CHEMBIOCHEM

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2008

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2008

CHEMBIOCHEM

Supporting Information

for

N-Methyl Scanning Mutagenesis Generates Protease-Resistant G Protein Ligands with Improved Affinity and Selectivity

Stephen V. Fiacco and Richard W. Roberts

Table of Contents: Peptide Synthesis and Characterization N-Methyl Selectivity

S2 S5

Peptide Synthesis

Analysis by MALDI-TOF MS:

Unmodified peptide Expected $[M+H]^+ = 1871.0$, obs. $[M+H]^+ = 1870.4$ The expected mass of peptides with 1 *N*-methyl residue $[M+H]^+ = 1885.4$, N-Me-D obs. $[M+H]^+ = 1885.3$ N-Me-K obs. $[M+H]^+ = 1884.5$ N-Me-L obs. $[M+H]^+ = 1884.7$ N-Me-Y obs. $[M+H]^+ = 1885.9$ N-Me-W10 obs. $[M+H]^+ = 1884.6$ N-Me-W11 obs. $[M+H]^+ = 1884.7$ N-Me-E obs. $[M+H]^+ = 1885.3$ N-Me-F obs. $[M+H]^+ = 1885.7$ N-Me-L obs. $[M+H]^+ = 1885.6$

Bio-Unmodified peptide Expected $[M+H]^+ = 2095.2$, obs. $[M+H]^+ = 2096.0$ The expected mass of all N-methyl peptides $[M+H]^+ = 2110.1$, N-Me-D obs. $[M+H]^+ = 2110.9$ N-Me-K obs. $[M+H]^+ = 2110.6$ N-Me-L obs. $[M+H]^+ = 2110.2$ N-Me-Y obs. $[M+H]^+ = 2110.6$ N-Me-W10 obs. $[M+H]^+ = 2109.5$ N-Me-W11 obs. $[M+H]^+ = 2110.6$ N-Me-E obs. $[M+H]^+ = 2110.0$ N-Me-F obs. $[M+H]^+ = 2110.0$ N-Me-L obs. $[M+H]^+ = 2109.8$

Digest product LYWWEFL Expected [M+H] = 1056.2, obs. [M+H] = 1056.6

R6A Expected [*M*+H] = 2276.6, obs. [*M*+H] = 2276.9 Bio-R6A Expected [*M*+H] = 2501.7, obs. [*M*+H] = 2501.2

HPLC traces.

N-Methyl Selectivity

Figure S1: Selectivity for the N-methyl peptide library. G protein subunits are color coded. Binding is normalized by dividing the samples cpm by the average cpms obtained for the unmodified peptide binding to its target $G\alpha i1$. Two N-Me-K data points have been removed in order to scale the graph in a way to resolve weaker binding interactions.