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Abstract

Stem cell factor (SCF), a key regulator of hematopoiesis,
potently synergizes with a number of hematopoietic growth
factors. However, little is known about growth factors capa-
ble of inhibiting the actions of SCF. TNF-a has been shown
to act as a bidirectional regulator of myeloid cell prolifera-
tion and differentiation. This study was designed to examine
interactions between TNF-a and SCF. Here, we demon-
strate that TNF-a potently and directly inhibits SCF-stimu-
lated proliferation of CD34 + hematopoietic progenitor cells.
Furthermore, TNF-a blocked all colony formation stimu-
lated by SCF in combination with granulocyte colony-stimu-
lating factor (CSF) or CSF-1. The synergistic effect of SCF
observed in combination with GM-CSF or IL-3 was also
inhibited by TNF-a, resulting in colony numbers similar to
those obtained in the absence of SCF. These effects of TNF-
a were mediated through the p55 TNF receptor, whereas
little or no inhibition was signaled through the p75 TNF
receptor. Finally, TNF-a downregulated c-kit cell-surface
expression on CD34+ bone marrow cells, and this was pre-
dominantly a p55 TNF receptor-mediated event as well. (J.
Clin. Invest. 1994. 94:165-172.) Key words: tumor necrosis
factor * kit ligand * hematopoietic cell growth factors * recep-
tors, hematopoietic growth factors * hematopoietic stem cells

Introduction

TNF-a is a pleiotropic cytokine shown to act as both a positive
and a negative regulator of myeloid cell proliferation and differ-
entiation (1-9). The effects of TNF-a can be either directly
mediated (7, 10) or indirectly mediated by inducing other cells
to produce hematopoietic growth factors (HGFs)' (11-13).
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1. Abbreviations used in this paper: CSF, colony-stimulating factor; G-
CSF, granulocyte CSF; HGF, hematopoietic growth factor; HPP-CFC,
high proliferative potential colony-forming cell; IMDM, Iscove's modi-
fied Dulbecco's medium; pa, polyclonal antibody; rHu, recombinant
human; SCF, stem cell factor; TNFR-p55 and TNFR-p75, 55- and 75-
kD TNF receptors.

Recently, two TNF receptors (TNFR), with molecular masses
of 55 (TNFR-p55) and 75 kD (TNFR-p75), have been identi-
fied and cloned (14-18). TNF-a was originally thought of as
a potential cancer therapeutic agent because of its cytotoxic
activity in neoplastic cell lines and antitumor activity in certain
transplanted mouse tumors (19). However, treatment of cancer
patients with TNF-a has been hampered by severe toxic side
effects, although TNF-a still may have therapeutic potential
(20-27).

We have demonstrated recently that TNFR-p55 exclusively
mediates the stimulatory effects of TNF-a on GM-CSF and IL-
3-induced colony formation, as well as inhibition of granulocyte
colony-stimulating factor (G-CSF)-induced colony growth
(28). In contrast, both TNFR-p55 and TNFR-p75 can reversibly
signal inhibition of more primitive progenitor cells such as
high proliferative potential colony-forming cells (HPP-CFC)
(28, 28a).

Stem cell factor (SCF), a newly defined hematopoietic
growth factor encoded at the Steel locus of the mouse, is the
ligand for the c-kit tyrosine kinase receptor which is encoded
at the dominant-white spotting locus of the mouse (29-33).
SCF has emerged as a key regulator of hematopoietic progenitor
cell growth. As a single factor, SCF is a weak stimulus for
hematopoietic progenitor cell growth. However, it synergizes
potently with the colony-stimulating factors (CSFs), IL-1, IL-
6, IL-1 1, IL-12, and erythropoietin to stimulate progenitor cells
of the myelomonocytic, erythroid, and megakaryocytic lineages
(34-43). In humans, SCF has been demonstrated to preferen-
tially promote the survival and proliferation of primitive progen-
itor cells, whereas more committed progenitors are stimulated
to a lesser extent (34, 36).

