R2(q)

)
. (2.8)

Proof of Theorem 2.3. We apply Theorem 2.1 to get the asymptotic normality. Denote by

er the p-vector (0, 0, · · · , 1, 0, · · · , 0)T with 1 on the rth position. When p = 2, we have

E(w∗
1k|T) = f(ck)

fT (0+)m′′′(0+)

6σ(0+)
µ2(c)h

3{1 + op(1)} k = 1, · · · , q,

and

E(w∗
2j|T) = {

q∑

k=1

f(ck)}fT (0+)m′′′(0+)

6σ(0+)
µ2+j(c)h

3{1 + op(1)} j = 1, 2.

Therefore,

Bias(m̂′(t)|T) = − σ(0+)

hfT (0+)

1√
nh

eT
1

{
(S−1)21E(W ∗

1n|T) + (S−1)22E(W ∗
2n|T)

}

=
1

6
a∗(c)m′′′(0+)h2 + op(h

2).

Furthermore, the conditional variance of m̂′(t) is

V ar(m̂′(t)|T) =
1

nh3

σ2(0+)

fT (0+)
eT
1 (S−1ΣS−1)22e1 + op(

1

nh3
),

=
1

nh3

b∗(c)σ2(0+)

fT (0+)
R2(q) + op(

1

nh3
). (2.9)

This completes the proof.

From Theorem 2.3, it can be seen that the asymptotic bias of local CQR estimator at

boundary is of order h2, and its asymptotic variance is of order 1/nh3. Thus, the orders of

the asymptotic bias and variance are the same as those of local quadratic regression. Thus,

the local quadratic CQR estimator possesses the property of automatic boundary correction.
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3 Simulation studies

In this section, we provide two simulation examples. The first example is to demonstrate

the performance of local CQR estimate when the error follows a Cauchy distribution. The

second one is to compare the boundary behavior of the local CQR estimator and the local

least squares estimator.

Example 1 (Infinite error variance). We generated 400 data set, each consisting of n = 200

observations, from

Y = sin(2T ) + 2 exp(−16T 2) + 0.5ε, (3.1)

where T follows N(0, 1). In our simulation, the error ε follows the Cauchy distribution. Thus,

the error variance is infinite. For the local polynomial CQR estimator, we consider q = 5, 9

and 19, and estimate m(·) and m′(·) over [−1.5, 1.5]. The mean and standard deviation of

RASE over 400 simulations are summarized in Table 1. To see how the proposed estimate

behaves at a typical point, Table 1 also depicts the biases and standard deviations of m̂(t)

and m̂′(t) at t = 0.75. In Table 1, CQR5, CQR9 and CQR19 correspond to the local CQR

estimate with q = 5, 9 and 19, respectively. From the Table 1, we can see that the RASE

of local CQR estimate is much less than that of local LS estimate. This is because the local

LS estimator is not a consistent estimator for the regression function, while the local CQR

estimator is. This is also evidenced from the standard deviation of the local estimator at

t = 0.75.

Table 1: Simulation Results for Example 1

m̂ m̂′

RASE t = 0.75 RASE t = 0.75

Mean(SD) Bias Std Mean(SD) Bias Std

Cauchy

LS — -0.0881 7.8740 — 5.1324 87.7494

CQR5 10228.96(125981.63) -0.0241 0.2965 14386.19(160902.10) 0.0716 1.5997

CQR9 4798.64(51545.41) -0.0713 0.9690 14243.84(158913.53) 0.0686 1.6133

CQR19 1120.90(12889.99) -0.0929 1.2995 14224.16(159441.96) 0.0727 1.6064

Example 2. We generated 400 data set, each consisting of n = 200 observations, from

Y = sin(2T ) + 2 exp(−16T 2) + 0.5ε, (3.2)
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where T follows N(0, 1). In our simulation, the error ε follows 0.95N(0, 1) + 0.05N(0, 102).

Figure 1 depicts the 400 estimated coefficient functions of CQR9 for all 400 simulations.

Results for CQR5 and CQR19 is similar, so we opt not to present here. Figure 2 depicts the

plots of estimate of the regression function and its derivative based on a typical data set.

From Figures 1 and 2, it can be clearly seen that the local CQR estimator improve over the

local least squares estimator for both interior and boundary points.
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(b) m(x) with 400 m̂CQR9(x)
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Figure 1: (a) and (c) are plots of 400 local least squares estimators of m(·) and m′(·) over

400 simulation, respectively. (b) and (d) are plots of 400 local CQR estimators of m(·) and

m′(·), respectively.
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Figure 2: (a) and (c) are plots of a typical local least squares estimators of m(·) and m′(·),
respectively. (b) and (d) are plots of a typical local CQR estimators of m(·) and m′(·),
respectively.
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