The present studies were designed to investigate the effects
of TNF-a on CD34+ progenitor cell proliferation induced by
SCF alone or in combination with CSFs. Here, we demonstrate
for the first time that TNF-a directly and mainly through the
p55 TNF receptor can inhibit SCF-stimulated proliferation of
human hematopoietic progenitor cells.

Methods

HGFs. Purified recombinant human (rHu) G-CSF and rHuSCF were
generously supplied by Dr. Ian K. McNiece (Amgen Inc., Thousand
Oaks, CA). rHuGM-CSF and rHuIL-3 were generously provided by
Dr. Steven Gillis (Immunex Corp., Seattle, WA). rHuTGF-),1 was a
kind gift from Dr. Tony Purchio (Oncogene Corp., Seattle, WA). rHuC-
SF-1 was kindly supplied by Dr. Michael Geier (Cetus Corp., Em-
eryville, CA). HuTNF-a mutants specific for TNFR-p55 and TNFR-
p75 were prepared by site-directed mutagenesis (44). Solid phase bind-
ing studies have shown that the Trp32 Thr 6 TNF-a mutant protein binds
with wild-type affinity to TNFR-p55 and does not bind at all to TNFR-
p75, whereas the Asn 143 Arg 45 TNF-a mutant protein exclusively binds
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to TNFR-p75, although with a 5-10-fold lower affinity than wild-type
TNF-a (44). Both mutant proteins were titrated and used at optimal
concentrations.

Unless otherwise indicated, all growth factors were used at predeter-
mined optimal concentrations: rHuG-CSF (20 ng/ml), rHuGM-CSF (50
ng/ml), rHuIL-3 (20 ng/ml), rHuSCF (50 ng/ml), rHuCSF-1 (50 ng/
ml), and rHuTGF-,/1 (20 ng/ml).

Antibodies against human TNF receptors. Rabbit anti-human
TNFR-p75 (also named TNFRa or TNF-R2) polyclonal antibodies with
TNF-a agonistic activity (paTNFR-p75) were raised by immunization
of rabbits with soluble TNFR-p75 and prepared as described previously
(45). An mAb against TNFR-p55 (also named TNFR,6 or TNF-Rl)
with TNF-a agonistic activity (htr-9) was obtained after immunization
of mice with a TNF-binding protein purified from HL-60 cells (46).
htr-9 and paTNFR-p75 were titrated and used at optimal concentrations
(10 and 2 ,ug/ml, respectively).

Cell separation. Human bone marrow cells were obtained by iliac
crest aspiration from normal adult volunteers with informed consent
and the approval of the Ethics Committee of The Norwegian Radium
Hospital. Mononuclear cells were isolated by Ficoll-Hypaque gradient
centrifugation (Lymphoprep; Nycomed Pharma, Oslo, Norway). Posi-
tive selection of CD34 + cells was performed according to a previously
described method (47). Briefly, bone marrow mononuclear cells were
rosetted with Dynabeads M-450 (product 111.10; Dynal, Oslo, Norway)
directly coated with the CD34 mAb BI-3C5 for 45 min at 40C on an
apparatus that provided tilting and gentle rotation. The bead to total cell
ratio was 1:1. Rosetted cells were attracted to a samarium cobalt magnet,
and nonrosetting cells were removed by pipetting and washed (x7).
Detachment of beads from positively selected cells was performed by
incubation with anti-Fab antiserum (DETACHaBEAD; Dynal) at a con-
centration of 35 mg/ml for 1 h at room temperature. Isolated cells, free
of beads, were washed and counted. The purity of CD34+ cells isolated
by this method was reproducibly > 90% as determined by flow cytome-
tric analysis.

Colony assay. A modification of a previously described method (48)
was used to assay bone marrow progenitor cells in semisolid medium.
CD34+ cells were plated in tissue-culture grade 35-mm Petri dishes in a
volume of 1 ml Iscove's modified Dulbecco's medium (IMDM) (Gibco,
Paisley, UK) containing 20% FCS (Sera-lab, Sussex, UK), 5
x 10-5 M 2-mercaptoethanol, 300 mg/liter glutamine, 66 mg/liter peni-
cillin and 100 mg/liter streptomycin (complete IMDM), and 0.3%
Seaplaque agarose (FMC Corp. BioProducts, Rockville, ME). After 2
wk of incubation at 37°C and 5% CO2 in air, colonies (> 40 cells) or
clusters (4-40 cells) were counted using an inverted microscope.

Single-cell proliferation assay. CD34 + cells were seeded in Terasaki
plates (Greiner, Frickenhausen, Germany) at a concentration of one cell
per well (300 wells per group) in 20 1I complete IMDM. In some
experiments, a cell sorter (Epics Elite; Coulter Corp., Hialeah, FL)
equipped with a single-cell depositor was used to plate one CD34 + cell
per well. Wells were scored for proliferation after 2 wk of incubation
at 370C and 5% CO2 in air.

Receptor studies. Freshly isolated CD34+ cells were incubated in
complete IMDM at 37°C and 5% CO2 in air, at a concentration of 1.0
x 106 cells/ml. TNF-a (20 ng/ml) and/or TGF-,f1 (20 ng/ml) was
added 1, 6, or 24 h before harvest, while htr-9 (10 Ag/ml) or paTNFR-
p75 (2 Ag/ml) was added 24 h before harvest only. Then, the cells
were washed, and indirect immunofluorescence staining was performed
according to standard techniques with a mouse mAb (IgG2.) against
human c-kit (SR-1; a gift from Dr. Virginia C. Broudy, University of
Washington, Seattle, WA) (49) and with fluorochrome-conjugated goat
anti-mouse Ig (Southern Biotechnology Associates, Birmingham, AL)
as second layer. An isotype-matched irrelevant mAb served as negative
control. To block unspecific binding via Fc receptors, aggregated human
immunoglobulin G (DAKOPATTS, Copenhagen, Denmark) was in-
cluded at a concentration of 100 jsg/ml. Flow cytometric analyses were
performed on a FACScan' flow cytometer (Becton, Dickinson & Co.,
Mountain View, CA) equipped with an argon-ion laser tuned at 488 nm.

Data acquisition and analysis were performed using LYSIS II software
(Becton Dickinson Immunocytometry Systems, San Jose, CA).

Cell morphology. CD34' cells were plated in complete IMDM and
incubated for 2 wk at 37TC and 5% CO2 in air in the presence or absence
of TNF-a, or TNF-a mutant proteins specific for either of the two
receptor types, and with growth factors as indicated. Cell morphology
was determined following May-Grtinwald Giemsa staining of cytospin
preparations.

Statistical analysis. All results were expressed as the mean±SEM
of data obtained from three or more separate experiments. The statistical
significance of differences between group means was determined using
the Student's t test.

Results

Effects of TNF-a on colony formation of CD34' progenitor
cells in response to SCF in combination with CSFs. We and
others have shown previously that TNF-a is a potent and revers-
ible inhibitor of colony formation of human CD34' bone mar-
row cells stimulated by G-CSF or CSF-1, while it stimulates
GM-CSF and IL-3-induced colony formation (6-9, 28). In the
present study, we focused on the ability of TNF-a to affect
proliferation of CD34 + bone marrow progenitors stimulated by
SCF, alone or in combination with CSFs. As reported previously
(34, 35), SCF was a weak stimulator of colony formation (> 40
cells) as a single growth factor. However, an average of 32
clusters (4-40 cells) per 2,000 CD34+ cells plated was obtained
in response to SCF (50 ng/ml; Fig. 1 A), and TNF-a (20 ng/
ml) inhibited SCF-induced cluster formation by 75% (P
< 0.05). Thus, TNF-a potently inhibits SCF-induced prolifera-
tion of CD34' progenitor cells. Next, the effects of TNF-a
were investigated on colony formation of CD34 + bone marrow
progenitors in response to SCF in combination with the four
CSFs. TNF-a (20 ng/ml) completely inhibited colony forma-
tion stimulated by G-CSF plus SCF as well as with G-CSF
alone (Fig. 1 B). Similarly, TNF-a also blocked all colony
formation stimulated by CSF-1 in combination with SCF (Fig.
1 B). In contrast, and as reported previously (7, 8), TNF-a
stimulated or had no effect on colony formation induced by
GM-CSF or IL-3 (Fig. 1 C). However, the potent synergistic
effect observed when SCF was combined with GM-CSF or IL-
3 was inhibited by TNF-a, resulting in colony numbers similar
to those obtained in the absence of SCF (Fig. 1 C).

Since it has been shown that the effects of TNF-a (stimula-
tory or inhibitory) depend on the concentration of TNF-a in
culture (6, 7, 19), we examined the concentration response of
TNF-a on G-CSF plus SCF and GM-CSF plus SCF-induced
colony formation. 50% inhibition of G-CSF plus SCF-induced
colony formation occurred at a TNF-a concentration of 0.2 ng/
ml, while complete inhibition was observed at 20 ng/ml (Fig.
2 A). Similarly, the dominant effect ofTNF-a on GM-CSF plus
SCF-induced colony formation was inhibitory, with maximum
inhibition (70%) occurring at a TNF-a concentration of 200
ng/ml (Fig. 2 B). Although not statistically significant (P
= 0.27), a weak stimulation of 21% was observed at a TNF-
a concentration of 0.2 ng/ml.

The TNF-a-induced inhibition ofSCF-stimulatedprolifera-
tion is directly mediated. Although CD34+ bone marrow cells
represent a highly enriched population of progenitor cells, there
is still considerable heterogeneity within the CD34' cell com-
partment. Indirect effects through cytokine production from ac-
cessory cells can therefore not be excluded when effects of
TNF-a are studied using CD34 + cells at high density. There-
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Figure 1. Effects of TNF-a on SCF-induced proliferation of CD34'
human bone marrow cells. CD34+ cells were isolated and plated in
agarose (see Methods) in the presence or absence of TNF-a (20 ng/
ml) and predetermined optimal concentrations of G-CSF (20 ng/ml),
GM-CSF (50 ng/ml), IL-3 (20 ng/ml), or CSF-I (50 ng/ml). Cultures
were scored for cluster growth (4-40 cells; A) or colony growth (> 40
cells; B and C) after 14 d of incubation at 370C and 5% CO2 in air.
Results are presented as the mean number of colonies per 2 X 103 cells
(A) or 1 x 103 cells (B and C; except 4 x 103 cells with CSF-l) from
at least four independent experiments with duplicate determinations;
error bars show the SEM. *No colony formation.

fore, the direct effects of TNF-a (20 ng/ml) on SCF-stimulated
proliferation of individually plated CD34 + progenitor cells were
examined. In agreement with the colony assays, TNF-a inhib-
ited SCF-induced cluster formation of single CD34+ cells by
80% (P = 0.01; Fig. 3 A). Furthermore, TNF-a almost com-
pletely blocked colony formation in response to G-CSF plus
SCF (Fig. 3 B). While SCF directly enhanced GM-CSF- and
IL-3-induced colony formation by 152 and 185%, respectively,
TNF-a reduced the number of proliferative clones similar to
what was observed in response to GM-CSF or IL-3 combined
with TNF-a (Fig. 3 B). Taken together, these data suggest that
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Figure 2. Concentration
response of TNF-a-in-
duced modulation of G-
CSF plus SCF and GM-
CSF plus SCF-stimu-
lated colony formation
(A and B, respectively).
CD34' human bone
marrow cells were sepa-
rated as described in
Methods and cultured in
agarose at 103 cells per
dish in the presence of
predetermined optimal
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TNF-a directly inhibits SCF-induced proliferation of CD34+
progenitor cells.

Relative role of p55 and p75 TNF receptors in TNF-a-
induced inhibition of SCF-stimulated progenitor cell growth.
While both TNFR-p55 and TNFR-p75 can signal TNF-a-medi-
ated inhibition of primitive progenitor cells such as HPP-CFC,
TNFR-p55 has been shown exclusively to mediate the effects
(stimulatory or inhibitory) of TNF-a on more mature single
factor-responsive progenitor cells (28). In the present study,
TNF-a inhibited SCF-induced cluster formation (4-40 cells)
by 75%. An agonistic antibody to the p55 TNF receptor (htr-
9) was as potent as TNF-a in mediating this inhibition, while
an agonistic antibody to the p75 TNF receptor (paTNFR-p75)
had only marginal inhibitory effect (Fig. 4 A), suggesting that
TNFR-p55 mainly mediates the inhibitory effects of TNF-a on
SCF-responsive CD34 + progenitor cells.

The potent synergistic effect of SCF observed in combina-
tion with GM-CSF was inhibited by TNF-a (200 ng/ml), re-
sulting in colony numbers similar to those obtained in absence
of SCF (Fig. 4 B). Furthermore, a mutant TNF-a protein with
selective activity on TNFR-p55 inhibited GM-CSF plus SCF-
induced colony formation almost to the same extent as TNF-a
itself (56 vs 65%), while a TNF-a mutant with selective activity
on TNFR-p75 had a marginal inhibitory effect of 10% (P
= 0.1). No additive inhibitory effects on GM-CSF plus SCF-
stimulated colony formation were observed when combining
the two TNF-a mutant proteins (not shown). These results
suggest that mainly TNFR-p55 mediates the inhibitory effects
of TNF-a on GM-CSF plus SCF-responsive CD34 + progenitor
cells.

Effects ofTNF-a on GM-CSFplus SCF and IL-3 plus SCF-
induced differentiation of CD34+ cells: role of p55 and p75
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Figure 3. Direct effects of TNF-a on SCF-stimulated proliferation of
CD34+ bone marrow progenitor cells. CD34+ cells were isolated and
plated at a density of one cell per well (see Methods) in the presence
or absence of TNF-a (20 ng/ml). Predetermined optimal concentrations
of growth factors were added as indicated, and cultures were scored for
proliferation (> 4 cells, A; or > 10 cells, B) after 14 d at 370C and
5% CO2 in air. Each group consisted of 300 wells, and results are
presented as the mean number of positive wells per group; error bars
show the SEM. A represents data obtained from five independent experi-
ments, including two experiments using a cell sorter equipped with a
single-cell depositor (see Methods). B includes results of four indepen-
dent experiments. *No proliferation.

TNF receptors. TNF-a has previously been reported to switch
IL-3-induced differentiation from granulocytes to macrophages
(8). In contrast, we demonstrate here that TNF-a in combina-
tion with IL-3 plus SCF promoted the development of 52±8%
granulocytes (including metamyelocytes, bands, and polymor-
phonuclear neutrophils), whereas only 13±4% granulocytes de-
veloped in TNF-a-untreated cultures (P < 0.05; Table I). A
concomitant reduction in macrophages from 55±4 to 36±6%
and in myeloblasts from 23±4 to 4±2% was observed. Similar
results were obtained combining TNF-a and GM-CSF plus SCF
(Table I). Although total cell proliferation was inhibited, TNF-
a promoted an absolute increase in the number of granulocytes
present in the cultures after 2 wk. A TNF-a mutant specific for
TNFR-p55 promoted a similar effect on IL-3 plus SCF-induced
differentiation as TNF-a itself, whereas a TNFR-p75-selective
TNF-a mutant did not affect IL-3 plus SCF-induced differentia-
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Figure 4. Relative role of p55 and p75 TNF receptors in TNF-a-induced
inhibition of SCF-stimulated proliferation of CD34+ progenitor cells.
CD34+ cells (2 x 103 cells per dish) were plated in 0.3% agarose as

described in Methods. Individual cultures were supplemented as indi-
cated with TNF-a (20 ng/ml, A; or 200 ng/ml, B), htr-9 (10 tzg/ml),
paTNFR-p75 (2 pg/ml), p55 mutant (200 ng/ml), p75 mutant (2 jig/
ml), and predetermined optimal concentrations of HGFs. Clusters (4-
40 cells; A) or colonies (> 40 cells; B) were scored after 14 d of
incubation at 37°C and 5% CO2 in air. Results are presented as the
mean number of colonies per 2 x 103 cells of four independent experi-
ments with duplicate determinations; error bars show the SEM.

tion (Table II). Thus, TNF-a through TNFR-p55 can potently
enhance the differentiation of IL-3 plus SCF-stimulated CD34 +

cells into mature cells of the granulocytic lineage.
TNF-a downregulates c-kit cell-surface expression on

CD34+ hematopoietic progenitor cells. The ability of TNF-a
to stimulate LL-3 and GM-CSF-induced proliferation of hema-
topoietic progenitor cells has been shown to correlate with its
ability to upregulate GM-CSF and IL-3 receptor expression
(50-52). Similarly, TNF-a-induced inhibition of G-CSF-stim-
ulated progenitor cell growth was correlated to G-CSF receptor
downmodulation (10). It has been demonstrated previously that
TGF-(, can downregulate c-kit expression on murine hemato-
poietic cell lines (52a). In this study, we used the SR-1 antibody
to examine the ability of TNF-a and/or TGF-,/1, as well as

the TNF receptor agonistic antibodies htr-9 (anti-p55) and
paTNFR-p75, to modulate c-kit expression on CD34+ bone
marrow cells. Of untreated CD34+ cells, 39±3% were c-kit
positive (Fig. 5). After 1, 6, and 24 h of treatment with TNF-
a (20 ng/ml), the fraction of c-kit-positive cells was reduced
to 36±2 (NS), 28±4 (P < 0.05), and 26±2% (P < 0.05),
respectively. Furthermore, after 24 h of incubation, the relative
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Table L Effects of TNF-a on GM-CSF Plus SCF and IL-3 Plus SCF-induced Differentiation of CD34' Cells

Growth factors Cells/ml Myeloblasts Promyelocytes/myelocytes Granulocytes Macrophages

IL-3 + SCF 3.5 x 105 23±4 9±1 13±4 55±4
IL-3 + SCF + TNF-a 2.0 X 105 4±2 8±2 52±8 36±6
GM-CSF + SCF 8.1 x 105 21±5 11±3 8±3 60±8
GM-CSF + SCF + TNF-a 3.5 X 105 4±2 9±3 47±5 40±5

CD34+ cells were plated in complete IMDM at a density of 2.5 x 103 cells/ml and incubated for 14 d at 370C and 5% CO2 in air in the presence
or absence of TNF-a (200 ng/ml) and with indicated growth factors at predetermined optimal concentrations (see Methods). Cells were counted,
and cell morphology was determined after May-Grunwald Giemsa staining of cytospin preparations. The results represent mean percentages±SEM
of four separate experiments. Freshly isolated CD34+ cells contained >90% cells with blast cell morphology.

intensity of SR- I staining on c-kit-positive TNF-a-treated cells
was reduced by 49% as compared with TNF-a-untreated cells
(data not shown). Similarly, after 1, 6, and 24 h of treatment,
TGF-,B1 (20 ng/ml) reduced the fraction of c-kit-positive cells
to 37±2 (NS), 31±3 (P = 0.09), and 27±4% (P < 0.05),
respectively (Fig. 5). When combining TNF-a and TGF-,B1,
the downregulation of c-kit expression was more pronounced
than by either of the two factors alone, but in a less than additive
fashion. 24 h of treatment of CD34 + cells with the anti-TNFR-
p55 and anti-TNFR-p75 antibodies reduced the number of c-
kit-positive cells by 39 (P < 0.05) and 22% (P < 0.05),
respectively, suggesting that signaling through both TNF recep-
tors can mediate the observed downregulation of c-kit cell-
surface expression.

Discussion

TNF-a has been demonstrated to signal both inhibition and
stimulation of hematopoietic progenitor cells (1-9, 28). These
effects are mediated directly on target cells (7, 10) or indirectly
by stimulating accessory cells to cytokine production (11-13).
Recent studies from our laboratory suggest that both TNFR-
p55 and TNFR-p75 can mediate TNF-a-induced inhibition of
primitive hematopoietic progenitor cells requiring multiple cy-
tokines to proliferate. In contrast, TNFR-p55 exclusively medi-
ates stimulatory effects on more mature GM-CSF or IL-3-re-
sponsive progenitor cells, as well as potent inhibition of G-
CSF-induced proliferation (28). The present study extends
these findings to show that TNF-a directly and mainly through
the p55 TNF receptor can potently inhibit SCF-induced prolifer-
ation of CD34 + bone marrow progenitor cells.

Whereas TNF-a synergistically enhances GM-CSF and IL-
3-induced proliferation of CD34 + progenitor cells, we demon-
strate here that progenitors requiring both IL-3 (or GM-CSF)
and SCF for growth are potently inhibited by TNF-a. The ability
of TNF-a to inhibit GM-CSF plus SCF and IL-3 plus SCF-
stimulated proliferation could be solely because of TNF-a in-
hibiting the SCF signal and/or TNF-a preferentially inhibiting
more primitive progenitors requiring both SCF and GM-CSF
or IL-3 to proliferate.

The inhibitory effects of TNF-a on GM-CSF plus SCF-
induced colony formation occurred at higher TNF-a concentra-
tions than observed for G-CSF plus SCF-induced proliferation.
This could be because of the enhancement of GM-CSF-induced
colony formation observed at low TNF-a concentrations (0.2-
2 ng/ml). In contrast, TNF-a potently inhibited G-CSF-stimu-
lated colony formation, as well as SCF-induced growth at both
low and high concentrations of TNF-a (28).

CD34 + progenitor cell proliferation induced by SCF or SCF
plus GM-CSF was potently inhibited by an anti-TNFR-p55
agonistic antibody (or a p55 mutant TNF-a), whereas TNFR-
p75 signaled little or no inhibition. This was in contrast to TNF-
a-induced inhibition of the primitive HPP-CFC which involves
TNFR-p55 as well as TNFR-p75 (28). Since few or no CD34+
HPP-CFCs are stimulated by SCF plus GM-CSF or SCF plus
IL-3 (Jacobsen, S. E. W., L. S. Rusten, and F. W. Jacobsen,
unpublished observations), but rather require three to five HGFs
for optimal proliferation (53-59), it is possible that the p75
TNF receptor is involved in inhibition of only the most primitive
progenitors. In agreement with this, TNF-a-induced inhibition
of very primitive Lin -Sca-1 + murine HPP-CFCs is exclusively
a TNFR-p75-mediated event (28a).

Table II. Role ofp55 and p75 TNF Receptors in TNF-a-induced Modulation of IL-3 Plus SCF-stimulated Differentiation
of CD34' Bone Marrow Cells

Growth factors Myeloblasts Promyelocytes/myelocytes Granulocytes Macrophages

IL-3 + SCF 15±3 31±4 26±5 28±8
IL-3 + SCF + TNF-a 1±0 10±3 66±12 24±12
IL-3 + SCF + p55 mutant 2±1 9±1 58±13 32±14
IL-3 + SCF + p75 mutant 13±2 34±2 32±4 22±2

CD34+ cells were plated in complete IMDM at a density of 5.0 x 103 cells/ml and incubated for 14 d at 370C and 5% CO2 in air in the presence
of IL-3 plus SCF at predetermined optimal concentrations (see Methods). TNF-a (200 ng/ml), a TNF-a mutant specific for TNFR-pS5 (200 ng/
ml), or a TNF-a mutant specific for TNFR-p75 (2pg/ml) was added as indicated. Cell morphology was determined after May-Grunwald Giemsa
staining of cytospin preparations. The results represent mean percentages±SEM of three separate experiments.
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Figure 5. Role of p55 and p75 TNF receptors in TNF-a-induced down-
regulation of c-kit cell-surface expression. Freshly isolated CD34 + cells
were incubated in complete IMDM at 370C and 5% CO2 in air as
described in Methods. TNF-a (20 ng/ml), TGF-/3 (20 ng/ml), anti-
p55 (htr-9; 10 pg/ml), or anti-p75 (paTNFR-p75; 2 ,g/ml) was added
1 (cl), 6 (-), or 24 h (-) before harvest. Control cells were incubated
for 24 h in complete IMDM without any supplements. The cells were
washed and stained with the SR-I antibody (see Methods) and analyzed
by flow cytometry. The results are presented as the mean fraction of c-
kit-positive cells and represent at least four independent experiments;
error bars show the SEM.

TNF-a has been reported to inhibit terminal granulocytic
differentiation of IL-3 as well as G-CSF-dependent progenitor
cells (6-8). Of interest, we demonstrate here that TNF-a
through its p55 receptor enhances terminal granulocytic differ-
entiation of progenitors proliferating in response to SCF in com-
bination with IL-3 or GM-CSF, suggesting that TNF-a can
bifunctionally affect the proliferation as well as differentiation
of hematopoietic progenitors depending on the growth factor(s)
it interacts with.

Modulation of cell-surface receptor expression has been pro-
posed as a mechanism by which both stimulatory and inhibitory
effects of HGFs are mediated (10, 50, 52, 60-62). In particular,
TNF-a has been demonstrated to potently inhibit G-CSF-in-
duced proliferation, and this correlates well with its ability to
almost completely downregulate the expression of cell-surface
receptors for G-CSF on normal and leukemic myeloid cells
(10, 60, 61). In contrast, TNF-a can upregulate cell-surface
receptors for GM-CSF and IL-3 on acute myeloid leukemia
blasts, as well as on normal hematopoietic progenitor cells, and
this is associated with an enhancement of GM-CSF and IL-
3-stimulated growth (7, 50, 52). Of interest, a recent study
demonstrated that TNF-ca could enhance c-kit mRNA expres-
sion and upregulate c-kit cell-surface expression on acute my-
eloid leukemia blasts, and this was correlated with synergy
between TNF-a and SCF (63). In the present study, TNF-a
inhibited SCF-induced proliferation and downmodulated c-kit
expression on normal CD34+ progenitor cells. Therefore, it
appears that TNF-a can bidirectionally affect SCF-stimulated
cell growth as well as c-kit expression. However, the moderate
effects of TNF-a on c-kit expression compared with its potent
inhibitory effects on SCF-stimulated proliferation implicate the
involvement of other more important mechanisms. In other cell
systems it has been shown that TNF-a can modify the level of
phosphorylation of RB and p53 proteins (64).

In conclusion, TNF-a is a potent inhibitor of SCF, a key
regulator of hematopoiesis. Whereas numerous cytokines have
been demonstrated to synergistically enhance SCF-stimulated
hematopoiesis (34-43), this is only the second report demon-
strating a cytokine capable of inhibiting the SCF response (65).
Whether TGF-3 (65) and TNF-a are unique in their ability to
antagonize the effects of SCF remains to be determined.
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